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1- Climate change and climate modelling



Global : 
Decade 2011-2020: +1.09 warmer than 1850-1900 

Each last 4 decades: warmer than any decade that preceded it since 1850

UK MetOffice
2020: +1,28�C versus 1850-1900

IPCC AR6 (2021)

Global warming is unequivocal



Increase of greenhouse gases:
use of fossil fuels and demography

Global Carbon Budget 2020
Friedlingstein et al., 2020

Atmosphere
410 ppm in 2019
+48% since 1750

(277 ppm in 1750)

Unprecedented in 
800 000 years

Sources

Sinks



Copyright CEA

Modelling the Earth’s climate system

Understand & Predict  Climate Variability and Changes



IPCC AR6 SPM (2021)

“It is unequivocal that human influence has warmed
the atmosphere, ocean and land”



Simulations of future climate change under different scenarios

COP21
Limit to 2°

1.4°C  
1.0 - 1.8

4.4°C  
3.3 - 5.7

2.7°C  
2.1 – 3.5

IPCC AR6 SPM (2021)



Projections of temperature and precipitation
for different global warming

IPCC AR6 SPM (2021) Changes relative 
to 1850-1900



IPCC AR6 SPM (2021)

Cumulative CO2 emissions (GtCO2)

2019
2390 GtCO2

emitted

Temperature
Change



2- Climate models and international landscape



CEA

Earth’s climate system models

Based on physical laws (navier-stokes, conservation) 
& parameterizations (clouds, surface fluxes, radiation, sub-grid scale processes)

ESM > 1000 man years
Strong legacy



Spatial resolution

Common range

Highest range AR6

AR5
(2001)

(2007)

(2013)

(2021)



1944 V. Eyring et al.: Overview of the CMIP6 experimental design and organization

tions. This effort is now continuing under the banner of the
international ES-DOC activity, which establishes agreements
on common Controlled Vocabularies (CVs) to describe mod-
els and simulations. Modelling groups will be required to
provide documentation following a common template and
adhering to the CVs. With the documentation recorded uni-
formly across models, researchers will, for example, be able
to use web-based tools to determine differences in model ver-
sions and differences in forcing and other conditions that af-
fect each simulation. Further details on the CMIP6 infras-
tructure can be found in the WIP contribution to this special
issue.

A more routine benchmarking and evaluation of the mod-
els is envisaged to be a central part of CMIP6. As noted
above, one purpose of the DECK and CMIP historical sim-
ulations is to provide a basis for documenting model sim-
ulation characteristics. Towards that end an infrastructure
is being developed to allow analysis packages to be rou-
tinely executed whenever new model experiments are con-
tributed to the CMIP archive at the ESGF. These efforts uti-
lize observations served by the ESGF contributed from the
obs4MIPs (Ferraro et al., 2015; Teixeira et al., 2014) and
ana4MIPs projects. Examples of available tools that target
routine evaluation in CMIP include the PCMDI metrics soft-
ware (Gleckler et al., 2016) and the Earth System Model
Evaluation Tool (ESMValTool, Eyring et al., 2016), which
brings together established diagnostics such as those used
in the evaluation chapter of IPCC AR5 (Flato et al., 2013).
The ESMValTool also integrates other packages, such as the
NCAR Climate Variability Diagnostics Package (Phillips et
al., 2014), or diagnostics such as the cloud regime metric
(Williams and Webb, 2009) developed by the Cloud Feed-
back MIP (CFMIP) community. These tools can be used to
broadly and comprehensively characterize the performance
of the wide variety of models and model versions that will
contribute to CMIP6. This evaluation activity can, compared
with CMIP5, more quickly inform users of model output, as
well as the modelling centres, of the strengths and weak-
nesses of the simulations, including the extent to which
long-standing model errors remain evident in newer models.
Building such a community-based capability is not meant
to replace how CMIP research is currently performed but
rather to complement it. These tools can also be used to com-
pute derived variables or indices alongside the ESGF, and
their output could be provided back to the distributed ESGF
archive.

