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Abstract: Distributed System, plays a vital role in Frequent 

Subgraph Mining (FSM) to extract frequent subgraph from 

Large Graph database. It help to reduce in memory requirements, 

computational costs as well as increase in data security by 

distributing resources across distributed sites, which may be 

homogeneous or heterogeneous. In this paper, we focus on the 

problem related complexity of data arises in centralized system by 

using MapReduce framework. We proposed a MapReduced based 

Optimized Frequent Subgrph Mining (MOFSM) algorithm in 

MapReduced framework for large graph database. We also 

compare our algorithm with existing methods using four 

real-world standard datasets to verify that better solution with 

respect to performance and scalability of algorithm. These 

algorithms are used to extract subgraphs in distributed system 

which is important in real-world applications, such as computer 

vision, social network analysis, bio-informatics, financial and 

transportation network. 

 

Keywords: Distributed System, subgraph, support count, Graph 

Database, Mapper, and Reducer. 

I. INTRODUCTION 

Recently, the algorithm used to enhance the performance of 

graph data mining are classified into two groups. First, Graph 

Mining emphasis on searching those pattern are most frequent 

subgraphs in that graph. Second, Graph Partition that based 

on classification of a big graph database into smaller so that 

we can easily manage consecutively. 

Due to the advent of new technologies, devices, and 

communication means like social networking sites, the 

amount of data produced by mankind is growing rapidly every 

year. As data size increasing very fast, the main challenges are 

to deal with graphs of big sizes that grow in terabytes or 

petabytes scale. To overcome these problem, we use graph 

division that reduce the complexity of graph mining 

algorithm, which helps to secure the most sensitive data, less 

cost used in memory, computation as well as in transmission 

during distributed system. 

Distributed Graph Mining broadly classified into Agent 

based, or Client-Server model. Single-agent and Multi-agent 

are two sub groups of Agent-based model. Client-Server 

model is further classified into Classifier Based and Privacy 

Preserving model. We can use either Homogeneous or 

Heterogeneous Technique to calculate patterns between 
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distributed data depending on datasets. The Privacy 

Preserving model used to protect our data from unauthorized 

exposure. It can be used either Cryptographic or 

Randomization techniques. The Cryptographic technique 

have better result than other one on the basis of accuracy and 

privacy [6]. 

In Distributed Graph Mining, researcher have to 

concentrate how to distribute the entire graph database and 

computation of algorithm over the entire network of similar or 

diverse types. Graph Database are easy to store in 

heterogeneous than homogeneous. Not only the cost 

associated with transmission, computation and memory can 

be less by distributing data mining, but also we can able to 

provide more data privacy on our database. In this paper, we 

mostly emphasis on extraction of data in form of subgraphs 

presented in heterogeneous sites .We follow Decentralized 

Graph Mining technique to make entire system can be 

distributed workload properly heterogeneous sites. 

Arabesque, a system for distributed graph mining, follows 

“think like a vertex” (TLV) programming paradigm [16], 

which provide a high-level filter-process computational 

framework consist of frequent subgraph mining, counting 

motifs, and finding cliques. Arabesque provide both graph 

computation and graph mining algorithm to run on the top of 

same infrastructure (i.e. Apache Graph [15]) by using Bulk 

Synchronous Processing (BSP) model. 

In recent years, MapReduce becomes main model for 

computation on big data. It supports centralized data of 

distributed computing system. During big data analysis, it 

utilise the “Distributed File System” to improve input/output 

operations. The framework provide higher level of data 

abstraction and keep hides system level details from 

programmer, so that they can able more concentrate on 

problem oriented computation logic .Recently scientist are 

more emphasis on analyse and design of large network graph 

database to overcome major challenges arise in Big data like 

capturing data, storage, searching, sharing, transfer, analysis, 

presentation, etc. However, in various discipline’s like, 

computational mining, computer biology, link spam 

detection, reachability and distance query indexing, use 

MapReduce[7] framework for generate densest  subgraphs 

which more result able and sufficient compare to heuristic 

approach. 

