
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

3131

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

Abstract: Distributed System, plays a vital role in Frequent

Subgraph Mining (FSM) to extract frequent subgraph from

Large Graph database. It help to reduce in memory requirements,

computational costs as well as increase in data security by

distributing resources across distributed sites, which may be

homogeneous or heterogeneous. In this paper, we focus on the

problem related complexity of data arises in centralized system by

using MapReduce framework. We proposed a MapReduced based

Optimized Frequent Subgrph Mining (MOFSM) algorithm in

MapReduced framework for large graph database. We also

compare our algorithm with existing methods using four

real-world standard datasets to verify that better solution with

respect to performance and scalability of algorithm. These

algorithms are used to extract subgraphs in distributed system

which is important in real-world applications, such as computer

vision, social network analysis, bio-informatics, financial and

transportation network.

Keywords: Distributed System, subgraph, support count, Graph

Database, Mapper, and Reducer.

I. INTRODUCTION

Recently, the algorithm used to enhance the performance of

graph data mining are classified into two groups. First, Graph

Mining emphasis on searching those pattern are most frequent

subgraphs in that graph. Second, Graph Partition that based

on classification of a big graph database into smaller so that

we can easily manage consecutively.

Due to the advent of new technologies, devices, and

communication means like social networking sites, the

amount of data produced by mankind is growing rapidly every

year. As data size increasing very fast, the main challenges are

to deal with graphs of big sizes that grow in terabytes or

petabytes scale. To overcome these problem, we use graph

division that reduce the complexity of graph mining

algorithm, which helps to secure the most sensitive data, less

cost used in memory, computation as well as in transmission

during distributed system.

Distributed Graph Mining broadly classified into Agent

based, or Client-Server model. Single-agent and Multi-agent

are two sub groups of Agent-based model. Client-Server

model is further classified into Classifier Based and Privacy

Preserving model. We can use either Homogeneous or

Heterogeneous Technique to calculate patterns between

Revised Manuscript Received on February 24, 2020.

Ms. Sadhana Priyadarshini, Ph.D. Scholar, Department of Computer

Science and Engineering, GITAM (Deemed to be University),

Vishakhapatnam, India

Dr. Sireesha Rodda, is a Professor in the Department of Computer

Science & Engineering, GITAM (Deemed to be University)

Vishakhapatnam, India.

distributed data depending on datasets. The Privacy

Preserving model used to protect our data from unauthorized

exposure. It can be used either Cryptographic or

Randomization techniques. The Cryptographic technique

have better result than other one on the basis of accuracy and

privacy [6].

In Distributed Graph Mining, researcher have to

concentrate how to distribute the entire graph database and

computation of algorithm over the entire network of similar or

diverse types. Graph Database are easy to store in

heterogeneous than homogeneous. Not only the cost

associated with transmission, computation and memory can

be less by distributing data mining, but also we can able to

provide more data privacy on our database. In this paper, we

mostly emphasis on extraction of data in form of subgraphs

presented in heterogeneous sites .We follow Decentralized

Graph Mining technique to make entire system can be

distributed workload properly heterogeneous sites.

Arabesque, a system for distributed graph mining, follows

“think like a vertex” (TLV) programming paradigm [16],

which provide a high-level filter-process computational

framework consist of frequent subgraph mining, counting

motifs, and finding cliques. Arabesque provide both graph

computation and graph mining algorithm to run on the top of

same infrastructure (i.e. Apache Graph [15]) by using Bulk

Synchronous Processing (BSP) model.

In recent years, MapReduce becomes main model for

computation on big data. It supports centralized data of

distributed computing system. During big data analysis, it

utilise the “Distributed File System” to improve input/output

operations. The framework provide higher level of data

abstraction and keep hides system level details from

programmer, so that they can able more concentrate on

problem oriented computation logic .Recently scientist are

more emphasis on analyse and design of large network graph

database to overcome major challenges arise in Big data like

capturing data, storage, searching, sharing, transfer, analysis,

presentation, etc. However, in various discipline’s like,

computational mining, computer biology, link spam

detection, reachability and distance query indexing, use

MapReduce[7] framework for generate densest subgraphs

which more result able and sufficient compare to heuristic

approach.

Paper organization. The remainder of the paper is consist of

following section. Section 2 establishment of previous work

on distributed system. Section 3 provides fundamental

concept and definitions,

Map Reduce Based Optimized Frequent

Subgraph Mining Algorithm for Large Graph

Database

Sadhana Priyadarshini, Sireesha Rodda

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database

3132

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

whereas Section 4 describes overview as well as detail of our

proposed Model. All the experimental analysis represent in

Section 5 followed with conclusion in Section 6.