4 CMIP6

4.1 Scientific focus of CMIP6

In addition to the DECK and CMIP historical simulations,
a number of additional experiments will colour a specific
phase of CMIP, now CMIP6. These experiments are likely

Figure 2. Schematic of the CMIP/CMIP6 experiment design. The
inner ring and surrounding white text involve standardized func-
tions of all CMIP DECK experiments and the CMIP6 historical
simulation. The middle ring shows science topics related specifi-
cally to CMIP6 that are addressed by the CMIP6-Endorsed MIPs,
with MIP topics shown in the outer ring. This framework is super-
imposed on the scientific backdrop for CMIP6 which are the seven
WCRP Grand Science Challenges.

to change from one CMIP phase to the next. To maximize
the relevance and impact of CMIP6, it was decided to use
the WCRP Grand Science Challenges (GCs) as the scientific
backdrop of the CMIP6 experimental design. By promoting
research on critical science questions for which specific gaps
in knowledge have hindered progress so far, but for which
new opportunities and more focused efforts raise the possi-
bility of significant progress on the timescale of 5–10 years,
these GCs constitute a main component of the WCRP strat-
egy to accelerate progress in climate science (Brasseur and
Carlson, 2015). They relate to (1) advancing understanding
of the role of clouds in the general atmospheric circulation
and climate sensitivity (Bony et al., 2015), (2) assessing the
response of the cryosphere to a warming climate and its
global consequences, (3) understanding the factors that con-
trol water availability over land (Trenberth and Asrar, 2014),
(4) assessing climate extremes, what controls them, how they
have changed in the past and how they might change in the
future, (5) understanding and predicting regional sea level
change and its coastal impacts, (6) improving near-term cli-
mate predictions, and (7) determining how biogeochemical
cycles and feedback control greenhouse gas concentrations
and climate change.

Geosci. Model Dev., 9, 1937–1958, 2016 www.geosci-model-dev.net/9/1937/2016/

Evaluate

Predict/
Project

Understand

CMIP6
(Eyring et al., GMD, 2016)

23 endorsed MIPs
Model 

Intercomparison
Projects 

Per model: 
20 to 50 000 

simulated years
100s Mh

1 – 10 PB produced

Input to IPCC AR6 
2021

World Climate Research Program: 
Coupled Model Intercomparison Project, Phase 6 (CMIP6)



Status of CMIP6 experiments
(CMIP deck) 

8 in Europe
1 Canada

5 USA

1 Russia

7 China / 1 Taïwan/ 3 Korea

2 Japan

1 Australia

30 modelling groups
59 models
All: 38/100 

DE MPI MPI-ESM-1-2-HAM
MPI-ESM1-2-HR
MPI-ESM1-2-LR

DE AWI AWI-CM-1-1-MR
AWI-ESM-1-1-LR

FR CNRM CNRM-CM6-1
CNRM-CM6-1-HR
CNRM-ESM2-1

FR IPSL IPSL-CM6A-LR
IT CMCC CMCC-CM2-HR4

CMCC-CM2-SR5
UK HADLEY/UKESM HadGEM3-GC31-LL

HadGEM3-GC31-MM
UKESM1-0-LL

NO NorESM NorCPM1
NorESM1-F
NorESM2-LM
NorESM2-MM

EC-Earth EC-Earth EC-Earth3
EC-Earth3-LR
EC-Earth3-Veg
EC-Earth3-Veg-LR

Russie INM INM-CM4-8
INM-CM5-0

Chine BCC BCC-CSM2-MR
BCC-ESM1

Chine CAMS CAMS-CSM1-0
Chine CAS CAS-ESM2-0
Chine CIESM CIESM
Chine FGOALS FGOALS-f3-L

FGOALS-g3
Chine FIO FIO-ESM-2-0
Chine NESM NESM3
Taiwan TaiESM TaiESM1
Korea KACE KACE-1-0-G
Korea KIOST KIOST-ESM
Korea SNU SAM0-UNICON
JP MIROC MIROC-ES2L

MIROC6
JP MRI MRI-ESM2-0
Inde IITM IITM-ESM
AU ACCESS ACCESS-CM2

ACCESS-ESM1-5

Canada CAN CanESM5
CanESM5-CanOE

USA NCAR CESM2
CESM2-FV2
CESM2-WACCM
CESM2-WACCM-FV2

USA E3SM E3SM-1-0
E3SM-1-1
E3SM-1-1-ECA

USA GFDL GFDL-AM4
GFDL-CM4
GFDL-ESM4

USA GISS GISS-E2-1-G
GISS-E2-1-G-CC
GISS-E2-1-H
GISS-E2-2-G

USA MCM MCM-UA-1-0



Earth system grid federation: 
A common data infrastructure

Dashboard stat
ESGF: 13 M datasets, 30.4 PB - ca 15 000 registered users

FAIR data
Open access, common data and metadata standards

Multi-agencies support: DOE, NOAA, NASA, IS-ENES, NCI



Coupled Model Intercomparison Project (CMIP)

