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Abstract—As the energy markets become more dynamic, cus-
tomers’ segmentation has become a major concern, especially
for Aggregators that contain Distributed Energy Resources in
their portfolio. Furthermore, the management complexity in the
direction of insightful Demand Response (DR) actions that will
yield high profit margins and will hedge against economical risks
has been increased since the incorporation of low and medium
customers in DR programs. Grouping customers, as independent
accumulated virtual nodes (VNs) to the grid, based on their
energy profile and their contractual characteristics, facilitates
Aggregators overcoming markets’ and network’s constraints, as
well as the designing of collective price policies and purposeful
DR strategies. This paper proposes a fully featured methodology
that encompasses a soft clustering approach, based on the Gaus-
sian Mixture Model with Expectation Maximization Algorithm,
presenting a Temporal Data Dynamic Segmentation (TDDS)
algorithm that not only allocates low and medium customers
in VNs that share common energy profiles, but also preserves an
internal balance in the VNs’ resources, in terms of their ability to
satisfy reliably DR requests, exploiting the clusters’ intersection
points to balance the VNs without disrupting their energy profile
purity. Experimental results demonstrate an increase in the
reliability of each cluster by up to 17.6% without disrupting
the clustering coherence.

Index Terms—Soft Clustering, Gaussian Mixture Model, Ex-
pectation Maximization, Demand Response, Reliability

I. INTRODUCTION

The development towards smart distribution grids and the
decentralization of the power systems requires the technology,
modern buildings and other individual assets (e.g., appliances,
HVAC systems, etc.) to be energy efficient, as well as en-
ergy flexible. The existence of flexibility in power systems
is extremely crucial in order to facilitate integration of the
highly volatile Renewable Energy Sources (RES) and cover
their intermittency with Demand Response (DR) strategies.
The achievement of the aforementioned integration requires
efficient data monitoring, which has been achieved through
advanced metering infrastructures such as smart meters [1].
However, the wide variety of event information and the large
volume of data pose high risks in operation and power
distribution between electricity customers, which affects the

reliability and the profitability of the power network [2], [3]. In
addition, current DR markets, require quite significant amounts
of available flexibility per customer (e.g. 1-3 MW), making it
extremely difficult for small and medium customers to partic-
ipate in them. For this reason, clustering electricity customers
based on their energy characteristics (consumption, generation,
storage, etc.) is necessary, and an upcoming promising solution
for risk elimination and introduction of new revenue streams.

Clustering is a data mining technique where electric cus-
tomers are selected and categorized in various groups (clus-
ters) based on their energy profiles. In addition, this method
expedites the specification of intrinsic patterns in the big data
sets that have emerged. Essentially, given that all smart meters
generate large volumes of data, and in most cases without
detailed information, their management can significantly be
facilitated by grouping data and customers into smaller groups,
offering the extraction of higher level of information and the
provision of intuitive understanding of their behaviour. For
the energy sector, clustering advantages are mainly identified
for those who have access to large amounts of energy-related
data such as Transmission System Operators (TSOs), Distribu-
tion System Operators (DSOs), retailers, utilities, Aggregators
and other decision support systems which are responsible
for instant operations and fast decision making. As clusters
introduce aggregated information to the distribution nodes,
and grouped customers can be handled collectively and not
individually, the concept of Virtual Nodes (VNs) is used in the
presented work for the created clusters. The VNs are easier
to handle entities for both Aggregators and systems operators,
especially in the context of DR requests.

Going over the literature on the field, the first surveys were
done by utilities, system operators and researchers, using the
monthly usage and some fixed information (e.g. voltage levels,
demand), categorizing households and load profiles based on
the following classes: demographics and socio-economic fac-
tors, dwelling characteristics, habits (e.g. consumption timing),
energy conservation, energy efficiency goals, knowledge about
electricity consumption and the attitude of use. Presently, data
and detailed measurements for more than tens of thousands978-1-7281-7660-4/21/$31.00 © 2021 IEEE
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end-users are available and accessible [4].
Over the years, quite a few clustering techniques have been

employed to support customer segmentation based on certain
key characteristics. From the most well-known k-means [5],
and its variations [6], to more sophisticated methods like
expectation maximization [7] and spectral clustering [8].