II. RELATED WORK

Frequent Subgraph Mining is recently studied research field

in Distributed System. Broadly existing algorithm based on

either Apriori-based or Pattern-growth methods which based

on Breath-First Search (BFS) or Depth-First Search (DFS)

respectively. Gonzalez, Low, Gu, Bickson, and Guestrin.

discovered frequent subgraph mining by using Minimum

Description Length (MDL), which can be implemented on

both supervised concept learning and unsupervised pattern

discovery and illustrate its scalability and effectiveness[6].

To make mining process faster Kuramochi and Karypis

used heuristic algorithm GREW in canonical graphs. He

proposed a mechanise for cutting in frequent subgraph, which

focus on bigger subgraph candidate based on smaller

subgraph and satisfy all criteria of frequent subgraph. Then

he implemented with both BFS and DFS approaches and

developed new algorithm HSIGRAM and VSIGRAM that

used to find out frequent subgraph candidate [9].

Khan and Yan et [1] derived a proximity pattern concept

that is counted by pFP(probabilistic algorithm FP_growth),

where the complexity of algorithm is lower than isomorphism

graph technique. This algorithm transfer a complex graph

mining problem to a simplified probabilistic item set miming

pattern. They introduced an objective function to measure the

interestingness of a proximity pattern and make the algorithm

more efficient and effect to generate only the top-k interesting

pattern.

Sun, Wang, Shao, and Li [19] ,developed the algorithm that

make graph matching faster by changing function of index to

become join and expand sungraph which lead to save memory

requirement as well as index managing during frequent

subgraph mining. They elucidated the algorithm, that support

efficient subgraph matching for graph placed on a distributed

memory stored. The algorithm use efficient graph exploration

and massive parallel computing for query processing. This

technique validity of performing subgraphs matching on

web_scale graph data.

Zhao et al [20], derived SAHAD, an algorithm to overcome

problem associated with extraction labelled subgraphs in

network, which are isomorphic to template. The subgraphs

are represented in form of tree by using Hadoop. The

technique is able to find out motifs and computing graph lets

frequency distribution. It can be able to run easily on Amazon

EC2, without needs for system level optimization.

Han and Wen [8] proposed a model that based on the VIL

(Vertex Identification List) in enumeration phase of solution

candidate can be defined as pattern to be search.They

proposed a new class of pattern names as frequent

neighbourhood pattern, where a neighbour is a specific

topological pattern in which a vertex (node) is embedded, and

pattern is frequent if it is stored by a large position of nodes.

The targets are clear semantics and are not limited to tree like

shapes. The technique is feasible and unique ability to provide

user with especially interesting pattern.

In 2009, Kang, Meeder, Papalexakis, and Faloutsos [17]

developed PEGASUS algorithm by using MapReduce model

to analysis big graph, they used Page Rank for combing the

distance between modes and diameter of graph. Bulk

Synchronous Processing (BSP) platform used to find the

shortest path verification of bipartite Semi Clustering graph in

2010.

Teixeira et al [15] developed Arabesque system that

generates process of extracting a very large number of

subgraphs by using a high-level filter-process computational

model. It solve the problem associated with frequent subgraph

mining, counting motifs, and finding cliques. This system

concentrates on scalability and provide customer-friendly

simple programming API that allows non-experts to build

workload.

Aparicio, D.,Ribeiro, and Silva, proposed a graph pattern

mining engine for distributed graph processing system that is

both fast and scalable to large graphs. They used

neighbourhood sampling technique, which increases the

probability that an estimator would actually find an instance

of given pattern, hence need less estimator to get same

accuracy. This algorithm also overcomes following

challenges, general pattern, distributed setting, error-latency

profile, and handling updates [12].

Mccune, Weninger, and Madey [11], tried to sort out the

issues related to billion-node graph that exceed the memory

capacity of standard machines are not well-supported by

popular Big data tools. The new vertex-centric programming

framework challenges one to “think like a vertex “(TLAV) and

executes the customer-defined programs from the perspective

of a vertex rather than graph. The timing, communication,

execution model, and partitions are main milestone related to

distributed algorithm.

