
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

3984

Retrieval Number: C6383029320/2020©BEIESP

DOI: 10.35940/ijeat.C6383.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract: This study aims to implement the Shannon-fano

Adaptive data compression algorithm on characters as input data.

This study also investigates the data compression ratio, which is

the ratio between the number of data bits before and after

compression. The resulting program is tested by using black-box

testing, measuring the number of character variants and the

number of types of characters to the compression ratio, and

testing the objective truth with the Mean Square Error (MSE)

method. The description of the characteristics of the application

made is done by processing data in the form of a collection of

characters that have different types of characters, variants, and

the number of characters. This research presents algorithm that

support the steps of making adaptive Shannon-fano compression

applications. The length of the character determines the variant

value, compression ratio, and the number of input character

types. Based on the results of test results, no error occurs

according to the comparison of the original text input and the

decompression results. A higher appearance frequency of a

character causes a greater compression ratio of the resulting file;

the analysis shows that a higher number of types of input

characters causes a lower compression ratio, which proves that

the proposed method in real-time data compression improves the

effectiveness and efficiency of the compression process.

Keywords: Data Compression, Shannon-Fano, Text

Compression

I. INTRODUCTION

Most of the data management has been performed

routinely using computers. Along with developments in the

field of telecommunications, the amount of information

collected, processed, and then prepared to be accessed via the

internet is increasing significantly. Recent advances in

information technology are causing massive amounts of data

generated every second. Consequently, data storage and

transmission tend to increase to an extraordinary level [1].

The demand for data exchange between users and the number

of users causes the increasing necessity for data exchange

channels (bandwidth) and data storage media. Investment to

satisfy those needs is not meager. One of the

efforts to reduce the cost of providing infrastructure so that

Revised Manuscript Received on February 25, 2020.

* Correspondence Author

Satria Gunawan Zain*, Computer Engineering, Universitas Negeri

Makassar, Makassar, Indonesia. Email: satria.gunawan.zain@unm.ac.id

Nirwana, Computer and Informatics Engineering Education, Universitas

Negeri Makassar, Makassar, Indonesia. Email: Nirwana_Ptik@unm.ac.id

Andi Baso Kaswar, Computer Engineering, Universitas Negeri

Makassar, Makassar, Indonesia. Email: a.baso.kaswar@unm.ac.id

Suhartono, Computer Engineering, Universitas Negeri Makassar,

Makassar. Indonesia. Email : suhartono@unm.ac.id

Abd. Rahman Patta, Computer Engineering, Universitas Negeri

Makassar, Makassar, Indonesia. Email: abd.rahman.patta@unm.ac.id

services that can satisfy user needs can be provided is to

reduce the amount of data available on the communication

channel without limiting the flow of data exchange between

users.

The exchanged data or files have many types, including

image or image, text, compressed application, etc. Even large

data storage on the server is often compressed. Currently, data

compression is one of the subjects in information technology

that is currently widely applied. Data compression techniques

positively contribute to saving the use of communication

channels and file storage media. The file size also affects the

speed in data exchange between users.

A preprocessing method for universal text compression has

been developed [2]. The method integrates five algorithms,

including capital letter conversion, end of line (EOL) coding,

word replacement, phrase replacement, and letter recording.

This method does not depend on the type of language or

dictionary. However, this method requires high costs in

preprocessing. In other studies, [3] proposed a method that

presents a more efficient technique called the b64 package

technique for short messages. The proposed algorithm is

efficient, lightweight, and easily operated. This method is

more efficient than compress, gzip, and bzip2 methods. It has

a b64 package that operates in two phases. Next, [4] proposed

a greedy approach to static text compression. The proposed

method utilizes a finite state machine from a greedy-based

compression method with an arbitrary dictionary to obtain a

fast distribution system. [5] uses a graphics-based method to

obtain the sequence of characters to be processed in the

compression process. This proposed method is to build a

graph in one text delivery and then mine all the determined

patterns to be compressed in one graph trajectory. Then, [6]

introduces a new compression technique, Novel FIM based

Huffman coding techniques using hash tables (FPH2) for text

compression in the process of calculating frequently

occurring patterns. [7] offers a compression algorithm based

on displaying original data. Represented in bits, to the surface

of the plane with subsequent searches for the same region.

