Simulation of Sparse Model for Fmri Signal with Brain Activation During Hunger Regulation Process
Creators
- 1. Assistant Professor,Department of Computer Science, Banasthali Vidyapith, Rajasthan.
- 2. Professor, Department of Computer Science, Banasthali Vidyapith, Rajasthan.
Contributors
- 1. Publisher
Description
Functional Magnetic Resonance Imaging (fMRI), a non-invasive technique, is used for the recognition of different Cerebral Blood Flow (CBF) and Blood Oxygenated level dependent (BOLD) measures which result into the identification of various neural activities related to different physiological processes such as Hunger Regulation, Water Balancing etc. Different BOLD contrast levels (blood oxygenated and deoxygenated level) specify diversity in various state of human brain functioning subject to various tasks. The proposed model is a hybrid combination of Sparse method (Carroll et al., 2009) and Hypothalamic Hunger Regulation Model i.e. Sparse matrix for Hypothalamic BOLD Signal method (SMHB Method). SMHB method is dynamic and linear in nature. It defines the sparse parameters which act on the mapping between the fMRI signal for hunger regulation process and sparse representation of the signal segmented from the input image by which every voxel of fMRI signal in temporal domain can be expressed as a sparse signal. A sparse model provides a well define results for task based localized activity. It can be applied on a single image as well as an fMRI dataset. The implementation of SMHB method divided into different sub-modules such as Input image analysis and visualization, Linear Voxel Module and Neuro Activation Module. Our study have completed first two module with different pre-processing techniques used for image analysis and linear representation of each voxels of fMRI signal in the form of sparse parameters.
Files
C6420029320.pdf
Files
(1.1 MB)
Name | Size | Download all |
---|---|---|
md5:8c77593585c7f8275652db9e7511e5a3
|
1.1 MB | Preview Download |
Additional details
Related works
- Is cited by
- Journal article: 2249-8958 (ISSN)
Subjects
- ISSN
- 2249-8958
- Retrieval Number
- C6420029320/2020©BEIESP