1995 WCRP creation of the Working Group on Coupled Modelling
Foster the development and review of coupled models

CMIP Launched in 1995 - Mainly control runs  - 1 GB
CMIP2: Launched in 1997 – Idealised experiment 1%/year increased CO2

0.5 TB - Data accessible only on subproject basis - IPCC TAR (2001)

CMIP3: more realistic past (20th) and future simulations (scenarios) - IPCC AR4 (2007)
35 TB of data at PCMDI – open and free for non commercial

CMIP5 (2008-2013): consistent set for all experiments  - IPCC AR5 (2013)
1.5 - 5 (with replica) PB of data

open data (very few closed for non commercial)

CMIP6 (2014-2019) common core and more independent MIPs - IPCC AR6 (2021)
11 (no replica) – 21 (with replica) PB 

Full open data 

Central 
storage



Downloaded data volume over IS-ENES2 and IS-ENES3
from European ESGF data nodes

(Apr 2013 – Sep 2021) 

600 TB

400 TB

200 TB

800 TB

The IS-ENES3 project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 824084

Mostly CMIP6

EU users
Not EU users

IS-ENES2 IS-ENES3

Mostly CORDEX 
and CMIP5

From dashboard at CMCC



ESGF data user distribution

The IS-ENES3 project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 824084

Number of distinct clients
European ESGF data nodes

10.6 PB
8.0 PB

0.2 PB

4.7 PB

0.2 PB

0.5 PB

Total downloaded data volumes
All ESGF nodes

Geographical  distribution

5 000

2 500

7 500

EU users
Not EU users

Jan 2019 June 2021



Evaluation of CMIP6 model results

decadal slowdowns or accelerations, but this presents a challenge for
interpreting multimodel ensemble averages when comparing to observed
decadal‐timescale variability from the single realization of the observa-
tions. As the historical CMIP6 simulations extend beyond the hiatus per-
iod, we found that there is again a convergence between the time series of
the multimodel mean and the observed temperature record until the year
2014. But the CMIP6 multimodel mean tends to simulate reduced warm-
ing over the period 1950–1990 (with a mean bias of −0.07°C) which is
probably at least partly related to an overestimation of the cooling in
response to large increases in anthropogenic emissions of primary aerosol
and precursors in the 1950s in some models (Andrews et al., 2019; Dittus
et al., 2020; Flynn & Mauritsen, 2020; Hoesly et al., 2018). The lack of
simulated warming in that period (Figure 1) could be caused by a high
aerosol effective radiative forcing (ERF) in these models. Dittus
et al. (2020) supports that explanation by varying the strength of aerosol
ERF in the CMIP6 version of the HadGEM3 climate model. They find that
temperature trends over the period 1951–1980 are significantly more sen-
sitive to the strength of aerosol ERF than the 30 previous (1921–1950) and
following (1981–2010) years, when temperature trends where driven by
greenhouse gas increases. Aerosol ERF measures imbalances in the
Earth's energy budget due to anthropogenic aerosols, including

aerosol‐radiation interactions and aerosol‐cloud interactions and their rapid adjustments (Sherwood
et al., 2015). Several models reduced the strength of their simulated aerosol radiative forcing during their
development phase to ensure that total anthropogenic radiative forcing remained positive (Danabasoglu
et al., 2020; Mulcahy et al., 2018). Potentially as a result of overly sensitive aerosol‐cloud‐radiation coupling,
individual CMIP6 models may underestimate the observed global temperature anomalies in the 1960s to
1980s by up to 0.5°C, while being much closer to the observations during the rest of the historical period.