This method shows that the proposed method can provide a

high level of compression from various types of telemetry

data.

The necessity for data compression is not only marked from

the size reduction, but the speed of compression is also a

parameter in assessing the efficiency of the techniques used.

Several techniques do not require data completeness to

begin the compression process, such as the Lampel Ziv Welch

(LZW) method [8], which is dictionary-based and

statistical-based Huffman compression. The standard

compression technique still uses non-adaptive compression

techniques that require the completeness of data files for

compression.

Implementation of Text Compression using

Adaptive Shannon-Fano Algorithm

Satria Gunawan Zain, Nirwana, Andi Baso Kaswar, Suhartono, Abd. Rahman Patta

mailto:a.baso.kaswar@unm.ac.id

Implementation of Text Compression using Adaptive Shannon-Fano Algorithm

3985

Retrieval Number: C6383029320/2020©BEIESP

DOI: 10.35940/ijeat.C6383.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

This study will examine the implementation of the adaptive

Shannon-fano compression algorithm and utilize Matlab to

build the steps of implementing the adaptive Shannon-Fano

algorithm. The implementation steps of the algorithm built to

provide an overview of the implementation of the adaptive

Shannon-fano algorithm in embedded microcontroller

systems to support more efficient data communication, which

is even possible to be used in completing data communication

protocols for channel efficiency and data exchange speed.

The problems above designate that the data compression

process that uses the Shannon-Fano Adaptive process works

in real-time with a direct compression process; if there is a

data read, then it is directly compressed, in contrast with

Non-Adaptive Shannon-Fano, that wait for the input data to

complete before the compression process.

II. METHOD

A. Design Model

The Shannon-Fano algorithm is a method that was first

known to be able to encode symbols effectively, one

algorithm that can compress data very well without losing lost

bits. This method was developed together by Claude Shannon

at Bell Laboratory and Robert Fano at MIT in 1949. Shannon

and Fano developed algorithmic coding techniques based on

the variable-length code that some characters in the data to be

encoded are represented by codes that are shorter than the

characters in the data. The lower appearance frequency of

characters results in the longer code. Hence, the resulting

code is varied in length and unique. In principle, this

algorithm uses a top-down approach in the preparation of

binary trees.

In data compression, Shannon-Fano coding is a technique

to form a prefix code based on a set of symbols and their

probabilities.

Fig. 1 and Fig. 2 show The process of compression and

decompression. Variable X0 and X1 represented compression

data and compressed data, respectively. The compressed data

flowchart and decompression data flowchart can be seen in

Fig. 3 and Fig. 4.

According to the flowchart in Figure 3, the steps for

real-time data compression are as follows:

1. Initialize the streaming data to be processed

2. Form arrays and statistical code tables

3. Read the streaming data input character. If there is an input

character(s), proceed to step four. Otherwise, stop the

process.

4. Check if the character(s) is already in the statistics table,

remove the code output for the character and return to step

three.

Otherwise, do the following steps:

a. Generate ESC code and ASCII code from the

character

b. Add ESC weights to the table

c. Add the C character to the statistics table and its

weight

d. Calculate new code from a statistic array

e. Return to step three

5. Repeat the step three.

In the real-time data decompression flowchart, the steps are

as follows:

1. Initialize the data to be processed

2. Form arrays and statistic code

3. Read the character input stream, if there is no

character input, then stop the process. Otherwise

continue to step 4

4. Check whether K is the same as escape code

5. If K is not the same as escape code, proceed to step

six. If K is the same as escape code, do the following

steps:

a. Read the ASCII C character output from the

input stream

b. Add an escape button to the statistics

c. Add character C to the statistical table with

a weight of 1

d. Return to step three

6. Check the output of letter C, which has the word K

7. Add the weight of the letter C

8. Calculate the new code from the Statistics Array

B. Example of Adaptive Shannon-Fano Algorithm

Implementation

Table I explains that at the beginning before the incoming

text message, the table is still considered as an empty table so

that the escaped code is zero.