Paper organization. The remainder of the paper is consist of 

following section. Section 2 establishment of previous work 

on distributed system. Section 3 provides fundamental 

concept and definitions,  
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whereas Section 4 describes overview as well as detail of our 

proposed Model. All the experimental analysis represent in 

Section 5 followed with conclusion in Section 6. 

II. RELATED WORK 

Frequent Subgraph Mining is recently studied research field 

in Distributed System. Broadly existing algorithm based on 

either Apriori-based or Pattern-growth methods which based 

on Breath-First Search (BFS) or Depth-First Search (DFS) 

respectively. Gonzalez, Low, Gu, Bickson, and Guestrin. 

discovered frequent subgraph mining by using Minimum 

Description Length (MDL), which can be implemented on 

both supervised concept learning and unsupervised pattern 

discovery and illustrate its scalability and effectiveness[6].   

To make mining process faster Kuramochi and Karypis 

used heuristic algorithm GREW in canonical graphs. He 

proposed a mechanise for cutting in frequent subgraph, which 

focus on bigger subgraph candidate based on smaller 

subgraph and satisfy all criteria of frequent  subgraph. Then 

he implemented with both BFS and DFS approaches and 

developed new algorithm HSIGRAM and VSIGRAM that 

used to find out frequent subgraph candidate [9]. 

Khan and Yan et [1] derived a proximity pattern concept 

that is counted by pFP(probabilistic algorithm FP_growth), 

where the complexity of algorithm is lower than isomorphism 

graph technique. This algorithm transfer a complex graph 

mining problem to a simplified probabilistic item set miming 

pattern. They introduced an objective function to measure the 

interestingness of a proximity pattern and make the algorithm 

more efficient and effect to generate only the top-k interesting 

pattern. 

Sun, Wang, Shao, and Li [19] ,developed the algorithm that 

make graph matching faster by changing function of index to 

become join and expand sungraph which lead to save memory 

requirement as well as index managing during frequent 

subgraph mining. They elucidated the algorithm, that support 

efficient subgraph matching for graph placed on a distributed 

memory stored. The algorithm use efficient graph exploration 

and massive parallel computing for query processing. This 

technique validity of performing subgraphs matching on 

web_scale graph data. 

Zhao et al [20], derived SAHAD, an algorithm to overcome 

problem associated with extraction labelled subgraphs in 

network, which are isomorphic to template. The subgraphs 

are represented in form of tree by using Hadoop. The 

technique is able to find out motifs and computing graph lets 

frequency distribution. It can be able to run easily on Amazon 

EC2, without needs for system level optimization. 

Han and Wen [8] proposed a model that based on the VIL 

(Vertex Identification List) in enumeration phase of solution 

candidate can be defined as pattern to be search.They 

proposed a new class of pattern names as frequent 

neighbourhood pattern, where a neighbour is a specific 

topological pattern in which a vertex (node) is embedded, and 

pattern is frequent if it is stored by a large position of nodes. 

The targets are clear semantics and are not limited to tree like 

shapes. The technique is feasible and unique ability to provide 

user with especially interesting pattern. 

In 2009, Kang, Meeder, Papalexakis, and Faloutsos [17] 

developed PEGASUS algorithm by using MapReduce model 

to analysis big graph, they used Page Rank for combing the 

distance between modes and diameter of graph. Bulk 

Synchronous Processing (BSP) platform used to find the 

shortest path verification of bipartite Semi Clustering graph in 

2010. 

Teixeira et al [15] developed Arabesque system that 

generates process of extracting a very large number of 

subgraphs by using a high-level filter-process computational 

model. It solve the problem associated with frequent subgraph 

mining, counting motifs, and finding cliques. This system 

concentrates on scalability and provide customer-friendly 

simple programming API that allows non-experts to build 

workload. 