By correlating each model's aerosol ERF for 2014 (C. J. Smith et al., 2020) with its simulated warming trend
between 1945 to 1970, we find some evidence to support the hypothesis that CMIP6 models with particularly
strong negative aerosol forcing show a larger surface cooling trend in the midtwentieth to late twentieth cen-
tury, with this relationship most clear when temperature trends for the NH extratropics are considered. We
note that the C. J. Smith et al. (2020) aerosol ERF for 2014 is not always representative of the aerosol ERF
experienced bymodels over the time period 1945–1970 because models could have different aerosol ERF his-
tories. We do not, however, expect this to have a large impact on the strength or sign of the relation found
between aerosol ERF and temperature trend as preliminary results from the RFMIP piClim‐histaer simula-
tion suggest that the aerosol ERF values for midcentury and present‐day typically scale rather similarly
among the models. In addition to the forcing itself, details of how individual models respond to this negative
forcing also plays a role in determining their overall historical temperature record. The very high warming
rates in the last part of the twentieth century of somemodels such as CanESM5 and UK‐ESM, as well as their
strong cooling after volcanic eruptions, are reflected in very large climate sensitivity values (see further dis-
cussion in section 6).

When evaluating model simulations of historical temperature change, it is important to keep in mind that
good agreement with the long‐term twentieth century trend of observed surface temperature changes is
expected for models that are directly or indirectly tuned to reproduce observed twentieth‐century warming
(Hourdin et al., 2017; Mauritsen et al., 2012). Tuning itself means an objective process of parameter estima-
tion to fit a predefined set of observations (Hourdin et al., 2017). However, the tuning is not time‐dependent
so the decadal variability of the time evolution of global temperature relies on how the models respond to
external forcings such as volcanic eruptions, solar variability, and time‐evolving anthropogenic aerosols.
Thus, there is no significant difference in the multimodel mean anomaly time series of near‐surface tem-
perature obtained for models that have been tuned toward the observed warming rates or for models that
have not (not shown). The anomaly time series for surface temperature for the tuned models (marked with
asterisks in the legend of Figure 1) is too cold in the second half of the twentieth century, just like models
that are not tuned to twentieth century warming.

Figure 2. Observed and simulated time series of the anomalies in annual
and global mean surface temperature as in Figure 1; all anomalies are
calculated by subtracting the 1850–1900 time mean from the time series.
Displayed are the multimodel means of all three CMIP ensembles with
shaded range of the respective standard deviation. In black the HadCRUT4
data set (HadCRUT4; Morice et al., 2012). Gray shading shows the 5% to
95% confidence interval of the combined effects of all the uncertainties
described in the HadCRUT4 error model (measurement and sampling, bias,
and coverage uncertainties) (Morice et al., 2012).
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Figure 6 shows that model performance varies across the models and
across the variables, with no single model outperforming the other models
for all variables. Nevertheless, we see model families of which members
are performing quite similar, for example, the CMIP6 GFDL or CMIP6
GISS models. This is, however, not true for all model families with, for
example, CMIP6 models MIROC‐ES2L and MIROC6 showing quite dif-
ferent performances.

In general, there are clear improvements from CMIP3 to CMIP6 with the
majority of CMIP3 models showing on average more red (positive values)
boxes (CMIP3 ensemble median RMSD over all diagnostics = 0.127; 25%/
75% percentiles = 0.003/0.283) than CMIP5 (CMIP5 median
RMSD = 0.022; 25%/75% percentiles = −0.069/0.146) and the CMIP6
models showing the most blue (negative values) boxes (CMIP6 median
RMSD = −0.064; 25%/75% percentiles = −0.146/0.048). Radiation fields
have already shown improvements from CMIP3 to CMIP5 and this devel-
opment continues in CMIP6 as the models fit quite well to the
CERES‐EBAF observations. The same applies to total cloud cover (clt)
and precipitation (pr). The seasonal cycle of near‐surface air temperature
is not represented extremely well in CMIP3 (median RMSD = 0.191) but
there were a lot improvements through CMIP5 (median RMSD = 0.014)
to CMIP6 (median RMSD = −0.069). Moreover, the dynamical fields,
sea level pressure (psl) and the geopotential height at 500 hPa (zg500) show
improvements from CMIP3 (median RMSD for zg500 = 0.357) to CMIP6
(median RMSD for zg500 = −0.121) even though some individual models
still have problems in specific regions. Also, wind fields simulated by the
CMIP6 models are in better agreement with observations than those from
previous CMIP phases (see also section 4.3). The results for the tempera-

ture fields in 200 and 850 hPa show quite a large range in the RMSD for the different models in CMIP3
(median RMSD = 0.166), CMIP5 (median RMSD = 0.017) and also in CMIP6 (median RMSD = −0.050).