The parallel methods, which are used to handle large graph

fully rely on the expensive join operation which reduces the

performance. Shao, Cui, Chen, Yao, and Yingxia [14],

designed a parallel subgraph listing frame name PSgl, that

repetitively eliminates the subgraph instances and use

divide-and-conquer method to solve the subgraph listing. It

purely based on graph traversal, and avoids the explicit join

operations. The performance, scalability, and fault-tolerance

of Pregel are already satisfactory for graph with billions of

vertices.

Giuseppe et al[5], described three vital aspects of the

proposed distributed framework, namely a distribution

process based on a peer-to-peer communication, and

dynamic partitioning of search space, and a novel

receiver-initiated load balancing algorithm. It tolerates node

failure and communication latency and supports dynamic

resource aggregation. Its dynamic resource aggregation make

feasible for large-scale, multidomain, heterogeneous

environments.

Aparicio, Ribeiro, and Silva [12], derived a novel parallel

method for subgraph counting geared towards multicores.

They used state-of-art g-tries data structure, which is core of

fastest sequential algorithm for subgraph counting. The

g-tries are multiway trees, much like prefix tree that use

common topologies in subgraphs in order to prune the search

tree. They developed an efficient sharing mechanism that is

able to stop, split and resume the execution of dynamically

divide the search tree among threads.

The g-tries, a data structure specifically designed for

discovering subgraphs frequencies.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

3133

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

Ribiro and Silva build a tree structure to summarize the

structure of entire graph set, by combining the common prefix

topologies in the same way a prefix tree. A g-tries is a

multiway tree that can store a collection of graphs. They used

sampling methodology capable trading accuracy for even

faster execution times, additionally improving the potential of

the developed data-structure [13].

Anchuri, Zaki, Barkol, Golan and Shamy [3], derived an

algorithm to extract frequent approximate pattern in a single

large graph database in the presence of a cost matrix between

labels. They proposed label based repetitive pruning method

to compute the representative set efficiently .It relied on k-top

label and neighbor concatenated labels, which handle both

arbitrary as well as binary cost matrices.

III. PRILIMINARIES

In this section, we explore some of definition and study

related to our work. Table-I outlines the basic notations used

throughout our paper. Section A illustrate topics related to

Frequent subgraph Mining, whereas Section B emphasis on

overview of MapReduce Framework.

A. Frequent Subgraph Mining (FSM)

Let, GD={GD1, GD2, GD3…. GDn }, ∀ i=1,2,3…n be a graph

where n is number of graphs present in GD. We define each

GDi є GD as a quadruple GD=(Vgd,Egd,Lgd,lgd),where

Vgd,Egd,Lgd,lgd are set of vertices , edges, labels, and labelling

function that map every vertices and edges to a single Label in

Lgd respectively. For our proposed work, we consider

undirected and connected graph only.

Table-I: List of Notations

Symbol Description

GD Graph Database(collection of graphs)

Vgd Set of all vertices in GD

Egd Set of all edges in GD

n=|GD| Number of graphs in GD

Gi Number of subgraphs in GDi

FE Set of frequent Edges

CS Candidate Set

τ User given minimum threshold value

R Result Set

S Subgraph

N Number of MapReduce machines(worker nodes)

Definition1:(Subgraph) Given a graph S=(V`gd,E`gd,L`gd,l`gd)

is said to be subgraph of another graph GD=(Vgd,Egd,Lgd, lgd),

if there exit an injective function ψ : V`gd→ Vgd such that ∀

(a,b) є Egd it must hold that (lgd(a)= l`gd (ψ(a)))ᴧ l`gd(b)=

l`gd(ψ(a)) ᴧ lgd(a,b)= lgd(ψ(a), ψ(b)).

Definition2:(Subgraph Isomorphism)A subgraph isomorph-

hism from subgraph S=(V`gd,E`gd,L`gd,l`gd)) to graph

GD=(Vgd,Egd,Lgd,lgd), is denoted by G ⋍S, which is an

bijective function ϕ :Vgd→V’ gd such that for every pair of

vertices vi, vj if (vi , vj) є Egd then ϕ(vi), ϕ(vj) є E’gd .

Definition 3:(frequency of subgraph)The frequency of

subgraph S is calculated by number of times it present in GD.

f(S)={S|S є GD ᴧ S⊂GD}.

B. MapReduce Framework

MapReduce is a processing technique and a program model

for distributed computing based on java. It consist of two

tasks, Map and Reduce. The Fig.1 shows that, the Map takes

input as a set of data and transform into a specific form where

each element split into tuples (key/value pairs). Secondly

Reduce, that takes the output from Map as input data and

merge those data into a similar set of tuples. MapReduce

programs implements in tree steps, namely map, shuffle and

reduce [7].

