Datasets from the paper

"Trajectory Design for Proximity Operations: The Relative Orbital Elements' Perspective"

Here below it is described how the notation in the csv files is linked to nomenclature and style of the figures in the paper.

• ProximityOpsTraj_Fig3_01.csv

Figure 3a:

- Impulsive case, pre-maneuver, variables: ada_imp_pre = aδa adl_imp_pre = aδλ adex_imp_pre = aδe_x adey_imp_pre = aδe_y
 Impulsive case, post-maneuver, variables:
- ada_imp_post = aδa
 adl_imp_post = aδλ
 adex_imp_post = aδe_x
 adey_imp_post = aδe_y

Figure 3b:

- Continuous case intermediate points, variables: ada_con_black, adl_con_black, adex_con_black, adey_con_black
- Continuous case evolution, variables: ada_con_gray, adl_con_gray, adex_con_gray, adey_con_gray

• ProximityOpsTraj_Fig4_01.csv

Figure 4a:

- Impulsive case, equally spaced way points, variables:
 R_imp_eq, T_imp_eq, N_imp_eq, respectively for Radial, Tangential and Normal components
- Continuous case, equally spaced way points, variables:
 R_con_eq, T_con_eq, N_con_eq, respectively for Radial, Tangential and Normal components

Figure 4b:

- Impulsive case, glideslope velocity profile, variables:
 R_imp_eq, T_imp_eq, N_imp_eq, respectively for Radial, Tangential and Normal components
- Continuous case, glideslope velocity profile, variables:
 R_con_eq, T_con_eq, N_con_eq, respectively for Radial, Tangential and Normal components
- ProximityOpsTraj_Fig5_01.csv
 - Continuous case, equally spaced way points, variables:
 CR_eq, CT_eq, respectively for Radial and Tangential acceleration components

- Continuous case, glideslope velocity profile, variables:
 CR_gl, CT_gl, respectively for Radial and Tangential acceleration components
- ProximityOpsTraj_Fig7_01.csv
 - Figure 7c:
 - Continuous case, N=10, boundary control grid, variables:
 R_bd, T_bd, N_bd, respectively for Radial, Tangential and Normal components
 - Continuous case, N=10, centered control grid, variables
 R_ct, T_ct, N_ct, respectively for Radial, Tangential and Normal components

Figure 7d:

- Continuous case, N=10, boundary control grid, variables: timebd, CR_bd, CT_bd, respectively for time and Radial and Tangential acceleration components
- Continuous case, N=10, centered control grid, variables: Timect, CR_ct, CT_ct, respectively for time and Radial and Tangential acceleration components.

• ProximityOpsTraj_Fig8_01.csv

theta_x (= θ_x) is a table of 721 rows and 361 columns; theta_z (= θ_z) is a table of 721 rows and 361 columns. The corresponding delta-Vs are in the variable "deltaV".