Then the compression algorithm reads the first letter of the

message, which is "g"; since "g" is not yet in the statistics

table, "g" cannot be directly encoded, it must have output

code for escape plus the ASCII code (in 8 bits) for the letter

"g." Thus the output for the letter "g" becomes "001100111".

After encoding, the statistics change by adding one cardinality

to escape and adding the letter "g" to the table with cardinality

is equal to one.

Input

Text Data

x0(t)

Adaptive Shannon-Fano
Compression Process

f(x0,g)

Output

Compressed Data

y(t)

Statistic Code Generation

g(x0,k)

y(t)=f(x,g)

Fig. 1. Design Model of Adaptive Shannon - Fano

Compression

Input

Compressed Data

X0(t)

Adaptive Shannon-Fano
Decompression Process

F(x,g)

Output

Decompressed Data

x1(t)

Statistic Code Generation

g(x,k)

Y(t)=f(x,g)

Fig. 2. Design Model of Adaptive Shannon - Fano

Decompression

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

3986

Retrieval Number: C6383029320/2020©BEIESP

DOI: 10.35940/ijeat.C6383.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The same condition is applicable for input "a"; the output

becomes the code for the escape sign along with the ASCII

code for "a" in 8 bits (the result is "001100001"). After adding

the cardinality of escape and entering "a" into the table, then

recalculate the code of each letter, as shown in Table III. As in

the previous step or table, in Table X, incoming letters are

sorted by ASCII code and then added by zero, and the next

line added by one; the escaped value is added by one to be

equal to three. Changes to the code are adjusted based on

binary logic.VZ

The ASCII code of letter j is smaller than the previous

letters; hence, in Table VI, the letter j remains on the last line,

the escape value is added by one becomes equal to four. For

four input data coding, the code is adjusted by binary logic

using two bits in the letter a-d and the next two bits in the letter

g-j.

In contrast to the previous step, in Table VI, the letter

appears for the second time so that the value of the number of

escapes remains, and the number of probabilities is added by

one becomes equal to two.

The next letter that appears is the letter h, so the processing

steps in Table VII are the same as in Tables I to Table V, with

no change in the number of probabilities. Likewise, the next

letter in Table VIII that appears is the letter m with one

probability; therefore, the code change process is the same as

in Tables I to Table V.

The letters that appear in Table IX are the letters "a"; hence

the escape value is fixed, and the number of probabilities is

added by one and equals three.

Moreover, the letter d appears for the second time Table X;

hence the process in Table VI and Table IX is applicable by

adding the probability number letter d to be equal to two, and

no change in the escape value.

Mulai

Input = stream
data input

Output = stream
data output

Apakah masa ada
data di input

Selesai

C = data input

ya

tidak

Output
code untuk
karakter C

Output kode ESC
Dan kode ASCII (C)

Aapakah C sudah ada
dalam statistik ?

Ya

tidak

Tambahkan bobot
ESC

Tambah karakter
C ketabel statistik

Dengan bobot

Hitung kode baru
Array Statistik

Fig. 3. Adaptive Shannon - Fano Compression

Flowchart

Mulai

Stop

Input = compressed data input
Output = Stream Output

Output C letter
that has K word

Add C weight

Calculate new
code form statistic

array

Statistic Array and Code
Initialization

any input letter of k
code from stream input

no

Apakah K = kode

escape ?

Read and Output
C ASCII

Character from
stream input

Add escape button
in statistic

Add C character
to the statistic
table with 1

weight

yes

no

ya

Fig. 4. Adaptive Shannon - Fano Deompression

Flowchart

Fig. 1.

Input

Finish no

yes

no

yes

Calculate new

code of The

Statistics Array

Add character C to

the statistics table

with weight

Add ESC

weight

Output ESC

code and ASCII

code (C)

Is C already in

the statistics?