Using centered pattern correlations for selected fields (here: near‐surface air temperature; precipitation; out-
going top of the atmosphere, TOA; longwave radiation; TOA shortwave cloud radiative forcing; and sea level
pressure), Figure 7 shows significant improvements from the CMIP3 ensemble to the CMIP6 ensemble.
Little progress was found for fields that were already quite well simulated such as near‐surface air tempera-
ture and TOA outgoing longwave radiation. For precipitation, the intermodel spread is reduced from CMIP3
to CMIP5 and CMIP6, particularly because the worst performing models improved significantly.
Additionally, there is a continuous improvement of the pattern correlation from CMIP3 to CMIP6 in all vari-
ables. The short‐wave cloud radiative effect shows large improvements in CMIP6 regarding the correlation
and also themultimodel spread. In CMIP3 and CMIP5, shortwave cloud radiative effect was relatively poorly
simulated with a large intermodel spread. Concerning sea level pressure, there is an improvement from
CMIP5 to CMIP6 but the wide intermodel spread has not been reduced significantly.

6. Effective Climate Sensitivity

Since the release of the first CMIP6 simulations one of the most discussed topics is the higher ECS reported
in some of the models (Forster et al., 2019; Meehl et al., 2020). ECS is an important metric for assessing the
future warming sensitivity of the climate system to increasing concentrations of CO2, which is an important
constraint on the total amount of greenhouse gases, in particular CO2, that can be emitted before a given glo-
bal mean warming target is exceeded. ECS provides a single number, defined as the change in global mean
surface air temperature resulting from a doubling of atmospheric CO2 concentration compared to preindus-
trial conditions, once the climate has reached a new equilibrium (Gregory et al., 2004). For this study we
used the common assumption by the Gregory method of extrapolating the relationship between the changes
in near‐surface temperature and the changes in the net downward radiation flux at TOA (Gregory
et al., 2004). This method is unable to represent nonlinearities in the climate response and tends to

Figure 7. Centered pattern correlations between models and observations
for the annual mean climatology over the period 1980–1999. Results are
shown for individual CMIP3 (black), CMIP5 (blue), and CMIP6 (brown)
models as short lines, along with the corresponding ensemble averages
(long lines). The correlations are shown between the models and the
reference observational data set listed in Table 5. In addition, the
correlation between the reference and alternate observational data sets are
shown (solid gray circles, marked in Table 5). To ensure a fair
comparison across a range of model resolutions, the pattern correlations are
computed after regridding all data sets to a resolution of 2.5° in
longitude and 2.5° in latitude. Only one realization is used from each model
from the CMIP3, CMIP5, and CMIP6 historical simulations.
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3- Challenges in climate modelling 



WCRP Strategic Plan 2019-2028

Variability and changes in the coupled system

Seasonal to decadal predictions: Adaptation

Uncertainties, feedbacks: Mitigation & Adaptation

Decision-relevant information and knowledge



Infrastructure Strategy Roadmap
2012-2022

 
From an infrastructure point of view, the need of 
keeping a particular numerical experiment running 
has implications (both for storage needed for check-
pointing and for uptime and/or length of sustained 
access to the machine). Meeting the scientific chal-
lenges described in 2.2 will need an increase of the 
model performance by several orders of magnitude. 
Nevertheless, each increase of computing perfor-
mance allows improving one of the above axes (re-
solution, complexity, data assimilation, ensembles, 
duration).

Dealing with limitations in computing power

Computing power is a strong constraint to the type 
of problem that can be addressed. For a given com-
puting power and time frame, within which the ex-
periment must be completed, global climate models 
are run at a resolution that allows performing the 
experiment with the required complexity, duration 
and ensemble size. Current global climate models 
have typical resolutions of the order of 100-200 km 
today, whereas regional models, using data from 
global models as boundary conditions, are run at 
higher resolution (e.g. about 10-20 km) and used 
for impact studies. In principle, as more computing 
power becomes available, it can be deployed along 
any or all of the axes described above (resolution, 
complexity, ensemble size, duration). However, in 
practice, the science, software, and nature of the 
computing itself all impact on the choice of how to 
use the resource.