 Map: The map or mapper task to organize input data

which is in form of file dictionaries stored in Distributed

File System (DFS) or Hadoop Distributed File System

(HDFS)

The input file is processed in mapper function line by line

and generate several small chunks of data (i.e. key/value

pair).

 Reduce: This step is consist of Shuffle and Reduce. The

shuffle accumulate key-pair into a group of list of same

key and sort it. Then individual key associated list of

value sent to different machines (systems).The result of

shuffle and sort sent to reducer, where reducer use

“reduce” function each list of value and generate a

unique key,final output <key, value> will be stored or

display. The table-II illustrates how the Input and Output

types of a MapReduce job are going to done (i.e. (Input)

<k1, v1> → map → <k2, v2> → reduce → <k3, v3>

(Output)).

Fig. 1. Flow chart of MapReduce Framework

Table-II: Mapper and Reducer job
 Input Output

Map <k1,v1> List<k2,v2

Reduce <k2,list(v2) List<k3,v3>

IV. OVERVIEW OF PROPOSED MODEL

In case of parallel computation of Graph Mining, we get

faster result and better performance than sequential approach.

However, in case of the large-scale graph processing, it is

difficult to handle in parallel due to shortage of memory

requirement, complexity of graph computational and privacy

of data. In this paper, we proposed a model MapReduced

based Optimized Frequent Subgrph Mining (MOFSM) shown

in Fig.2, that used repetitive MapReduce framework with

Optimized Frequent Subgraph Mining dynamically.

Output

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database

3134

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

Homogeneous Classifier-based method, that based on

Ensemble Learning, Distributed association Rule

Mining(DARM),MetaLearning, Knowledge Probing is

implemented for evaluation of pattern in distributed system. It

is purely based on Client-Server model, where graphs are

accumulated and processed at global level. Hadoop

MapReduce is the processing component of Apache Hadoop

that process the data parallel in distributed environment.

MapReduce[7] can be implemented in Google, Apache

Hadoop. In our proposed work, we use Hadoop Distributed

File System (HDFS) for storing graph database.

Fig 2. Framework model for MapReduced based

Optimized Frequent Subgrph Mining (MOFSM).

Further, the pattern design consist of Summarization (eg.

Inverted Index), Recommendation (eg. Sorting),

Classification (eg. Top N Record) and Analysis (eg. Join,

Selection). We use the analysis design pattern for our

database. Here main precedence that, we can process data in

parallel in distributed sites that leads to less computational

time. Instead of moving entire graph database, we only shift

processing logic to different site where actual data present.

In MOFSM technology, we generate frequent subgraph

pattern from Graph Database if its support values equals to or

greater than minimum threshold value (τ). Further, in case of

dynamically division, the entire dataset is distributed over

different sites in form of worker nodes. Therefore, it is

difficult to estimate subgraph support count value in

MapReduce model, as local support in respective division at

worker nodes, are difficult form the support in global state

communication. As Apriori-based algorithm, we can’t

postpone the support calculation. To overcome this problem,

we introduced a new value to each node before partition

which further used in worker nodes site for calculation of

support count. At destination site, first we

Algorithm 1: Filter (GD, τ)

1. Fe ← φ

2. for each e є Fe do

3. Calculate f(e)

4. If(f(e))≥ τ

5. then Fe← Fe U e

6. return Fe

Algorithm 2: Geometric Two-Way Graph Division

Input: GD = (X, x, y, z)

Output: GD1 and GD2

1. Let xyzw = π (xyz)

2. Select the center point Cp of xyzw.

3. Perform conformal mapping to choose the largest circle

LCp on the unit sphere in R
n+1

4. Transform the LCp into a sphere S in R
n
 using reverse

conformal mapping.

5. Divide the sphere S vertices into two parts xyz1, xyz2.

6. Generate two graphs GD1 and GD2 are constructed from

xyzwI , xyzw2 respectively.

check each node frequency value, if its value more that

threshold value (τ), then consider else discard it [20].

Our proposed work is based on four phases: Splitting,

Mapping, Shuffling, and Reducing. We consider our database

in form of a single large graph or set of small graphs. During

Splitting phase, we use GMOFSM to split entire dataset into

number of graphs GDi, i=1,2,3..n,where n is number of

workers nodes. Mapper used in mapping phase to extract

subgraph with local frequency associated with each graph-id.