Output code

for character C

Implementation of Text Compression using Adaptive Shannon-Fano Algorithm

3987

Retrieval Number: C6383029320/2020©BEIESP

DOI: 10.35940/ijeat.C6383.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

For the last data, the letter that appears is "a" for the fourth

time, so Table XI above is a complete table for one text

message "gadjahMada". The Overall coding of the letters of

the text message "gadjahMada" shown in (Table 2.18);

therefore, the text message has 34 bits in total.

III. RESULT AND DISCUSSION

This section explains the research result. The compression

process of 7 characters using the Adaptive Shannon-Fano

Algorithm results in a compression ratio of 1.09804 and data

redundancy of around 0.0892857. Comparison of MSE (mean

square error) is obtained by comparing the size of data

capacity and the number of characters, of the original file and

the file after decompression. However, the is no error found in

the file compression process using the Adaptive

Shannon-Fano Algorithm.

The process works in real-time and uses a lassless

compression technique, although this compression technique

has a lower degree of compression but data accuracy is

maintained before and after the compression process. In this

last less compression, missing bits from the data compression

process is not permitted.

The Variance Value of the average code is obtained by

calculating its value in the program using the syntax “var

(variable) enter” for example, the variable “a =

‘assalamualaikum’ enter” then the value “var (a) = 59.6667”.

The average code data is the number of bits in the

decompressed file divided by the number of characters of the

original file.

The compression system used in this study is inputting the

original file, which input per characters, and a compression

process that occurs for each character input.

Table- III: Second Letter Data (a)

Letter Count Code

Escape 2 0

A 1 10

G 1 11

 Table- IV: Third Letter Data (d)

Letter Count Code

Escape 3 0

A 1 10

D 1 110

G 1 111

Table- V: Fourth Letter Data (j)

Letter Count Code

Escape 3 0

A 1 100

D 1 101

G 1 110

J 1 111

Table- VI: Fifth Letter Data (a)

Letter Count Code

Escape 4 0

A 2 100

D 1 101

G 1 1110

J 1 1111

Table- VIII: Seventh Letter Data (m)

Letter Count Code

Escape 6 0

A 2 100

D 1 101

G 1 1100

J 1 1110

M 1 1111

Table- IX: Eighth Letter Data (a)

Letter Count Code

Escape 6 0

A 3 100

D 1 101

G 1 1100

H 1 1101

J 1 1110

M 1 1111

Table- X: Ninth Letter Data (d)

Letter Count Code

Escape 6 0

A 3 100

D 1 101

G 1 1100

H 1 1101

J 1 1110

M 1 1111

Table- XI: Tenth Letter Data (a)

Letter Count Code

Escape 6 0

A 4 10

D 2 1100

G 1 1101

H 1 1110

J 1 11110

M 1 11111

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

3988

Retrieval Number: C6383029320/2020©BEIESP

DOI: 10.35940/ijeat.C6383.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Characters from the original data then convert into ASCII

code, ASCII code of each character of input data is also

converted to binary data. After the conversion process of

characters into ASCII code and binary code, then the number

of data bits and input data characters are calculated.

Furthermore, the original input data file then compressed. The

file compression process works in real-time using the

Adaptive Shannon - Fano Algorithm, where every character

of input data is directly compressed. At the original file

compressing step, the output file compression code is

displayed first.

The output file compression is obtained from the original

input character file, each character input during the

compression process through repeated data checks, for

example, the first input character ‘a’ the input data is stored in

the statistics table, and the code is ASCII code. The input of

the second characters ’b’ is also stored in a statistical table,

and the code is ASCII code, this process is repeated for every

character input. After getting the same character input, then

check the statistics table.

If the input character is already in the statistic table, then it

is immediately encoded in the statistic table, the output code

is a code from the statistic table. Input data is then stored in a

table, each input data is coded into ASCII code, with

“cek_tabel” syntax in the program. The code in the statistical

table is determined by dividing the two groups of data input

characters, where the division of the above characters and the

below characters have a value of '1' and ‘0’, respectively. The

output code uses the existed code if it is already in the statistic

table. After knowing the code of the input data, the statistic

table is updated by using the “update_tabel” function in the

syntax.