Need for both capability and capacity

ENES supports the view that, both capability and 
capacity computing are important for Earth system 
modelling; both are necessary for pushing the enve-
lope of our research. Capability is needed given the 
long time scales every coupled model configuration 
needs to spin up to a stable state; furthermore paleo-
climate-studies need capability as long as there is 
no parallelisation in time. Higher resolution simula-
tions also strongly benefit from capability. But, carry 
out control and transient ensemble runs dealing with 
modern climate is a typical capacity problem. Pro-
ducing the set of experiments for IPCC AR5, such 
as organised through CMIP5, requires the running of 
a high number of experiments (typically cumulated 
10 000 simulated years for each modelling centre) 
at the best spatial resolution possible, and is a ty-
pical combination of capability and capacity needs.  
All of these runs need to be considered as being part 
of the same experiment. So systems specially suited 
for ESM high-performance computing (HPC) appli-
cations need to provide both capability and capacity. 
In any case, capacity demanding ensemble type runs 
with high resolution models are generally done most 
efficiently on central HPC systems, and not in a dis-
tributed manner, although there are applications whe-
re distributed systems provide good performance.  

However, those cases generally depend on models 
with high portability and on relatively low input/
output volumes. Many high-end Earth system mo-
delling  applications do not fulfil those criteria. 

  Infrastructure Strategy for ENES 2012-2022

Figure 5: Computing resources for climate modelling are highly dependent on resolution, complexity, 
duration, ensemble runs and data assimilation (from Jim Kinter, The world Modelling Summit, 2008)
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Complexity : 
carbon cycle, aerosols, chemistry, biosphere

Duration: need for long simulations
Multi-decadal to multi-centennial
At least 5-10 SYPD

Ensemble size: document internal 
variability, quantify uncertainties

Resolution: 
Resolution x 2 > Computing x 8



Spatial resolution

Bias in precipitation variability 
Danubius river

CMIP5 Regional
models

CMIP6
High 

resolution

Key for regional patterns

130 km 60 km

25 km Observations

Simulated tropical cyclones
Roberts et al. (2015)

HighResMIP



Spatial resolution and computation

Roberts et al., GMD, 2019

Resolution
x 5

Nodes
x 10

Speed
/ 10

Data
x 35 



Need for ensemble simulations

CLIMERI-France

CLIMERI-France



Data deluge

Overpeck et al.  (Science 2011)

50 PB

50 PB

Data workflow: increasing complexity
Parallel IO / « on the fly » processing / Compression / Reduction of data

Computing near data

Tsengdar Lee, Icas17



Multiple Types of Storage & Data Interaction

Multi-model 
analysis platforms

ESGF data nodes



Facing a large range of use

Climate science: 
understand and predict 

past, present and future climates

Climate impacts: 
sectors (agriculture, hydrology, energy, 

health …)

Climate  services: 
for mitigation & adaptation decision



Figure 6 shows that model performance varies across the models and
across the variables, with no single model outperforming the other models
for all variables. Nevertheless, we see model families of which members
are performing quite similar, for example, the CMIP6 GFDL or CMIP6
GISS models. This is, however, not true for all model families with, for
example, CMIP6 models MIROC‐ES2L and MIROC6 showing quite dif-
ferent performances.

In general, there are clear improvements from CMIP3 to CMIP6 with the
majority of CMIP3 models showing on average more red (positive values)
boxes (CMIP3 ensemble median RMSD over all diagnostics = 0.127; 25%/
75% percentiles = 0.003/0.283) than CMIP5 (CMIP5 median
RMSD = 0.022; 25%/75% percentiles = −0.069/0.146) and the CMIP6
models showing the most blue (negative values) boxes (CMIP6 median
RMSD = −0.064; 25%/75% percentiles = −0.146/0.048). Radiation fields
have already shown improvements from CMIP3 to CMIP5 and this devel-
opment continues in CMIP6 as the models fit quite well to the
CERES‐EBAF observations. The same applies to total cloud cover (clt)
and precipitation (pr). The seasonal cycle of near‐surface air temperature
is not represented extremely well in CMIP3 (median RMSD = 0.191) but
there were a lot improvements through CMIP5 (median RMSD = 0.014)
to CMIP6 (median RMSD = −0.069). Moreover, the dynamical fields,
sea level pressure (psl) and the geopotential height at 500 hPa (zg500) show
improvements from CMIP3 (median RMSD for zg500 = 0.357) to CMIP6
(median RMSD for zg500 = −0.121) even though some individual models
still have problems in specific regions. Also, wind fields simulated by the
CMIP6 models are in better agreement with observations than those from
previous CMIP phases (see also section 4.3). The results for the tempera-

ture fields in 200 and 850 hPa show quite a large range in the RMSD for the different models in CMIP3
(median RMSD = 0.166), CMIP5 (median RMSD = 0.017) and also in CMIP6 (median RMSD = −0.050).