Aparicio, D.,Ribeiro, and Silva, proposed a graph pattern 

mining engine for distributed graph processing system that is 

both fast and scalable to large graphs. They used 

neighbourhood sampling technique, which increases the 

probability that an estimator would actually find an instance 

of given pattern, hence need less estimator to get same 

accuracy. This algorithm also overcomes following 

challenges, general pattern, distributed setting, error-latency 

profile, and handling updates [12]. 

Mccune, Weninger,  and Madey [11], tried to sort out the 

issues related to billion-node graph that exceed the memory 

capacity of standard machines are not well-supported by 

popular Big data tools. The new vertex-centric programming 

framework challenges one to “think like a vertex “(TLAV) and 

executes the customer-defined programs from the perspective 

of a vertex rather than graph. The timing, communication, 

execution model, and partitions are main milestone related to 

distributed algorithm. 

The parallel methods, which are used to handle large graph 

fully rely on the expensive join operation which reduces the 

performance. Shao, Cui, Chen, Yao, and Yingxia [14], 

designed a parallel subgraph listing frame name PSgl, that 

repetitively eliminates the subgraph instances and use 

divide-and-conquer method to solve the subgraph listing. It 

purely based on graph traversal, and avoids the explicit join 

operations. The performance, scalability, and fault-tolerance 

of Pregel are already satisfactory for graph with billions of 

vertices. 

Giuseppe et al[5], described three vital aspects of the 

proposed distributed framework, namely a distribution 

process based on a peer-to-peer communication, and  

dynamic partitioning of search space, and a novel 

receiver-initiated load balancing algorithm. It tolerates node 

failure and communication latency and supports dynamic 

resource aggregation. Its dynamic resource aggregation make 

feasible for large-scale, multidomain, heterogeneous 

environments. 

Aparicio, Ribeiro, and Silva [12], derived a novel parallel 

method for subgraph counting geared towards multicores. 

They used state-of-art g-tries data structure, which is core of 

fastest sequential algorithm for subgraph counting. The 

g-tries are multiway trees, much like prefix tree that use 

common topologies in subgraphs in order to prune the search 

tree. They developed an efficient sharing mechanism that is 

able to stop, split and resume the execution of dynamically 

divide the search tree among threads. 

The g-tries, a data structure specifically designed for 

discovering subgraphs frequencies.  
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Ribiro and Silva build a tree structure to summarize the 

structure of entire graph set, by combining the common prefix 

topologies in the same way a prefix tree. A g-tries is a 

multiway tree that can store a collection of graphs. They used 

sampling methodology capable trading accuracy for even 

faster execution times, additionally improving the potential of 

the developed data-structure [13]. 

Anchuri, Zaki, Barkol, Golan and Shamy [3], derived an 

algorithm to extract frequent approximate pattern in a single 

large graph database in the presence of a cost matrix between 

labels. They proposed label based repetitive pruning method 

to compute the representative set efficiently .It relied on k-top 

label and neighbor concatenated labels, which handle both 

arbitrary as well as binary cost matrices. 

III. PRILIMINARIES 

In this section, we explore some of definition and study 

related to our work. Table-I outlines the basic notations used 

throughout our paper. Section A illustrate topics related to 

Frequent subgraph Mining, whereas Section B emphasis on 

overview of MapReduce Framework. 

A. Frequent Subgraph Mining (FSM) 

Let, GD={GD1, GD2, GD3…. GDn }, ∀ i=1,2,3…n be a graph 

where n is number of graphs present in GD. We define each 

GDi є GD as a quadruple GD=(Vgd,Egd,Lgd,lgd),where 

Vgd,Egd,Lgd,lgd are set of vertices , edges, labels, and labelling 

function that map every vertices and edges to a single Label in 

Lgd respectively. For our proposed work, we consider 

undirected and connected graph only. 