In the Shannon-Fano Adaptive application, the original file

is inputted and compressed in real-time per character. After

the compression process, the compressed file is then

decompressed to examine the data authenticity obtained from

the compression process. In the decompressing process, the

ASCII compressed file is compressed and converted to

characters that correspond with the input characters. The

decompressing process is real-time using Adaptive Shannon –

Fano Algorithm, each character input of the original file is

immediately compressed and read in decompression. This

process continues during the input of characters of the

original file.

After displaying the decompression results, the

decompression results are converted to binary code in order to

facilitate the determination of the number of bits and the

number of characters decompressed to investigate whether it

corresponds to the original file or not and the results shows

that there is no different in the original, compressed, and

decompressed file, the number of bits and the number of

characters for each process remain the same.

In this research, the decompression process can be

determined by converting the ASCII code data back into

compressed binary code, then counting the number of data

compression bits and then dividing it into 8 bits and

compressed per 8 bits for one character. In ASCII to binary

compression, there is an intermediate code where the code in

the form of ‘0’ will not be encoded; hence, in the syntax, if the

binary data k is equal to k + 1, then the out is equal to ‘0’. The

compression output process starts from k + 2 to k + 9, where

data conversion of binary to decimal to obtain output

continues to repeat for every input character with the

“bin2dec” data conversion code.

Table- XII: Compression Result of Dynamic Method

Letter Count Bit

G 4 1101

a 2 10

D 4 1100

j 5 11110

a 2 10

H 4 1110

M 5 111111

A 2 10

d 4 1100

A 2 10

Table- XIII: Compression Test with Variant Data

No
Real-time Data

Input

Length of

Input Data
Variant

Compression

Ratio

Average

Code Length

1 assalamualaikum 15 1.379310345 0.725 5.8

2 Kompresi fileaa 15 1.015873016 0.984375 7.875

3 tugas akhir ana 15 1.066666667 0.9375 7.5

4 programkompresi 15 1.091405184 0.91625 7.33

5 sistemdekompres 15 1.121547736 0.891625 7.133

6 Dekompresi data 15 0.983646871 1.016625 8.133

7 nilairasio text 15 1.061993894 0.941625 7.533

8 fakultas teknik 15 1.03452735 0.966625 7.733

9 tetap jaya unm1 15 1.071524243 0.93325 7.466

10 lab pte ft unm1 15 1.008445733 0.991625 7.933

Implementation of Text Compression using Adaptive Shannon-Fano Algorithm

3989

Retrieval Number: C6383029320/2020©BEIESP

DOI: 10.35940/ijeat.C6383.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Table XIII and Fig. 5 show that the compression of a data

also affected by the variety of characters that are collected; a

higher appearance frequency of an input data character causes

a higher compression ratio while the more types of characters

inputted cause the lower data compression ratio. These data

shows that the proposed method can provide a high

compression ratio.

For example, we input real-time data "assalamualaikum" with

120 number of bits. Then the ASCII code will be generated

"97 115 115 97 108 97 109 117 97 108 97 105 107 117 109"

and binary code

"11000011110011111001111000011101100110000111011

011110101110000111011001100001110100111011101010

101010101010101010101. The output of the string

compression file is

"09701151111010810010901171011101001050107111111

1111" with87 number of bits. From this string, the MSE is 0,

and the Compression Ratio is 1.37931, which shows that the

proposed method provides good compression results in

real-time and produce the right decompression results without

any slightest error.

IV. CONCLUSION

The research concludes that the method implemented in the

microcontroller embedded system generates a higher ratio of

data compression using the adaptive Shannon-fano algorithm,

which defined by the comparison of compression ratios after

variant data values determined and the number of characters

types inputted.

The data compression process using the Adaptive

Shannon-fano algorithm is more effective than the

non-adaptive Shannon-fano algorithm, which attested by

Mean Square Error (MSE) of data compression error.