Using centered pattern correlations for selected fields (here: near‐surface air temperature; precipitation; out-
going top of the atmosphere, TOA; longwave radiation; TOA shortwave cloud radiative forcing; and sea level
pressure), Figure 7 shows significant improvements from the CMIP3 ensemble to the CMIP6 ensemble.
Little progress was found for fields that were already quite well simulated such as near‐surface air tempera-
ture and TOA outgoing longwave radiation. For precipitation, the intermodel spread is reduced from CMIP3
to CMIP5 and CMIP6, particularly because the worst performing models improved significantly.
Additionally, there is a continuous improvement of the pattern correlation from CMIP3 to CMIP6 in all vari-
ables. The short‐wave cloud radiative effect shows large improvements in CMIP6 regarding the correlation
and also themultimodel spread. In CMIP3 and CMIP5, shortwave cloud radiative effect was relatively poorly
simulated with a large intermodel spread. Concerning sea level pressure, there is an improvement from
CMIP5 to CMIP6 but the wide intermodel spread has not been reduced significantly.

6. Effective Climate Sensitivity

Since the release of the first CMIP6 simulations one of the most discussed topics is the higher ECS reported
in some of the models (Forster et al., 2019; Meehl et al., 2020). ECS is an important metric for assessing the
future warming sensitivity of the climate system to increasing concentrations of CO2, which is an important
constraint on the total amount of greenhouse gases, in particular CO2, that can be emitted before a given glo-
bal mean warming target is exceeded. ECS provides a single number, defined as the change in global mean
surface air temperature resulting from a doubling of atmospheric CO2 concentration compared to preindus-
trial conditions, once the climate has reached a new equilibrium (Gregory et al., 2004). For this study we
used the common assumption by the Gregory method of extrapolating the relationship between the changes
in near‐surface temperature and the changes in the net downward radiation flux at TOA (Gregory
et al., 2004). This method is unable to represent nonlinearities in the climate response and tends to

Figure 7. Centered pattern correlations between models and observations
for the annual mean climatology over the period 1980–1999. Results are
shown for individual CMIP3 (black), CMIP5 (blue), and CMIP6 (brown)
models as short lines, along with the corresponding ensemble averages
(long lines). The correlations are shown between the models and the
reference observational data set listed in Table 5. In addition, the
correlation between the reference and alternate observational data sets are
shown (solid gray circles, marked in Table 5). To ensure a fair
comparison across a range of model resolutions, the pattern correlations are
computed after regridding all data sets to a resolution of 2.5° in
longitude and 2.5° in latitude. Only one realization is used from each model
from the CMIP3, CMIP5, and CMIP6 historical simulations.
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decadal slowdowns or accelerations, but this presents a challenge for
interpreting multimodel ensemble averages when comparing to observed
decadal‐timescale variability from the single realization of the observa-
tions. As the historical CMIP6 simulations extend beyond the hiatus per-
iod, we found that there is again a convergence between the time series of
the multimodel mean and the observed temperature record until the year
2014. But the CMIP6 multimodel mean tends to simulate reduced warm-
ing over the period 1950–1990 (with a mean bias of −0.07°C) which is
probably at least partly related to an overestimation of the cooling in
response to large increases in anthropogenic emissions of primary aerosol
and precursors in the 1950s in some models (Andrews et al., 2019; Dittus
et al., 2020; Flynn & Mauritsen, 2020; Hoesly et al., 2018). The lack of
simulated warming in that period (Figure 1) could be caused by a high
aerosol effective radiative forcing (ERF) in these models. Dittus
et al. (2020) supports that explanation by varying the strength of aerosol
ERF in the CMIP6 version of the HadGEM3 climate model. They find that
temperature trends over the period 1951–1980 are significantly more sen-
sitive to the strength of aerosol ERF than the 30 previous (1921–1950) and
following (1981–2010) years, when temperature trends where driven by
greenhouse gas increases. Aerosol ERF measures imbalances in the
Earth's energy budget due to anthropogenic aerosols, including