Table-I: List of Notations 

Symbol  Description 

GD Graph Database(collection of graphs) 

Vgd Set of all vertices in GD 

Egd Set of all edges in GD 

n=|GD| Number of graphs in GD 

Gi Number of subgraphs in GDi 

FE Set of frequent Edges 

CS Candidate Set 

τ User given minimum threshold value 

R Result Set 

S Subgraph 

N Number of MapReduce machines(worker nodes) 

 

Definition1:(Subgraph) Given a graph S=(V`gd,E`gd,L`gd,l`gd) 

is said to be subgraph of another graph GD=(Vgd,Egd,Lgd, lgd), 

if there exit an injective function ψ : V`gd→ Vgd such that ∀ 

(a,b) є Egd it must hold that (lgd(a)= l`gd (ψ(a)))ᴧ l`gd(b)= 

l`gd(ψ(a)) ᴧ lgd(a,b)= lgd(ψ(a), ψ(b)). 

 

Definition2:(Subgraph Isomorphism)A subgraph isomorph- 

hism from subgraph S=(V`gd,E`gd,L`gd,l`gd)) to graph 

GD=(Vgd,Egd,Lgd,lgd), is denoted by G ⋍S, which is an 

bijective function ϕ :Vgd→V’ gd such that for every pair of 

vertices vi, vj if (vi , vj) є  Egd then ϕ(vi), ϕ(vj) є E’gd . 

Definition 3:(frequency of subgraph)The frequency of 

subgraph S is calculated by number of  times it present in GD. 

f(S)={S|S є  GD ᴧ S⊂GD}. 

 

B. MapReduce Framework  

MapReduce is a processing technique and a program model 

for distributed computing based on java. It consist of two 

tasks, Map and Reduce. The Fig.1 shows that, the Map takes 

input as a set of data and transform into a specific form where 

each element split into tuples (key/value pairs). Secondly 

Reduce, that takes the output from Map as input data and 

merge those data into a similar set of tuples. MapReduce 

programs implements in tree steps, namely map, shuffle and 

reduce [7]. 

 Map: The map or mapper task to organize input data 

which is in form of file dictionaries stored in Distributed 

File System (DFS) or Hadoop Distributed File System 

(HDFS) 

The input file is processed in mapper function line by line 

and generate several small chunks of data (i.e. key/value 

pair). 

 Reduce:  This step is consist of Shuffle and Reduce. The 

shuffle accumulate key-pair into a group of list of same 

key and sort it. Then individual key associated list of 

value sent to different machines (systems).The result of 

shuffle and sort sent to reducer, where reducer use  

“reduce” function each list of value and generate a 

unique key,final output <key, value> will be stored or 

display. The table-II illustrates how the Input and Output 

types of a MapReduce job are going to done (i.e. (Input) 

<k1, v1> → map → <k2, v2> → reduce → <k3, v3> 

(Output)). 

 

Fig. 1. Flow chart of MapReduce Framework 

Table-II: Mapper and Reducer job 
 Input Output 

Map  <k1,v1> List<k2,v2 

Reduce <k2,list(v2) List<k3,v3> 

IV. OVERVIEW OF PROPOSED MODEL 

In case of parallel computation of Graph Mining, we get 

faster result and better performance than sequential approach. 

However, in case of the large-scale graph processing, it is 

difficult to handle in parallel due to shortage of memory 

requirement, complexity of graph computational and privacy 

of data. In this paper, we proposed a model MapReduced 

based Optimized Frequent Subgrph Mining (MOFSM) shown 

in Fig.2, that used repetitive MapReduce framework with 

Optimized Frequent Subgraph Mining dynamically.  
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Homogeneous Classifier-based method, that based on 

Ensemble Learning, Distributed association Rule 

Mining(DARM),MetaLearning, Knowledge Probing is 

implemented for evaluation of pattern in distributed system. It 

is purely based on Client-Server model, where graphs are 

accumulated and processed at global level. Hadoop 

MapReduce is the processing component of Apache Hadoop 

that process the data parallel in distributed environment. 

MapReduce[7] can be implemented in Google, Apache 

Hadoop. In our proposed work, we use Hadoop Distributed 

File System (HDFS) for storing graph database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig 2. Framework model for MapReduced based 

Optimized Frequent Subgrph Mining (MOFSM). 

Further, the pattern design consist of Summarization (eg. 