Most research findings focus on consumption-related as-
pects, without taking into account the emerging prosumer
role, that can greatly affect the clustering results, presenting
segments with completely different characteristics. On the
other hand, the majority of the results presented do not explore
the overall DR reliability of the system presented, aiming
towards maximizing the consecutive successful delivery of a
DR request.

This paper proposes a DR reliability scheme as an eval-
uation metric for DR from the perspective of each layer:
Aggregator, Virtual Node (VN) and individual prosumer. Fur-
thermore, there is an endeavour to formulate VNs consisting of
prosumers with similar power flow profile, in order to combine
their load, generation and storage capabilities, as all these mea-
surements can potentially affect their DR contribution. Finally,
over the clustering results, TDDS enhances the reliability of
weak VNs through a balancing mechanism that at the same
time respects the clusters’ coherence.

The remainder of this paper is structured as follows: Sec-
tion II presents the methodology followed for the clustering
procedure proposed, followed by the actual implementation
in Section III. Section V demonstrates experimental results
over a specific portfolio, whereas Section VI concludes this
manuscript.

II. RELIABILITY EVALUATION OF DISTRIBUTED ENERGY
ASSETS

The Reliability concept that is introduced in this paper refers
to a layered scheme of evaluation for different entities. In
that way, the Aggregator can exploit this information in order
to formulate balanced VNs, in terms of their credibility to
participate successfully in DR events.

The lurking uncertainty that comes from the small and
medium prosumers to deliver DR requests effectively in a
distributed energy ecosystem, necessitates the adoption of
evaluation metrics as risk quantification tools. In this paper,
a reliability scheme is presented that estimates the willingness
and effectiveness of an energy asset to deliver DR requests
during a period of time. To do so, the concept of DR reliability
is introduced, evaluating how reliably can a customer deliver
a DR request. In the direction of evaluating this ability in
different layers of a decentralized DR architecture, reliability
has been arranged in three categories: individual/personal
reliability (pr), internal reliability (IR) and external reliability
(ER). As the customer and the VN are introduced to the
system, they are considered as reliable assets, thus, pr and
ER takes the maximum value of 1, while the range of the
metrics is enclosed in the [0,1] space. The reliability at the
individual customer level is represented through the pr metric
that actually quantifies the recorded contribution of a user

in corresponding historical DR actions in the past. Equation
(eq.1) describes the pr alterations depending on coming DR
results. In general, as the customer is unable to deliver a DR
request, there is a constant percentage decline in the pr value,
while in the opposite scenario, in case of a successful DR
participation, pr increases respectively. This process occurs
with identical way, at outer level of ER as it is described in
equation (eq.3).

pr =

{
pri + alt · pri Customer’s success
pri − alt · pri Customer’s failure

(1)

Where pri is the individual customer’s reliability and alt is
a constant percentage of a corresponding alteration (increase
or decrease) over the current pri value.

The average reliability of a VN, in terms of its assets’ pr is
represented as IR. The following equation (eq. 2) describes
the IR of the VN’s resources for a P number of cluster
participants. A more concise definition of these Reliability
metrics is presented in table I.

IR =
i=P∑
i=0

pri/P (2)

Where IR is the internal reliability of a cluster, P is the
total number of customers, and pri is the individual reliability
of each customer.

ER represents the outer layer of this architecture and ex-
presses the ability of a Virtual Node (VN) as an undivided
asset to deliver DR signals, in terms of the Aggregator’s
perspective. The hierarchy of these metrics is depicted in
Figure 1. It is worth to mention that from the aggregator’s
perspective, both DR failure and completion does not always
conform with the corresponding failure and completion of
all the individual assets. In a hypothetical scenario, some
individual customers may achieve to complete their DR action,
however, the total DR could potentially fail due to other
customers’ failure and inadequacy to achieve the minimum
DR requirements.

ER =

{
ER+ alt · ER DR success
ER− alt · ER DR failure

(3)

Where ER is the External Reliability and alt is a constant
percentage of a corresponding alteration (increase or decrease)
over the current ER value.