During Shuffling phase ,each subgraphs is associated with its

global frequency which become input to Reducer and

generate all the frequent subgraphs whose frequency value

equal to or greater than threshold value. Fig: shows the

framework of different phases for generation of frequent

subgraphs.

V. SPLITTING

In Splitting phase of our proposed work, the entire graphs

(GD) divides into many partitions (GDi).In algorithm 1,first

we assign set of all frequent edges(Fe) as null in line-1.At each

iteration we take individual edges, and computed its

frequency f(e) inside the graph, if its value same or more than

user given threshold value, then the edge added to Fe ,else

discard(line2-5).During splitting section, each graph is

associated with <key, value> pair, GDi, ∀ i=1,2,3…n., where n is

number of graphs present in GDi. Now (key, value) pair

generated by this phase as <graph-id> as key and <gdi, Fe > as

value for input to mapper [6].In our proposed framework, we

derived Geometric Multi-way Division algorithm (Algorithm

2), which divide the entire graph database into n-disjoint

graphs. Let a Graph Database (GD) in R
n
 of V vertices and E

edges, we implement two-way division algorithm to get

n-disjoint graph, where n is any positive integer. The X is an

array of vertices pair that represents the edges among lattice

vertices in G, such that, X = {{(x1, y1, z1), (x2, y2,

z2)},…{(xv−1, yv−1, zv−1), (xv, yv, zv)}},where v is the

number of vertices in R
n

[13].In algorithm 2 (line 2) ,the

standardized formulae of graph in eq
n
(1) is used to calculate

the center point of given points in sphere, where (x’,y’,z’) and

r are the center point and radius of sphere respectively.

(x-x’)
2
+(y-y’)

2
+(z-z’)

2
=r

2
 (1)

Input Graph Database

Elimination of infrequent edges from Database

Splitting the Database

<GDi=<gdi,s(gdi)>

Mapper

 <s(gdi),Lτ>

Reducer

<S(gdi),Gτ>

Result Set(S(GD))

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

3135

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

In case of conformal mapping, first, we use translation in

the space is described by tx,ty,tz. It is easy to this matrix

realizes the equations:

x=x’+tx

y=y’+ty

z=z’+tz (2)

Second, we perform in , coordinate system rotations of

the x-, y-, and z-axes in a counter clockwise direction when

looking towards the origin give the matrices.

(3)

(4)

(5)

Third, Scaling is describe by Sx,Sy,Sz. We see that this

matrix realizes the following equations:

x2=x1· Sx

y2=y1· Sy

z2=z1· Sz (6)

To achieve better performance, the number of division also

plays vital role .The different way of splitting show faster

result, which we shown in experimental section. Before

Spliting, we used a “filtration” technique to filter out

infrequent edges from graphs which reduce further

computation, transmission, i/o cost on worker nodes. In this

paper, the input Graph Database (GD) split into many

partition and the OFSM method iteratively use MapReduce.

mostly more than MapReduce jobs, therefore it optimized

the desired result. By adding load balance technique in

MapReduce task, we also achieve better result. Before Graph

partition, input graph dataset go to pre-filling stage, where

we remove all infrequent edges [14]. During scanning of

graph database for entire GD, OFSM maintain a support-list

from each edge to find out infrequent edges against the

user-defined minimum threshold value.

Algorithm 3: Frequent Subgraph Generation

Input: A graph g, user given support threshold τ value

Output: total frequent subgraphs set R

1. R← φ

2. Let FE be the set of all frequent subgraphs with all frequent

edges of graph GD.

3. for each f є FE do

4. R ← R U Subgraphextension(s,GD,τ,R, FE)

5. Delete f from FE and g

6. return R

Algorithm 4:Subgraphextension

Input: subgraph s, a graph g, min-sup τ, a set of frequent edges

FE, result set R

Output: all frequent subgraphs of g that extend s

1. Result(R)← φ

2. Candidate set(CS)← φ

3. for each edge e in FE do

4. Let extension in S` be the extended of e by adding

frequent edge e’

5. If S` ⊄ CS, then CS←CS U S`

6. for each x є CS do

7. if isomorphic check(x) =true and x contains repeated e

,then

8. Calculate Upper_Bound of x, UB(x).

9. If UB(x) ≥ τ and x.sup ≥ τ do

10. R ← R U {x}

11. else

12. discard x from CS

13. return R

VI. MAPPING

The map function used to generate a list of values of

(key-value) pair from splitting phase. The algorithm for

finding FSM can be sequential or non-sequential on a single

large graph database or set of small graphs. Basically both

candidate generation and support calculation methods are

needed to pick up required subgraphs. We start with

single-edge pattern(pi).At each iteration of while loop in

algorithm OFSM ,the k+1 subgraphs is generated by mapping

two k-disjoint subgraphs by adding either forward edge or

back edge. There is chances of duplicates subgraphs

generation which we overcome by isomorphism checking.