Inverted Index), Recommendation (eg. Sorting), 

Classification (eg. Top N Record) and Analysis (eg. Join, 

Selection). We use the analysis design pattern for our 

database. Here main precedence that, we can process data in 

parallel in distributed sites that leads to less computational 

time. Instead of moving entire graph database, we only shift 

processing logic to different site where actual data present.  

In MOFSM technology, we generate frequent subgraph 

pattern from Graph Database if its support values equals to or 

greater than minimum threshold value (τ). Further, in case of 

dynamically division, the entire dataset is distributed over 

different sites in form of worker nodes. Therefore, it is 

difficult to estimate subgraph support count value in 

MapReduce model, as local support in respective division at 

worker nodes, are difficult form the support in global state 

communication. As Apriori-based algorithm, we can’t 

postpone the support calculation. To overcome this problem, 

we introduced a new value to each node before partition 

which further used in worker nodes site for calculation of 

support count. At destination site, first we  

Algorithm 1: Filter (GD, τ) 

1. Fe ← φ 

2. for each  e є Fe  do  

3.     Calculate f(e)  

4.      If(f(e ))≥ τ 

5.        then Fe← Fe U e 

6. return Fe 

Algorithm 2: Geometric Two-Way Graph Division 

Input: GD = (X, x, y, z)  

Output: GD1 and GD2 

1. Let xyzw = π (xyz)  

2. Select the center point Cp of xyzw. 

3. Perform conformal mapping to choose the largest circle 

LCp on the unit sphere in R
n+1

  

4. Transform the LCp into a sphere S in R
n
 using reverse 

conformal mapping. 

5. Divide the sphere S vertices into two parts xyz1, xyz2. 

6. Generate two graphs GD1 and GD2 are constructed from 

xyzwI  , xyzw2 respectively. 

 

check each node frequency value, if its value more that 

threshold value (τ), then consider else discard it [20]. 

Our proposed work is based on four phases: Splitting, 

Mapping, Shuffling, and Reducing. We consider our database 

in form of a single large graph or set of small graphs. During 

Splitting phase, we use GMOFSM to split entire dataset into 

number of graphs GDi, i=1,2,3..n,where n is number of 

workers nodes. Mapper used in mapping phase to extract 

subgraph with local frequency associated with each graph-id. 

During Shuffling phase ,each subgraphs is associated with its 

global frequency which become input to Reducer and 

generate all the frequent subgraphs whose frequency value 

equal to or greater than threshold value. Fig: shows the 

framework of different phases for generation of frequent 

subgraphs.  

V. SPLITTING 

In Splitting phase of our proposed work, the entire graphs 

(GD) divides into many partitions (GDi).In algorithm 1,first 

we assign set of all frequent edges(Fe) as null in line-1.At each 

iteration we take individual edges, and computed its 

frequency f(e) inside the graph, if its value same or more than 

user given threshold value, then the edge added to Fe ,else 

discard(line2-5).During splitting section, each graph is 

associated with <key, value> pair, GDi, ∀ i=1,2,3…n., where n is 

number of graphs present in GDi. Now (key, value) pair 

generated by this phase as <graph-id> as key and <gdi, Fe > as 

value for input to mapper [6].In our proposed framework, we 

derived Geometric Multi-way Division algorithm (Algorithm 

2), which divide the entire graph database into n-disjoint 

graphs. Let a Graph Database (GD) in R
n
 of V vertices and E 

edges, we implement two-way division algorithm to get 

n-disjoint graph, where n is any positive integer. The X is an 

array of vertices pair that represents the edges among lattice 

vertices in G, such that, X = {{(x1, y1, z1), (x2, y2, 

z2)},…{(xv−1, yv−1, zv−1), (xv, yv, zv)}},where v is the 

number of vertices in R
n 

[13].In algorithm 2 (line 2) ,the 

standardized formulae of graph in eq
n
(1) is used to calculate 

the center point of given points in sphere, where (x’,y’,z’) and 

r are the center point and radius of sphere respectively.  

