

EGI conference 21/10/2021, virtual

Climate modelling: computing and data challenges

Sylvie Joussaume
CNRS, Institut Pierre Simon Laplace
Laboratoire des Sciences du Cimat et de l'Environnement
Saclay, France
Coordinator of H2020 IS-ENES3

Thanks to : Sandro Fiore (UNITN), Christian Pagé (CERFACS), Guillaume Levavasseur (IPSL)

1- Climate change and climate modelling

2- Climate models and international landscape

3- Challenges in climate modelling

Conclusions

1- Climate change and climate modelling

Global warming is unequivocal

Global:

IPCC AR6 (2021)

Decade 2011-2020: +1.09 warmer than 1850-1900 Each last 4 decades: warmer than any decade that preceded it since 1850

UK MetOffice 2020: +1,28° C versus 1850-1900

Increase of greenhouse gases: use of fossil fuels and demography

Modelling the Earth's climate system

Understand & Predict Climate Variability and Changes

"It is unequivocal that human influence has warmed the atmosphere, ocean and land"

Simulations of future climate change under different scenarios

IPCC AR6 SPM (2021)

a) Global surface temperature change relative to 1850-1900

Projections of temperature and precipitation for different global warming

Every tonne of CO₂ emissions adds to global warming

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO₂ emissions (GtCO₂)

2- Climate models and international landscape

Earth's climate system models

ESM > 1000 man years Strong legacy

& parameterizations (clouds, surface fluxes, radiation, sub-grid scale processes)

Spatial resolution

World Climate Research Program:

Coupled Model Intercomparison Project, Phase 6 (CMIP6)

23 endorsed MIPs
Model
Intercomparison
Projects

Per model:

20 to 50 000simulated years 100 s Mh1-10 PB produced

Input to IPCC AR6 2021

Status of CMIP6 experiments (CMIP deck)

30 modelling groups

59 models All: 38/100

1 Canada

Canada	CAN	CanESM5
		CanESM5-CanOE
USA	NCAR	CESM2
		CESM2-FV2
		CESM2-WACCM
		CESM2-WACCM-FV2
USA	E3SM	E3SM-1-0
		E3SM-1-1
		E3SM-1-1-ECA
USA	GFDL	GFDL-AM4
		GFDL-CM4
		GFDL-ESM4
USA	GISS	GISS-E2-1-G
		GISS-E2-1-G-CC
		GISS-E2-1-H
		GISS-E2-2-G
USA	MCM	MCM-UA-1-0

5 USA

DE	MPI	MPI-ESM-1-2-HAM
		MPI-ESM1-2-HR
		MPI-ESM1-2-LR
DE	AWI	AWI-CM-1-1-MR
		AWI-ESM-1-1-LR
FR	CNRM	CNRM-CM6-1
		CNRM-CM6-1-HR
		CNRM-ESM2-1
FR	IPSL	IPSL-CM6A-LR
IT	СМСС	CMCC-CM2-HR4
		CMCC-CM2-SR5
UK	HADLEY/UKESM	HadGEM3-GC31-LL
		HadGEM3-GC31-MM
		UKESM1-0-LL
NO	NorESM	NorCPM1
		NorESM1-F
		NorESM2-LM
		NorESM2-MM
EC-Earth	EC-Earth	EC-Earth3
		EC-Earth3-LR
		EC-Earth3-Veg
		EC-Earth3-Veg-LR
Russie	INM	INM-CM4-8

INM-CM5-0

8 in Europe

7 China / 1 Taïwan/ 3 Korea

2 Japan

1 Russia

1 Australia

Earth system grid federation: A common data infrastructure

Dashboard stat

ESGF: 13 M datasets, 30.4 PB - ca 15 000 registered users

FAIR data

Open access, common data and metadata standards Multi-agencies support: *DOE*, *NOAA*, *NASA*, *IS-ENES*, *NCI*

Coupled Model Intercomparison Project (CMIP)

1995 WCRP creation of the Working Group on Coupled Modelling

Foster the development and review of coupled models

CMIP Launched in 1995 - Mainly control runs - 1 GB

CMIP2: Launched in 1997 – Idealised experiment 1%/year increased CO2

0.5 TB - Data accessible only on subproject basis - IPCC TAR (2001)

CMIP3: more realistic past (20th) and future simulations (scenarios) - IPCC AR4 (2007) 35 TB of data at PCMDI – open and free for non commercial

CMIP5 (2008-2013): consistent set for all experiments - IPCC AR5 (2013)

1.5 - 5 (with replica) PB of data

open data (very few closed for non commercial)