We use min_dfs_code for it. There are more than one

generation path for each candidate pattern, we extract only

valid candidate path. The technique, we use as follows: A

valid generation path whose insertion order of edges matches

with the edge ordering in min_dfs_code. In algorithm 4, we

performed first isomorphic test, then Upper-Bound for

elimination method to find out support value, which filter out

some of infrequent edge before support count [12].The

biggest feasibility support value is called as its UpperBound,

UB(x).The computation cost is reduced by discarding

infrequent edges which further reduce by calculating Upper

Bound of edges. The {key, value} pair used to pass in

distributed phase to different sites.The key is consist of graph

identification number and value that is associated with

subgraph, edge extension embedding which applied on map

function. The Candidate Generation is implemented by

combining two (n)-size subgraph to produce (n+1)-size

subgraph. We use core identification, join and down-word

closure property of support condition to remove the repeated

one.

 In this phase, it reads all subgraphs associated with

graph-id. All the technologies used branch_and_bound to

find out locally frequency of subgraph. Then we add a

“dummy root” node over the single edge subgraphs that

correspond to empty subgraphs.

http://mathworld.wolfram.com/x-Axis.html
http://mathworld.wolfram.com/y-Axis.html
http://mathworld.wolfram.com/z-Axis.html

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database

3136

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

Each node extends the graph of its present nose(s) by

adding single edge, a child node subgraph of its parent. We

use top-down approach to traverse the tree and calculate each

node support value. If a visited node is frequent correspond to

graph and frequency are output and the process continues with

child node. Otherwise, we pruned all its child node and their

descendants.

Algortihm 5:Mapper

1.S(gdi) ← φ

2.for each gdi є GDi do

3. S(gdi) ← Frequent Subgraph Generation(gdi, τ) U

 S(gdi)

VII. SHUFFLING

During Shuffling, we reduce the unnecessary I/O and

communication overhead by decomposing the output in the

map function into following ways: for each subgraphs present

in gdi, we shuffle in such a way that each subgraph is

associated with all support value in entire graph database

(GDi) and make list of subgraphs with all support value in

different worker node.

VIII. REDUCING

In this phase, we calculate global frequency of each

subgraph by summarize all local frequency present in

individual worker node. The output of shuffling and sorting of

key-value pair are input to reducer, then we calculate the

global support(gl(f))value of each candidate subgraph pattern

by aggregating the support count generated in graph partition,

If its value more than or equal to given threshold value

(τ),then reducer result appropriate key-value pair in HDFS

else discard it.

Further, a graph is consider as candidate if it is locally

frequent of any worker node. To avoid false candidate

we check the condition; if any graph in any worker node is

not reported as candidate by any machine, then frequency of

GD in Gi must be satisfy the following inequality:

= τ.ni (7)

Algorithm 6: Reducer

1. g(s))← φ

2. for each s є s(gdi)

3. calculate gl(f)

4. if gl(f) ≥ τ then

5. g(s) ← g(s) U s

6. else discard it.

IX. EXPERIMENTAL RESULT AND DISCUSSION

In this section, we represent the experimental, result that

show the performance of MOFSM for resolving the extraction

of frequent subgraphs on a large graph datasets. All the

experimental we conducted on Intel (R) CPU 3.10 GHz PC

with 4 GB RAM running on 32-bit windows operating

systems. We use following four real-world graph datasets.

Patent citation network managed by the National Bureau

of Economic Research. The data collected on period from 1
st

Jan 1963 to 30
th

 Dec. 1999 including 3,923,922 patents .The

citation graph include all citation made by patents granted

during that period, totalling 16,522,438 citations.

Twitter tweets dataset collected 467 million twitter post

from 20 million during 1
st
 Jan 2009 to 31

st
 Dec 2009. We use

only calculate 20-30% of public tweets published on Tweeter

during that specific time span. Each public tweet consist of

Author, Time, and Content information. We consider

17,069,982 user associated with 476,553,560 tweets.

Amazon Website dataset based on “Customer who bought

this item also brought feature” of amazon website. We

consider only largest connected component which consist of

334863,925872 numbers of nodes and edges respectively.