 

(x-x’)
2
+(y-y’)

2
+(z-z’)

2
=r

2
                                           (1)  

 

 

Input Graph Database 

Elimination of infrequent edges from Database 

Splitting the Database 

<GDi=<gdi,s(gdi)> 

 

Mapper 

 <s(gdi),Lτ> 

Reducer 

<S(gdi),Gτ> 

 

Result Set( S(GD)) 
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In case of conformal mapping, first, we use translation in 

the space is described by tx,ty,tz. It is easy to this matrix 

realizes the equations: 

 

x=x’+tx          

y=y’+ty           

z=z’+tz                        (2) 

Second, we perform in , coordinate system rotations of 

the x-, y-, and z-axes in a counter clockwise direction when 

looking towards the origin give the matrices. 

  

 

(3) 

 

 

 

(4) 

  

 

(5) 

Third, Scaling is describe by Sx,Sy,Sz. We see that this 

matrix realizes the following equations: 

 

x2=x1· Sx 

y2=y1· Sy         

z2=z1· Sz                                                                      (6) 

 

To achieve better performance, the number of division also 

plays vital role .The different way of splitting show faster 

result, which we shown in experimental section. Before 

Spliting, we used a “filtration” technique to filter out 

infrequent edges from graphs which reduce further 

computation, transmission, i/o cost on worker nodes. In this 

paper, the input Graph Database (GD) split into many 

partition and the OFSM method iteratively use MapReduce. 

mostly more than MapReduce jobs, therefore it optimized 

the desired result. By adding load balance technique in 

MapReduce task, we also achieve better result. Before Graph 

partition, input graph dataset go to pre-filling stage, where 

we remove all infrequent edges [14]. During scanning of 

graph database for entire GD, OFSM maintain a support-list 

from each edge to find out infrequent edges against the 

user-defined minimum threshold value. 

Algorithm 3: Frequent Subgraph Generation 

Input: A graph g, user given support threshold τ value 

Output: total frequent subgraphs set R 

1. R← φ  

2. Let FE be the set of all frequent subgraphs with all frequent 

edges of graph GD. 

3. for each f є FE do  

4.  R ← R U Subgraphextension(s,GD,τ,R, FE )  

5. Delete f from FE and g  

6. return R 

Algorithm 4:Subgraphextension  

Input: subgraph s, a graph g, min-sup τ, a set of frequent edges 

FE, result set R  

Output: all frequent subgraphs of g that extend s  

1. Result( R )← φ 

2. Candidate set(CS)← φ  

3. for each edge e in FE do 

4. Let extension in S` be the extended of e by adding 

frequent edge e’ 

5. If S` ⊄ CS, then  CS←CS U S`  

6. for each x є CS do  

7. if isomorphic check(x) =true and x contains repeated e 

,then 

8. Calculate Upper_Bound of x, UB(x). 

9. If UB(x) ≥ τ and x.sup ≥ τ do 

10. R ← R U {x} 

11. else  

12. discard x from CS 

13. return R 

VI. MAPPING 

The map function used to generate a list of values of 

(key-value) pair from splitting phase. The algorithm for 

finding FSM can be sequential or non-sequential on a single 

large graph database or set of small graphs. Basically both 

candidate generation and support calculation methods are 

needed to pick up required subgraphs. We start with 

single-edge pattern(pi).At each iteration of while loop in 

algorithm OFSM ,the k+1 subgraphs is generated by mapping 

two k-disjoint subgraphs by adding either forward edge or 

back edge. There is chances of duplicates subgraphs 

generation which we overcome by isomorphism checking. 