Reformulating VN’s assets, affects directly the IR of the
entity, whereas the ER changes will be reflected in long-term
periods, as the VN participates in more DR actions. Typical
Energy profile clustering approaches that focus on the load
measurement, achieve to distinguish customers according to
their load behaviour, however this separation is not adequate to
formulate balanced VNs with regard to their Reliability metric.
As a result, DR strategies that anticipate VNs as individual
entities and pursue efficient DR delivery, discriminate over
more credible groups and ignore the existence of less reliable
assets without reverting factors.
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Fig. 1. Reliability namespace per Architecture level.

TABLE I
RELIABILITY METRICS

Types of Reliability Definition
Internal Reliability (IR) The average reliability of the VN’s assets

External Reliability (ER) VN’s reliability regarding its total
contribution to historical DR signals.

Individual Reliability (pri) The reliability of an individual participant i

III. TEMPORAL DATA DYNAMIC SEGMENTATION

This paper proposes a novel methodology to apply clus-
tering over the customers’ energy profile, while retaining a
balance of the clusters’ IR. The Temporal Data Dynamic
Segmentation (TDDS) algorithm harnesses the property of
a distribution based soft clustering method, in particular the
Gaussian Mixture Model with Expectation Maximization Al-
gorithm, to assign each customer in multiple groups with
a corresponding probability, in order to apply subsequent
correction movements towards the reinforcement of unreliable
VNs. In general, GMM’s competency to identify clusters
and approximate any probability density function with simple
gaussian components has found utility in the energy domain
[9]–[11]. Compared to other Centroid, Density or Connectivity
based algorithms that have been used in the literature for
load profile clustering, GMM as a distribution based model
approaches the problem from a probabilistic perspective, pro-
viding additional information with regard to the strength of
association between the data and the corresponding clusters
that serves the concept of TDDS.

A fair trade-off between energy profile purity and reliability
balance is achieved effectively as the exchange pool originates
from customers that belong to an intersection space among
the clusters. In that way, the purity of the generated energy
profiles is not affected from swaps between customers from
different clusters, allowing the dynamic creation of, in average,
more reliable clusters. The TDDS algorithm comprises of three
stages (Fig. 2) which are explained subsequently.

A. TDDS Stages

1) Stage 1: Contains the pre-processing step of the data, the
evaluation of the number of clusters optimum and the model
design. The pre-processsing step concerns a scaling operation
that squeezes the data in a range between [0,1], as well as the
application of Principal Component Analysis (PCA) towards

Fig. 2. Decomposition staging of TDDS algorithm

the dimension reduction of our data. Regarding the optimal
number of generated clusters, a grid search of the Bayesian
Information Criterion (BIC) for multiple candidate clusters is
proposed [12], as well as the exploration of the elbow point,
that denotes the optimal option regarding the effectiveness and
simplicity of the model as density estimator. The final step
includes the application of Gaussian Mixture Model (GMM)
through the Expectation Maximization (EM) Algorithm and
the extraction of the initial clusters (VNs).

2) Stage 2: is a transient layer that concerns the validation
of the VNs’ reliability balance. TDDS estimates the IR of
the generated clusters and examines the case scenario of high
IR deviations among the clusters. More specifically, in case
that the IR of a specific node deviates from the average IR
of the total nodes over a specific margin as it is expressed
in equation (eq. 4), an exchange mechanism is triggered and
balancing actions are applied, whereas in the opposite case,
the already generated VNs’ structure is considered as adequate
formulation to deliver effectively DR actions.

IRavg − IRnode > dev (4)

Where, dev is a specific deviation margin, IRavg is the
average IR of all nodes and IRnode is the IR of the examined
node.

3) Stage 3: Describes a balancing mechanism (BM), that
exploits the Soft Clustering method that was applied at Stage 1
to identify potential stability candidates. As the segmentation
operation focuses primarily on the discovery of prosumers
with common energy profiles, hence, balancing operations
are inclined towards not disrupting these clusters’ identity
and coherence. As a result, the BM identifies cluster’s points
that belong to an intersected area among two groups with
high probability and contrary IR, comparing their individual
reliability pri and applying swaps that equilibrate the IR of
the VNs. As it is displayed in Fig. 3 Cluster1 represents a
VN with a low IR value, while Cluster2 possesses a high IR
value. Additionally, Cluster1 contains a participant point with
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low pri value and Cluster2 a point with high pri. These points
belong to an intersection area among the two VNs, as the
GMM’s results attributes both points, as potential candidates
to participate in both VNs with high probability.