CMIP6 (2014-2019) common core and more independent MIPs - IPCC AR6 (2021)
11 (no replica) - 21 (with replica) PB
Full open data

Central storage

Downloaded data volume over IS-ENES2 and IS-ENES3 from European ESGF data nodes (Apr 2013 – Sep 2021)

ESGF data user distribution

Evaluation of CMIP6 model results

3- Challenges in climate modelling

WCRP Strategic Plan 2019-2028

Infrastructure Strategy Roadmap 2012-2022

Resolution:

Resolution $x \ge 0$ Computing $x \ge 0$

Complexity:

carbon cycle, aerosols, chemistry, biosphere

Duration: need for long simulations Multi-decadal to multi-centennial At least 5-10 SYPD

Ensemble size: document internal variability, quantify uncertainties

Spatial resolution

Key for regional patterns

Bias in precipitation variability

Danubius river

Simulated tropical cyclones Roberts et al. (2015)

Spatial resolution and computation

Roberts et al., GMD, 2019

x 35

/ 10

x 10

Model name	CMIP6 resolution (atmosphere–ocean) (km)		Initial condition	Total years (spinup years)	Nodes (atmosphere–ocean)		Max turnaround (years per day)		Output per year (TB)	
LL		250-100	LL-spinup (30 years)	1130 (30)		12–2		4		0.13
MM		100–25	MM-spinup (30 years)	680 (30)		50-24		1.3		0.73
HM		50–25	MM-spinup (30 years)	117 (0)		90–24		0.5		2.8
MH		100–8	MH-spinup (30 years)	205 (30)		34–171		0.45		2.0
НН		50–8	MH-spinup (30 years)	100 (0)		90–171		0.4		4.5
Resolution					Nodes		Speed		Data	

Resolution

x 5

Need for ensemble simulations

Data deluge

Overpeck et al. (Science 2011)

Tsengdar Lee, Icas17

Data workflow: increasing complexity

Parallel IO / « on the fly » processing / Compression / Reduction of data

Computing near data

Multiple Types of Storage & Data Interaction

Multiple Roles, at least:

Model Developer, Model Tinkerer, Expert Data Analyst, Service Provider, Data User

Facing a large range of use

Climate science:

understand and predict past, present and future climates

Climate impacts:

sectors (agriculture, hydrology, energy, health ...)

Climate services:

for mitigation & adaptation decision

ENES Climate Analytics Service (ECAS)

Multi-model analyses:

- Data at multiple sites
- Multiple computation needs:

Averaging, Sub-setting,
Climate diagnostics and indices,
Downscaling at regional scale,
Bias correcting to force impact models
Processing &Visualisation tools

Addressing a range of users

Platform for Impact researchers

Explore climate data & perform analysis

Climate4impact portal

Including:

- In-depth documentation and guidance
- Use cases from impact researchers
- Perform calculations / Data processing: WPS
- Downscaling portal

Copernicus Climate Change Service (C3S) at ECMWF

https://cds.climate.copernicus.eu/

Climate Data Store

Reanalyses
Satellite data (ESA CCI)
Seasonal Forecasts

Projections (Global/Regional)

Projections: broker on ESGF relying on the expertise from IS-ENES partners

Subset of simulations (historical and projections), models & variables for

GLOBAL: CMIP5, CMIP6

&

REGIONAL: CORDEX including additional simulations for Europe

Collaboration with EGI and EUDAT

Cyclone Use Case

Services

Execution

Environments
Resource

Mapping

Future

ENES Climate Analytics Service (ECAS) an **EOSC-Hub Thematic Service**

GA 777536

01/2018-03/2021

EUDAT CDI

Computing

Data Node

CERFACS, KNMI

ENES Data Space

https://enesdataspace.vm.fedcloud.eu/

Conclusions

Climate models: at the core of climate information for mitigation and adaptation But also needed for understanding

To address climate research challenges, need for a sustained European climate modelling infrastructure: support data infrastructure, development of codes, sharing of expertise

Key for IPCC assessment reports and Copernicus C3S

Data and computing challenges:

HPC:

- Range of needs, such as spatial resolution and large ensemble
- Prepare for future architectures although using legacy codes & complex workflows

 Data:
- Manage large amounts of data near HPC
- \bullet Ease the access and democratize the analysis of large climate datasets (i.e. multi-model ensembles) ESGF 2.0, IS-ENES and collaborations
- Enable complex analyses, e.g. AI-based analysis of very large ensemble of datasets Collaborations are important (ESGF, C3S, EGI ...)

European infrastructures: EuroHPC & EOSC should help

Follow us on Twitter!

@ISENES RI

Join the community on ZENODO! is-enes

01/2019 - 12/2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 824084