Google Web graph dataset use nodes and edges to

represented webpages and hyperlinks respectively. The data

was released in 2002 by Google as a part of Google

Programming Contest which consist of 875713 web pages

and 5105039 hyperlinks.

Table-III: Statistics of MapReduced based Optimized

Frequent Subgraph Mining with min_sup value 8.

Data

sets

No of

Node

No. of

Edge

Run

Tim

e

(min

)

Mappi

ng

Time

(min)

Reducing

Time

(min)

Co

mm.

Ove

r

n/w

(GB

)

Patent

citation

network

3,923,9

22

16,52

2,438

40.8 12.5 49.3 57

Twitter

tweets

17,069,

982

476,5

53,56

0

69.7

5

17.9 56.7 81

Amazon

Website

334863 92587

2

22.7

5

5.69 21.07 3.2

Google

Web

875713 51050

39

30.5 7.28 21.84 6.9

In this section, we compare efficiency and effectiveness of

our proposed methods with existing one. In Fig.3, we vary

minimum support threshold (τ) from 5 to 30 with fix number

of data node to 8.The fig. illustrate that as number of τ

increases the execution time decrease. Our result approximate

nearly 5%, 15% improve than MRFSE-J and FSM-H

respectively.

(a)

http://www.nber.org/
http://www.nber.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

3137

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

(b)

(c)

(d)

Fig.3: Relationship between different minimum support

values with execution time four different datasets.

We illustrate the performance of our proposed model in

different categories of partition in Fig.4 by using

heterogeneous and homogeneous strategies of graph splitting,

we concluded that performance of randomly division method

is better than equal size division in all four datasets. The

Table-III represents how the different datasets affects the data

communication over the network in Gigabytes. The

communication size is directly proportional to number of

nodes in each database.

During execution of MapReduce job in Hadoop, the

number of reducer we use played vital role. When devaluing

data (output) in HDFS, a MapReduce job go along with a

convention of naming the output file with the key record

“part”. Reducer calculates the number of “part” will be

produced to hold the result of job. If we use only one reducer,

then entire result stored in a single file. As we use repetitive

use of MOFSM, where result of current task is set as input to

next task, the number of reducer plays outstanding effects on

the runtime of MOFSM.

(a)

(b)

If we use less number of reducers, then result of output files

stored in larger size which will be a burden over the network

during transmission of data nodes. On other hand, if we use

large number of reducers, then there is chances of creation of

output files of zero size. Further, this zero size output file

creates overhead for next stage of mappers.

(c)

(d)

Fig.4 Relationship between different Splitting techniques

with its execution time four different datasets.

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database

3138

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

(a)

(b)

(c)

(d)

Fig.5: Relationship between numbers of Reducer used

with execution time four different datasets.

Hence loading an input file is costly. In fig.5, we take

different number of mappers (i.e.5, 15, 25, 35, 45) and

calculate runtime for MOFSM .As per the fig, we conclude

that 25 is the best choice for number of reducer in our

proposed model.

X. CONCLUSION

In this paper, we derive how to perform FSM in a

distributed system. We defined a MapReduce model that we

use OFSM for extraction of frequent subgraphs .We also

analyse how to perform extraction on different type of

networks system for a large scale graph database. For

experiment analysis, we use all datasets with different

minimum support value on both random and equal division.

We make a comparative analysis with existing techniques,

which conclude that MOFSM is significantly better

performance that existing one. To get effective and correct

results, we have to select proper candidate generation

algorithm with correct partition method. In further, we plan to

extend our work to extend our result on large database.

REFERENCES

1. A.Khan, X.Yan, and K.-L.Wu(2010),‘Towards Proximity Pattern

Mining in Large Graphs’, in Proceedings of the 2010 ACM SIGMOD

International Conference on Management of Data, Indianapolis,

Indiana, USA, 2010, pp. 867–878.

2. Anand Iyer,Zaoxing Liu, Xin Jin(2018),‘Towards Fast and Scalable

Graph Pattern Mining HotCloud'18’, Proceedings of the 10th USENIX

Conference on Hot Topics in Cloud Computing, July 2018.

3. Anchuri, P.,Zaki, M. J.,Barkol,O.,Golan,S. and Shamy M.(2013),

‘Approximate graph mining with label costs’. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (2013).

4. D. J. Cook and L. B. Holder (2006), Mining graph data. John Wiley &

Sons, 2006.

