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Abstract: This paper considers a tracking problem on 

discrete-time higher-order linear time-delay systems. The 

improved observer-model following sliding mode controller 

(OMF-SMC) is proposed. The combination uses a classical 

Luyenberger observer based controller to achieve predefined 

process output and sliding mode controller is added to assure the 

robustness despite of uncertainty and external disturbances. To 

show the effectiveness of proposed method, four error 

performance indices, maximum peak overshoot and settling time 

are considered rigorously. The simulations results on the 

non-oscillatory, moderate oscillatory, integrating, unstable and 

non-minimum phase system demonstrates that the proposed 

approach performs better compared with classical PID controller, 

continuous and discrete sliding mode controllers.  

 
Keywords: Discrete-time sliding-mode control, higher order 

delay time process, observer, model following control. 

I. INTRODUCTION 

Sliding mode control (SMC) is one of the popular robust 

control approach in control system engineering and 

technology. The basic SMC strategy is well-known to the 

world by Utkin [1]. In SMC design approach two steps are 

used, first is the selection of desired sliding surface and 

second is to estimate/evaluate control law based on system 

equations and selected surface. SMC is a robust controller 

design method used for regulation or/and tracking problems 

over conventional Proportional-Integral-Derivative (PID) 

[2], the Model Predictive Controller (MPC), Model-Based 

Controllers (MBC). SMC method can be implemented in the 

continuous and/or discrete time domain but due to the 

increasing demand of digitization, Discrete-Time Sliding 

Mode Controller design (DTSMC) approach is preferable 

[3].  

Robust controller design for small order and higher order 

linear and non-linear plants along with perturbation and 

external disturbances is most common interest shown by 

researchers based on DTSMC approach [4]-[6]. Higher order 

SMC design strategy is also a special research interest by 

others. 

The Zhong and Rees [7] proposed a non-SMC based Model 

Following Control (MFC) for a linear system without 

handling uncertainties in the input matrix. This limitation can 
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be overcome by Phadke and Talole [8] by SMC design based 

MFC and considering the uncertainty and disturbances 

without knowledge of bounds. SMC design for uncertainty 

and disturbance estimation (UDE) for non-linear systems 

using MFC is reported by Deshpande and Phadke [9]. Inertial 

delay control (IDC) based SMC design for vehicle 

suspension to follow a modified skyhook model reported in 

[10]. Recently Suryawanshi et al. [11] reported robust SMC 

based on MFC strategy for an uncertain nonlinear system 

subjected to time-varying disturbance and application to an 

inverted pendulum system. 

Observer-based DTSMC techniques for different 

applications are the interest of many researchers. Many 

approaches implemented for sensorless rotor speed observer 

of induction machines such as in [12] is common. Recently, 

in [13], [14] DTSMC is designed for sensor-less vector 

control of permanent magnet synchronous machine, and 

sensorless control on induction motor drives is implemented. 

In [15], chattering-free digital sliding mode control with state 

observer and disturbance rejection is presented and in [16], 

the design of estimator-based sliding-mode output-feedback 

controllers for discrete-time systems is simulated. In [17], an 

observer-based sliding mode control (OBSMC) problem is 

investigated for a class of uncertain delta operator systems 

with nonlinear exogenous disturbance. Also, in [18], a super- 

twisting algorithm for nonlinear systems with a state observer 

is discussed. Recently, several robust control approaches 

have been proposed to attenuate the undesired effects caused 

by the disturbances, uncertainties or the nonlinearities. 

Various methods applied in practical control systems, such as 

terminal sliding mode control [19], [20], adaptive super 

twisting terminal sliding mode control [21], [22], Fast 

terminal sliding mode control (FTSMC) [23], Nonsingular 

FTSMC [24], Adaptive nonsingular FTSMC [25], [26], [27], 

Continuous nonsingular FTSMC [28], Finite-time adaptive 

integral backstepping FTSMC [29]. 

The observer-model following design objective is to develop 

a control scheme which forces the plant-observer dynamics 

to follow the dynamics of a reference (ideal) model. To 

handle three major problems concerning linear optimal 

control techniques arises because of difficulties in specifying 

design objectives in terms of a performance index, large 

variations in plant parameters in the presence of disturbances 

and also unavailability of all states for measurement due to 

sensor constraints practically. This motivates to use 

model-observer states in designing sliding mode control law. 