Fig. 3. Balancing Mechanism Representation

B. Gaussian Mixture Models

GMMs are probabilistic models that utilize a Soft Clustering
approach to distribute energy profiles among the nodes, indi-
cating at the same time the strength of association between
these two entities. They represent a Mixture of several normal
distributions with a respective weight π as it is displayed in
the equation (eq.5).

p(x) =
k=K∑
k=1

πkN(x|µk,Σk) (5)

where N(x|µk, σk) is the univariate Gaussian Distribution
for variable x,

N(x|µk, σk) =
1

σk
√

2π
exp(

−(x− µk)2

2σ2
k

) (6)

σk represents the standard deviation, µk the means, πk the
mixing coefficients for each component k with the constraint
as it is described in equation (eq.7) and K the number of
mixture Components.

k=K∑
k=1

πk = 1 (7)

When the data have multiple features, the d-dimensional
Gaussian Distribution is defined as:

N(x|µk,Σk) =
1

(2π)d/2
∣∣Σ1/2

∣∣ exp(
−1

2
(x−µ)T Σ−1(x−µ))

(8)
where, Σ is the Covariance Matrix that describes the rela-

tionship between the features.
Determination of the optimal parameters for GMM is com-

monly occurred through an iterative algorithm EM [13] that is
used to identify the maximum likelihood estimation with the
presence of latent variables. An iterative sequence of Expecta-
tion and Maximization steps is applied until the convergence
of the algorithm. The estimation of the latent variables is
achieved through the Expectation step, while Maximization

step is responsible to optimize the models’ parameters. Finally,
the parameters’ initialization of EM algorithm could highly
impact the quality of the solution [14].

IV. EXPERIMENTAL SETUP

A. Dataset

The Energy Profile Clustering introduced in this manuscript
is examined over the calculated power flow of 81 households
consisted exclusively by low/medium prosumers for different
periods of time. An overview of their general profile is
reflected through their nominal capacities: the portfolio has
an average consumption capacity of 9kW, around 20% of
the portfolio has generation capacity of 10kW, while approxi-
mately 30% of the portfolio has storage capacity which ranges
between 3kWh and 7kWh. In order to calculate the overall
power flow from and to the grid, of each customer, con-
sumption, generation, and storage measurements are combined
according to the following equation (eq.9). Data are managed
as univariate time series data.

pf = load− generation± ess (9)

where, pf is the overall power flow, load refers to the
power attributed to load consumption, generation refers to
power attributed to energy generation, and ess refers to power
attributed to energy storage systems, while the sign refers to
the state of the battery (charge, discharge).

The DR reliability pr of each household is considered
by taking into account historical information of DR signals,
that have been made under a simulated environment after
approximately one year of DR requests. This presents the
necessary heterogeneity of reliability indexes to support the
evaluation of the presented model, covering a reliability range
from 0.23 up to 0.98.

B. Scenarios

Different periods of time have been selected towards the
replication of these conditions that point out two possible use
cases (UC). Specifically, the examined scenarios are: UC1:
generated clusters contain households with intersected energy
profile, thus, swaps among the nodes are feasible, and UC2:
there are no possible households swaps that could balance
virtual nodes’ IR despite their energy profile similarity.

The following table (Table II) displays the Nodes’ IR
over three time periods, that reflect the two use cases. Red
background colour expresses the nodes’ weakness in terms
of the IR metric and the need for balancing actions in case
that there are available resources to satisfy the aforementioned
criteria. Such weakness, could be attributed to multiple factors,
one of most common being the fact that most clustering
methods in the literature do not consider DR reliability but
only energy-related measurements.
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V. RESULTS AND DISCUSSION

Experiments and results are inclined towards the proof of
validity for clustering process in conjunction with the balanc-
ing mechanism’s activation. The possible scenarios that can be
anticipated from TDDS have been categorized with regard to
the clustering results and the balancing mechanism’s decision
making. In the conducted experiments, different parameters’
initialization strategies were examined: Agglomerative Hierar-
chical Clustering, random starting values and KMeans, while
the latest was finally selected, as it showed the most promising
results. Regarding the type of the covariance matrix that
dictates the spread and the orientation of each distribution,
diagonal covariance was selected instead of spherical or full
type, in order to avoid overfitting issues.