5. Di Fatta, G., and Berthold, M. R.(2006), Dynamic load balancing for

the distributed mining of molecular structures. IEEE Transactions on

Parallel and Distributed Systems 17, 8 (2006).

6. Gonzalez, J. E., Low, Y., Gu, H., Bickson, D,Guestrin, C. (2012),

‘PowerGraph: Distributed graph-parallel computation on natural

graphs’. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (2012).

7. Hill S, Srichandan B, and Sunder Raman R(2012). ‘An iterative

MapReduce approach to frequent subgraph mining in biological

datasets’. In Proceedings of the ACM Conference on Bioinformatics,

Computational Biology and Biomedicine (2012).

8. J. Han and J.-R. Wen(2013), ‘Mining Frequent Neighborhood Patterns

in a Large Labeled Graph’, in Proceedings of the 22Nd ACM

International Conference on Conference on Information & Knowledge

Management, San Francisco, California, USA, 2013, pp. 259–268.

9. M. Kuramochi and G. Karypis(2005), ‘Finding frequent patterns in a

large sparse graph’,Data Min. Knowl. Discov., vol. 11, no. 3, pp.

243–271, 2005.

10. Malewicz G, Austern, M. H., Bik A. J., Dehnert, J. C., Horn, I., Leiser

N., Czajkowski, G.(2010), ‘Pregel: A system for large-scale graph

processing’. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (2010).

11. Mccune, R. R., Weninger, T., and Madey, G.(2015) ‘Thinking like a

vertex: A survey of vertex-centric frameworks for large-scale

distributed graph processing’, ArXiv: 1507.04405 (2015).

12. Oliveira Aparicio, D., Pinto Ribeiro , P. M., and Silva, F(2014), ‘F. M.

A. Parallel subgraph counting for multicore architectures’. In

Proceedings of the IEEE International Symposium on Parallel and

Distributed Processing with Applications (2014).

13. Ribeiro, P., and Silva, F(2014),‘G-Tries: A data structure for storing

and finding subgraphs.’Data Mining and Knowledge Discovery 28, 2

(2014).

14. Shao, Y., Cui, B., Chen, L., Ma, L., Yao, J., and Xu, N.(2014) ‘Parallel

subgraph listing in a large-scale graph’. In Proceedings of the ACM

SIGMOD, International Conference on Management of Data (2014).

15. Teixeira, C. H. C., Fonseca, A. J., Serafini, M.,Siganos,

G.,Zaki,M.J.,and Abounga(2015), ‘A. Arabesque: A system for

distributed graph mining - Extended version’. Technical Report, Qatar

Computing Research Institute, 2015.

https://dl.acm.org/doi/proceedings/10.5555/3277180
https://dl.acm.org/doi/proceedings/10.5555/3277180

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

3139

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP

DOI: 10.35940/ijeat.C6141.029320

16. Tian,Y., Balmin, A., Corsten,S.A.,Tatikonda, S. and Mcpherson,

J.(2013), ‘ From “think like a vertex” to “think like a graph’.

Proceedings of the VLDB Endowment 7, 3 (2013).

17. U. Kang, B. Meeder, E. E. Papalexakis, and C. Faloutsos, “Heigen:

Spectral analysis for billionscale graphs,” Knowl. Data Eng. IEEE

Trans. On, vol. 26, no. 2, pp. 350–362, 2014.

18. Yan. X., Han J(2002). ‘gSpan: Graph-based substructure pattern

mining’. In Proceedings of the IEEE International Conference on Data

Mining (2002).

19. Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li(2012), ‘Efficient

subgraph matching on billion node graphs’, Proc. VLDB Endow., vol.

5, no. 9, pp. 788–799, 2012.

20. Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. A. Kumar, and M. V.

Marathe(2012), ‘Sahad: Subgraph analysis in massive networks using

hadoop’, in Parallel & Distributed Processing Symposium (IPDPS),

2012 IEEE 26th International, 2012, pp. 390–401.

AUTHORS PROFILE

Ms. Sadhana Priyadarshini, is a Phd scholar in

Department of Computer Science and Engineering at

GITAM (Deemed to be University), Vishakhapatnam,

India She completed MTech(CSE) from SQA

University in 2010.Her research interests in field of

Data Mining.

Dr. Sireesha Rodda, is a Professor in the Department

of Computer Science & Engineering, GITAM (Deemed

to be University). She has 17 years of research

experience in the fields of Artificial Intelligence, Data

Mining and Machine Learning. She has more than 30

papers published in referred journals