The reference model can be selected such that it specifies all 

the required design objectives.  
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The robust SMC design handles the problem of uncertainty 

and disturbances (UAD). The OMF controller tends to force 

the plant-observer and model states to zero as time tends to 

infinity. This ensure the plant-observer output follows the 

model output accurately [30]. 

In this paper, a simple control approach proposed based on 

conventional Luyenberger observer [31] and model 

following control technique (OMF) for robust tracking of 

uncertain higher order time-delay systems. The sliding 

surface [32], which guarantees that the error between the 

model and plant states tends to zero within finite time. This 

approach does not require any global convergence properties 

and so it is well suited to uncertain time-delay plants. 

The organization of the paper is as follows: Section 2 

describes problem formulation. Section 3, introduces 

proposed discrete time OMF-SMC design procedures. 

Section 4, proves Lyapunov stability analysis. Subsequently, 

Section 5 rigorously discusses five examples to verify the 

applicability of proposed novel control. Concluding remarks 

are in Section 6. 

II. OVERVIEW OF OBSERVER-MODEL 

FOLLOWING APPROACH  

A. Problem Formulation 

A model-following problem is considered with unavailability 

of states for measurement. Consider a continuous nominal 

linear time-invariant (LTI) single input single output (SISO) 

system [30]: 

                                       
                                                                                                  
where  ,   are the state vector and control input respectively. 

  and   are known constant matrices,   ,    are 

uncertainties and         is unknown disturbance. The terms 

  ,    and         satisfy the matching conditions [30]: 

                                               
where   and   are unknown matrices of appropriate 

dimensions and        is an unknown function. The system 

(1) can be written as: 

                                                                             
where                      the term        
contains uncertainty and disturbance now referred to as 

lumped uncertainty. The following assumptions are consider 

for the control design: 

1) The pair       is controllable and the pair       is 

observable. 

2) Controllability and observability are not lost upon    

sampling. 

3) The disturbance                 is smooth and 

uniformly bounded. 

Let the reference model is defined as, 

                                                                              
The choice of a model is such that: 

                                                                   
where   and   are suitable known matrices. 

The objective is to design a control   so as to force the plant 

(3) to follow the model (4) in spite of the parameter 

variations. The (2) and (5) are well-known matching 

conditions required to guarantee invariance and are explicit 

statements of the structural constraints stated in [33]. 

Proceeding further, the discretized counterpart of (1) is, 

                                 
             

                                                                                           

where 

               
 

 

   

                        
 

 

   

where T is the sampling period. Here the disturbance      
represents the influence accumulated from    to           

, in the sequel it shall directly link to                 
       . From the definition of Γ it can be shown that 

              
 

  
                      

                                                
where   is a constant matrix because   is fixed. 

The uncertainties,       and disturbance       satisfy the 

matching conditions given by the system:  

                               
where    and    are unknown matrices of appropriate 

dimensions and       is an unknown function. 

The system (6) can be written as: 

                                                                 
where                            the term,      
referred as lumped uncertainty as in linear domain. 

The discretised part of the reference model is also written as: 

                                   
                                                                                         
In this (8) is represented in controllable canonical state space 

form by considering delay and is described as 

                                         
                                                                
where          is state matrix, is          is control 

vector,          is output matrix,         and      is 

state vector. The term             represents parametric 

uncertainty bounded with upper limit     , state           
the output          the control           and the 

disturbance             
 . Here,   represents the number 

of delay samples and   
  
  
 , where the    is the sampling 

period and    is delay.  