aerosol‐radiation interactions and aerosol‐cloud interactions and their rapid adjustments (Sherwood
et al., 2015). Several models reduced the strength of their simulated aerosol radiative forcing during their
development phase to ensure that total anthropogenic radiative forcing remained positive (Danabasoglu
et al., 2020; Mulcahy et al., 2018). Potentially as a result of overly sensitive aerosol‐cloud‐radiation coupling,
individual CMIP6 models may underestimate the observed global temperature anomalies in the 1960s to
1980s by up to 0.5°C, while being much closer to the observations during the rest of the historical period.

By correlating each model's aerosol ERF for 2014 (C. J. Smith et al., 2020) with its simulated warming trend
between 1945 to 1970, we find some evidence to support the hypothesis that CMIP6 models with particularly
strong negative aerosol forcing show a larger surface cooling trend in the midtwentieth to late twentieth cen-
tury, with this relationship most clear when temperature trends for the NH extratropics are considered. We
note that the C. J. Smith et al. (2020) aerosol ERF for 2014 is not always representative of the aerosol ERF
experienced bymodels over the time period 1945–1970 because models could have different aerosol ERF his-
tories. We do not, however, expect this to have a large impact on the strength or sign of the relation found
between aerosol ERF and temperature trend as preliminary results from the RFMIP piClim‐histaer simula-
tion suggest that the aerosol ERF values for midcentury and present‐day typically scale rather similarly
among the models. In addition to the forcing itself, details of how individual models respond to this negative
forcing also plays a role in determining their overall historical temperature record. The very high warming
rates in the last part of the twentieth century of somemodels such as CanESM5 and UK‐ESM, as well as their
strong cooling after volcanic eruptions, are reflected in very large climate sensitivity values (see further dis-
cussion in section 6).

When evaluating model simulations of historical temperature change, it is important to keep in mind that
good agreement with the long‐term twentieth century trend of observed surface temperature changes is
expected for models that are directly or indirectly tuned to reproduce observed twentieth‐century warming
(Hourdin et al., 2017; Mauritsen et al., 2012). Tuning itself means an objective process of parameter estima-
tion to fit a predefined set of observations (Hourdin et al., 2017). However, the tuning is not time‐dependent
so the decadal variability of the time evolution of global temperature relies on how the models respond to
external forcings such as volcanic eruptions, solar variability, and time‐evolving anthropogenic aerosols.
Thus, there is no significant difference in the multimodel mean anomaly time series of near‐surface tem-
perature obtained for models that have been tuned toward the observed warming rates or for models that
have not (not shown). The anomaly time series for surface temperature for the tuned models (marked with
asterisks in the legend of Figure 1) is too cold in the second half of the twentieth century, just like models
that are not tuned to twentieth century warming.

Figure 2. Observed and simulated time series of the anomalies in annual
and global mean surface temperature as in Figure 1; all anomalies are
calculated by subtracting the 1850–1900 time mean from the time series.
Displayed are the multimodel means of all three CMIP ensembles with
shaded range of the respective standard deviation. In black the HadCRUT4
data set (HadCRUT4; Morice et al., 2012). Gray shading shows the 5% to
95% confidence interval of the combined effects of all the uncertainties
described in the HadCRUT4 error model (measurement and sampling, bias,
and coverage uncertainties) (Morice et al., 2012).
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Conclusions
Climate models: at the core of climate information for mitigation and adaptation

But also needed for understanding

To address climate research challenges, need for a sustained European climate 
modelling infrastructure : support data infrastructure, development of codes, sharing of 
expertise                   Key for IPCC assessment reports and Copernicus C3S

Data and computing challenges:
HPC: 

• Range of needs, such as spatial resolution and large ensemble
• Prepare for future architectures although using legacy codes & complex workflows

Data: 
• Manage large amounts of data near HPC
• Ease the access and democratize the analysis of large climate datasets (i.e. multi-model 

ensembles) – ESGF 2.0, IS-ENES and collaborations
• Enable complex analyses, e.g. AI-based analysis of very large ensemble of datasets

Collaborations are important (ESGF, C3S, EGI …)
European infrastructures: EuroHPC & EOSC should help
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