We use min_dfs_code for it. There are more than one 

generation path for each candidate pattern, we extract only 

valid candidate path. The technique, we use as follows: A 

valid generation path whose insertion order of edges matches 

with the edge ordering in min_dfs_code. In algorithm 4, we 

performed first isomorphic test, then Upper-Bound for 

elimination method to find out support value, which filter out 

some of infrequent edge before support count [12].The 

biggest feasibility support value is called as its UpperBound, 

UB(x).The computation cost is reduced by discarding 

infrequent edges which further reduce by calculating Upper 

Bound of edges. The {key, value} pair used to pass in 

distributed phase to different sites.The key is consist of graph 

identification number and value that is associated with 

subgraph, edge extension embedding which applied on map 

function.  The Candidate Generation is implemented by 

combining two (n)-size subgraph to produce (n+1)-size 

subgraph. We use core identification, join and down-word 

closure property of support condition to remove the repeated 

one.  

        In this phase, it reads all subgraphs associated with 

graph-id. All the technologies used branch_and_bound to 

find out locally frequency of subgraph. Then we add a 

“dummy root” node over the single edge subgraphs that 

correspond to empty subgraphs.  

 

 

 

http://mathworld.wolfram.com/x-Axis.html
http://mathworld.wolfram.com/y-Axis.html
http://mathworld.wolfram.com/z-Axis.html


 

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database 

3136 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: C6141029320/2020©BEIESP 

DOI: 10.35940/ijeat.C6141.029320 

Each node extends the graph of its present nose(s) by 

adding single edge, a child node subgraph of its parent. We 

use top-down approach to traverse the tree and calculate each 

node support value. If a visited node is frequent correspond to 

graph and frequency are output and the process continues with 

child node. Otherwise, we pruned all its child node and their 

descendants. 

Algortihm 5:Mapper 

1.S(gdi) ← φ 

2.for each gdi  є GDi do 

3.    S(gdi) ← Frequent Subgraph Generation(gdi, τ) U     

                     S(gdi) 

VII. SHUFFLING 

During Shuffling, we reduce the unnecessary I/O and 

communication overhead by decomposing the output in the 

map function into following ways: for each subgraphs present 

in gdi, we shuffle in such a way that each subgraph is 

associated with all support value in entire graph database 

(GDi) and make list of subgraphs with all support value in 

different worker node. 

VIII. REDUCING 

In this phase, we calculate global frequency of each 

subgraph by summarize all local frequency present in 

individual worker node. The output of shuffling and sorting of 

key-value pair are input to reducer, then we calculate the 

global support(gl(f))value of each candidate subgraph pattern 

by aggregating the support count generated in graph partition, 

If its value more than or equal to given threshold value 

(τ),then reducer result appropriate key-value pair in HDFS 

else discard it. 

Further, a graph is consider as candidate if it is locally 

frequent of any worker node. To avoid false candidate 

we check the condition; if any graph in any worker node is 

not reported as candidate by any machine, then frequency of 

GD in Gi must be satisfy the following inequality: 

= τ.ni            (7) 

 

Algorithm 6: Reducer 

1.  g(s) )← φ 

2.  for each s є s(gdi ) 

3.  calculate gl(f) 

4.  if gl(f) ≥ τ then 

5.      g(s) ← g(s) U s 

6. else discard it. 

IX. EXPERIMENTAL RESULT AND DISCUSSION 

In this section, we represent the experimental, result that 

show the performance of MOFSM for resolving the extraction 

of frequent subgraphs on a large graph datasets. All the 

experimental we conducted on Intel (R) CPU 3.10 GHz PC 

with 4 GB RAM running on 32-bit windows operating 

systems. We use following four real-world graph datasets.  

Patent citation network managed by the National Bureau 

of Economic Research. The data collected on period from 1
st
 

Jan 1963 to 30
th

 Dec. 1999 including 3,923,922 patents .The 

citation graph include all citation made by patents granted 

during that period, totalling 16,522,438 citations. 

Twitter tweets dataset collected 467 million twitter post 

from 20 million during 1
st
 Jan 2009 to 31

st
 Dec 2009. We use 

only calculate 20-30% of public tweets published on Tweeter 

during that specific time span. Each public tweet consist of 

Author, Time, and Content information. We consider 

17,069,982 user associated with 476,553,560 tweets. 