The discrete-time model (10) is used to generate an OMF 

based controller for the continuous time plant, with the 

assumption of zero-order command. It is assume that the 

system is observable and the desired estimates       of the 

state      based on observation of the output   alone. As in 

the case of the continuous observer, further,              
is estimation error. Let the observer is defined as: 

                                   
                                            

where    is the observer gain matrix [28], and         
denotes the estimate (or prediction) of        is made 

using measurements available at time  . The lumped 

uncertainty is: 

                                                                
The estimation error between plant and observer is defined 

as: 

                                                                                              
Subtracting (10) from (11) gives the error difference 

equation: 
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The observer described by Eq. (11) is known as a prediction 

observer, based on the fact that it predicts the state values at 

the next time step from past measurements. This means that 

control based on       does not depend on the most current 

measurements, which might lead to performance 

degradation. It is possible to construct an alternative observer 

formulation that provides a current estimator       based on 

the most recent measurements of   . Modifying (10) to 

estimate: 

                                                                     
                                                                 
where       is the estimate based on the prediction from the 

previous time steps. Substitution of (16) into (15) and 

advancing one time-step gives 

                                             
                                                          

The error dynamics are described by: 

                                                                     
The current estimate speeds up the response to unknown 

disturbances or measurement errors. 

B. Sliding Surface Selection  

The sliding surface is chosen to ensure desired behavior 

of surface dynamics or try the  states to converged to zero. A 

sliding surface is selected based on Ackermann formula [26] 

and [19]. The observer system is given in (11) is used to 

calculate the equivalent control law. Define a sliding surface 

as: 

                                                                                 
where 

                    
          

                                                                                       
The auxiliary variable   in (20) is defined different from that 

given in [19]. By virtue of the choice of the initial condition 

on,             = 0 at    .  If the control      can be 

designed ensuring sliding, then          implies: 

                                                                  
This fulfills the objective of the model following approach.  

C. OMF Control Law Design Methodology 

The sliding function at (k+1)
th

 instant using (19) can be 

written as: 

                        

                                         
            

                                 

Simplifying above equation gives: 

                                      
                    
            

                                 

                                     
      

                    
                                                            

From the matching conditions:                        
   , (24) becomes: 

                                      
                    
                                                           

To derive equivalent control law       , equate        

 , this gives: 

                                     

                                                                                      
         

                                    

                                                          
Let the required control be: 

                                                                               

Solving (27) for         

                       
                          

                                                               
Selecting 

               
                          

        
                                    

Here   is a positive constant. 

Using (22) and (30) one can write: 

                                     
                     

The lumped uncertainty      can be estimated as given in 

[29]. Rewriting (31) as: 

                                                         
Hence lumped uncertainty      can be computed from (32). 

This cannot be done directly.  

Let the estimate of uncertainty be defined as: 

                                                   

where       must be proper order low pass filter with unity 

steady-state gain and has enough bandwidth. With such filter: 

                                                                                             
This enables design of unified control as: 

          

         
                                        

Finally, statement for    

             
                      

 
                           

Estimation error is: 

                                                                                   

III. LYAPUNOV STABILITY CONDITIONS 

The design of OMF-SMC law ensure that the reaching 

condition must be satisfied when there exist uncertainty and 

disturbance in system. To evaluate the stability condition of 

proposed OMF SMC, direct Lyapunov stability analysis is 

used. The positive definite Lyapunov function is chosen as: 

                            
 

 
                                                             

                                                                     
Then the control law to decrease     is given by the 

following lemma. 

Lemma1: If the control satisfies 

                                       
 

 
            

for 

                                                                                               
then 

                                                                                     
Proof: From (36), 

                                                                     
Squaring both sides, 

                                       
                                                       

Substituting (41), (42) is derived. 

The control law to satisfy (41) should be studied. Which is 

the reaching condition of OMF-SMC.  
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IV. TUNING PARAMETER SELECTION 

Table-I: Time Domain Specifications.    is 

  Overshoot;    is Settling Time in Seconds at    ;   
No Solution. 

Example Parameter 
Proposed 

OMF-SMC 

Khandekar 

et. al.’s 

DSMC 

Eker’s 
CSMC 

Wang 

et. 
al.’s 

PID 

1 
   2 3 3.5 4.1 

   0 0 0.5 5.7 

2 
   2.2 2.6 3.80 5.2 

   0 0 4.60 14.6 

3 
   2.2 4     

   0 0     

4 
   10 20.4     

   0 0     

5 
   30 26.6     

   0 1     

 

The proposed OMF control law design also involves, 

evaluation of observer gain    in equivalent control law in 

(30) and additional tuning term,   from unified control law 

given in (36). 