TABLE II
NODES’ IR IN DIFFERENT SCENARIOS AFTER STAGE2 AND BEFORE

STAGE3

IR Node0 Node1 Node2 Node3 Node4 Node5
UC1-Period1 0.85 0.86 0.51 0.58 0.92 0.74
UC1-Period2 0.87 0.89 0.55 - - -
UC2-Period3 0.84 0.46 0.91 0.87 0.79 -

1) Use Case 1 - Period 1: In this period, the analysis of
BIC metric for a range of clusters, indicated the formulation
of six clusters as optimal number for more efficient clusters
separation. The IR of Node2 and Node3 can be considered low
reliability (LR) assets with 0.51 and 0.58 IR respectively as
they deviate from the average IR of the portfolio according
to (eq.4). Thus, TDDS is responsible to identify potential
households’ swaps between LR and HR nodes’ assets that
will mitigate reliability issues. Regarding the energy profile of
each nodes’ portfolio, Fig. 4 and Fig. 5 provide an intuitive
representation of the clusters’ position in a two dimensional
space and a heatmap that displays each profile’s strength of
association with existing nodes. Thus, through the heatmap,
it is possible to discern profiles that belong to the intersec-
tion zone between two nodes, as they are illustrated with
intermediary colours (i.e. light green). In this scenario, the
balancing mechanism over the clustering results applied four
assets swaps (three for Node2 and one for Node3). These
exchanges between the nodes affected the silhouette score [15]
of the clusters, reducing its value from 0.43 to 0.42, while
at the same time the value of the node with the lowest IR
increased from 0.51 to 0.6.

2) Use Case 1 - Period 2: The minimum value of BIC
metric indicated the formulation of three clusters. Node2 is the
only node with LR that needs support in terms of reliability.
From Fig. 4 and Fig. 5 it is discernible that Node1 is the
only Node that contains four households in the intersection
area with Node2, while Node0 assets do not share common
energy profile with other nodes. In Stage 3 (see Section A.3),
the algorithm endeavours to identify pairs of households in
the intersection zone with opposite IR in favour of the weak
node. Since, the are four pairs that conform to the criteria,
the balancing mechanism is activated. The results of these

TABLE III
CLUSTERING RESULTS AND IR METRICS FOR 3 PERIODS OF TIME.

TDDS Results Period1 Period2 Period3
Clustering Results without BM 0.43 0.57 0.39
Lowest IR without BM 0.51 0.56 0.54
Clustering Results with BM 0.42 0.55 -
Lowest IR with BM 0.60 0.65 -
BM Y Y N
Increase IR 17.6% 16% -

exchanges reduced the silhouette score from 0.53 to 0.52 while
the IR of the weakest node increased from 0.56 to 0.65 (i.e.
increase by 16%).

3) Use Case 2 - Period 3: In this period, there are 5 clusters
as they are displayed in Fig. 4 and Fig. 5 and Node1 can be
characterized as LR asset according to table (Table II). In stage
2, the balancing mechanism activated and identified two nodes
with similar energy profile. However, the pairs of households
that belong to the intersection area cannot contribute to the
empowerment of LR node as they have similar IR values. This
scenario, presents a use case that the balancing mechanism
cannot be applied on top of the clustering results.

VI. CONCLUSION

To conclude, the incorporation of low-medium customers in
DR programs, necessitates the adoption of ancillary services
that mitigate the absence of data in real life scenarios and
hedge against the risks of unpredictable responses. This paper
proposes a multilevel reliability scheme in order to manage
and formulate credible VNs. On top of this scheme, TDDS
is an algorithm based on the soft clustering technique that
aims to identify groups of assets with common energy profile,
while at the same time there is a balancing mechanism that
is triggered to empower unreliable nodes. The results of this
algorithm were examined over three separate periods that
contained at least one unreliable node. In Period1 and Period2
the algorithm achieved to extract clusters and apply balancing
actions on top of these groups, increasing the IR of the
weakest node by 17.6% and 16% respectively (Table V-3),
without disrupting the clustering coherence, as the silhouette
scored had a minor decrease. On the contrary, in Period3, the
balancing mechanism could not identify pairs of households
that could participate in balancing actions because of the lack
of assets with opposite IR value inside the intersection zone.
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