Amazon Website dataset based on “Customer who bought 

this item also brought feature” of amazon website. We 

consider only largest connected component which consist of 

334863,925872 numbers of nodes and edges respectively. 

Google Web graph dataset use nodes and edges to 

represented webpages and hyperlinks respectively. The data 

was released in 2002 by Google as a part of Google 

Programming Contest which consist of 875713 web pages 

and 5105039 hyperlinks. 

Table-III: Statistics of MapReduced based Optimized 

Frequent Subgraph Mining with min_sup value 8. 

 
Data 

sets 

No of 

Node 

No. of 

Edge 

Run 

Tim

e 

(min

) 

Mappi

ng 

Time 

(min) 

Reducing  

Time 

(min) 

Co

mm. 

Ove

r 

n/w 

(GB

) 

Patent 

citation 

network 

3,923,9

22 

16,52

2,438 

40.8 12.5 49.3 57 

Twitter 

tweets 

17,069,

982 

476,5

53,56

0 

69.7

5 

17.9 56.7 81 

Amazon 

Website 

334863 92587

2 

22.7

5 

5.69 21.07 3.2 

Google 

Web 

875713 51050

39 

30.5 7.28 21.84 6.9 

In this section, we compare efficiency and effectiveness of 

our proposed methods with existing one. In Fig.3, we vary 

minimum support threshold (τ) from 5 to 30 with fix number 

of data node to 8.The fig. illustrate that as number of τ 

increases the execution time decrease. Our result approximate 

nearly 5%, 15% improve than MRFSE-J and FSM-H 

respectively. 

 

            
(a) 
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(b)

 

 

(c ) 

 
 

(d) 

Fig.3: Relationship between different minimum support 

values with execution time four different datasets. 

We illustrate the performance of our proposed model in 

different categories of partition in Fig.4 by using 

heterogeneous and homogeneous strategies of graph splitting, 

we concluded that performance of randomly division method 

is better than equal size division in all four datasets. The 

Table-III represents how the different datasets affects the data 

communication over the network in Gigabytes. The 

communication size is directly proportional to number of 

nodes in each database. 

During execution of MapReduce job in Hadoop, the 

number of reducer we use played vital role. When devaluing 

data (output) in HDFS, a MapReduce job go along with a 

convention of naming the output file with the key record 

“part”. Reducer calculates the number of “part” will be 

produced to hold the result of job. If we use only one reducer, 

then entire result stored in a single file. As we use repetitive 

use of MOFSM, where result of current task is set as input to 

next task, the number of reducer plays outstanding effects on 

the runtime of MOFSM. 

 

 
(a) 

 

 
 

(b) 

If we use less number of reducers, then result of output files 

stored in larger size which will be a burden over the network 

during transmission of data nodes. On other hand, if we use 

large number of reducers, then there is chances of creation of 

output files of zero size. Further, this zero size output file 

creates overhead for next stage of mappers. 

      
( c) 

  
(d) 

Fig.4 Relationship between different Splitting techniques 

with its execution time four different datasets. 
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(a) 

 

     
(b) 

 

  
( c ) 

 

  
(d) 

Fig.5: Relationship between numbers of Reducer used 

with execution time four different datasets. 

Hence loading an input file is costly. In fig.5, we take 

different number of mappers (i.e.5, 15, 25, 35, 45) and 

calculate runtime for MOFSM .As per the fig, we conclude 

that 25 is the best choice for number of reducer in our 

proposed model. 
 

X. CONCLUSION 

In this paper, we derive how to perform FSM in a 

distributed system. We defined a MapReduce model that we 

use OFSM for extraction of frequent subgraphs .We also 

analyse how to perform extraction on different type of 

networks system for a large scale graph database. For 

experiment analysis, we use all datasets with different 

minimum support value on both random and equal division. 

We make a comparative analysis with existing techniques, 

which conclude that MOFSM is significantly better 

performance that existing one. To get effective and correct 

results, we have to select proper candidate generation 

algorithm with correct partition method. In further, we plan to 

extend our work to extend our result on large database. 
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