Compression using the non-adaptive Shannon-fano algorithm

in the MSE test contained an error after the data

decompression process. In contrast, data compression using

the adaptive Shannon-fano algorithm results in no error

between the original file and the file after decompression,

which is a perfect solution in the business and educational

world because this compression is suitable for fast or

real-time file transfers without reducing data quality.

Moreover, the result concludes that the compression ratio

for higher character variants has a lower ratio value. The

compression ratio is inversely proportional to the character

variant of the data stream.

Adaptive Shannon-fano compression can be developed for

any application, such as the development of file transfer

processes via protocols using offline network systems such as

ad hoc and online file exchanges.

REFERENCES

1. J. Uthayakumar, T. Vengattaraman, and P. Dhavachelvan, “A Survey on

Data Compression Techniques: From the Perspective of Data Quality,

Coding Schemes, Data Type and Applications,” J. King Saud Univ. -

Comput. Inf. Sci., 2018.

2. J. Abel and W. Teahan, “Universal text preprocessing for data

compression,” IEEE Trans. Comput., vol. 54, no. 5, pp. 497–507, 2005.

3. K. Kalajdzic, S. H. Ali, and A. Patel, “Rapid lossless compression of

short text messages,” Comput. Stand. Interfaces, vol. 37, pp. 53–59,

2015.

4. S. De Agostino, “The greedy approach to dictionary-based static text

compression on a distributed system,” J. Discret. Algorithms, vol. 34,

pp. 54–61, 2015.

5. C. Oswald, A. I. Ghosh, and B. Sivaselvan, “Knowledge engineering

perspective of text compression,” in 2015 Annual IEEE India

Conference (INDICON), 2015, pp. 1–6.

6. C. Oswald and B. Sivaselvan, “An optimal text compression algorithm

based on frequent pattern mining,” J. Ambient Intell. Humaniz.

Comput., vol. 9, no. 3, pp. 803–822, 2018.

7. A. V. Levenets, I. V. Bogachev, and E. U. Chye, “Telemetry Data

Compression Algorithms Based On Operation of Displaying onto

Geometric Surfaces,” in 2017 International Siberian Conference on

Control and Communications, SIBCON 2017, 2017, pp. 1–6.

8. F. Suhastra, “Implementasi Algoritma Kompresi Lampel Ziv Welch

(LZW) Pada Berkas Digital,” Pelita Manaj. Budi Darma, pp. 54–57,

2014.

AUTHORS PROFILE

Satria Gunawan Zain completed his bachelor's degree in

Electronics Engineering Education at Universitas Negeri

Makassar in 2005, Masters degree in Electrical

Engineering at Universitas Gadjahmada in 2007, and

Doctoral in Electrical Engineering at Universitas

Gadjahmada in 2014. The focus research is signal

processing. Email: satria.gunawan.zain@unm.ac.id

Nirwana completed her bachelor degree at Universitas

Negeri Makassar. The focus of her research was on

signal processing. Email: Nirwana_Ptik@unm.ac.id

Fig. 5. Comparisson of variant and compressiion ratio result

mailto:Nirwana_Ptik@unm.ac.id

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February 2020

3990

Retrieval Number: C6383029320/2020©BEIESP

DOI: 10.35940/ijeat.C6383.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Andi Baso Kaswar completed his bachelor's degree at

Universitas Negeri Makassar and master's degree at

Institut Teknologi Sepuluh Nopember Surabaya. The

focus of his research is digital image processing and

computer vision. currently active as a lecturer at

Universitas Negeri Makassar. Email:

a.baso.kaswar@unm.ac.id.

Suhartono. Computer Engineering Study Program,

Computer Science, Universitas Negeri Makassar,

Indonesia. Research field area are IoT, AI, Smart Device,

Database Security, Information System.

.

Abd. Rahman Patta, complated his Master’s Degree at

Hasanuddin University. The focus Research Information

System, Information Security, AI

abd.rahman.patta@unm.ac.id

mailto:a.baso.kaswar@unm.ac.id