The matching conditions,           and       are 

necessary for robust asymptotic tracking performance. This 

tabulates matching gain matrix,                and 

tuning parameter          .  

The task is to place the poles of         arbitrarily. We 

choose       
    such that the closed-loop poles 

              are in the desired locations. The 

closed-loop settling time and overshoot specifications are 

used to obtain the location of dominant poles, using the 

relation used in [24], 

                           
                

 
                         

where,       and    are damping factor, natural frequency 

and sampling period, respectively. 

V. SIMULATION RESULTS 

The step change responses of proposed OMF approach are 

shown in Fig.1 for plant, observer and model. Five examples 

of higher-order linear time invariant systems such as 

non-oscillatory, moderate oscillatory, integrating, 

non-minimum phase and unstable plants are considered for 

simulations. These examples are from [34], [35]. 

A. Example 1: Non-oscillatory process 

A non-oscillatory plant with continuous-time open-loop 

transfer function (OLTF) is:  

       
 

                
           

The equivalent DTSS model for        of        
obtained as: 

   
   
   

                 
     

 
 
 
     

                                     
To verify the robustness and stability of OMF SMC, 20% 

modeling inaccuracy and bounded disturbance in         is 

considered. The disturbance term is: 

                                            . 
The desired stable reference model followed by plant 

observer is: 

    
   
   

                
      

 
 
 
    

                                     
The initial conditions for plant, observer and model are 

                       and             

respectively. The observer gain    and matching gain   is 
                          tabulated from dominant pole 

placement. The other tuning parameters are considered as 

follows:              The reference input         

selected to validate unit step tracking performance. 

The controller tuning parameters for Khandekar et. al.’s [34] 

Discrete Sliding Mode Control (DSMC), Eker’s [36] 

Continuous Sliding Mode Control (CSMC) and Wang et. 

al.’s 

 

 

Fig. 1. Plant, observer and model states of Example 1. 
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[24] Proportional-Integral-Derivative (PID) approach are 

considered from [23]. The parameters for Khandekar et. al.’s 

DSMC are                                 
                     . The Eker’s CSMC are     
                           and          . The Wang 

et. al.’s PID are                      and           

respectively. The comparative time domain and error 

performance index analysis are shown in Table I II for the 

simulation examples 1  5. The unit step closed-loop 

responses of example 1 are shown in Fig.2 without UAD. In 

Fig.2(a) it is seen that plant output of proposed OMF 

approach has no overshoot and less settling time comparable 

with Khandekar et. al.’s DSMC shows less overshoot, Wang 

et.al. PID produce large overshoot and Eker’s CSMC 

produce large settling time. Fig.2(b) shows that 

plant/observer states follows the reference model accurately 

and states converges to zero in finite time. Fig.2(c) depicts 

sliding surface converges to zero smoothly, shows less 

oscillations compared to Khandekar et.al.’s DSMC produce 

large step size and small overshoot, Eker’s CSMC has 

moderate step size. The controller’s performance comparison 

are shown in Fig.2(d). The OMF control requires less control 

efforts, minimum oscillation, small step size than Khandekar 

et. al.’s DSMC and Eker’s CSMC. 

 

Fig. 2. (a) Output responses, (b) Plant, observer and model states, (c) Control efforts and (d) Sliding surfaces of 

Example 1. 

Fig.3(a)-3(d) shows system performances with 20% UAD. 

The tracking performance in Fig.3(a) shows similar response 

for Khandekar et.al’s DSMC, but comparatively large 

overshoot, more oscillations produced by Eker’s CSMC and 

moderate overshoot shown by Wang et.al’s PID. In Fig.3(d) 

it is seen that OMF law produce smooth response, requires 

less control effort compare to Khandekar et.al.’s DSMC, 

Eker’s CSMC and Wang et.al. PID. 

 

Fig. 3. (a) Output responses, (b) Plant, observer and model states, (c) Control efforts and (d) Sliding surfaces of 

Example 1 with 20% uncertainty. 

B. Example 2: Moderate-oscillatory process 

A non-oscillatory process with continuous-time open-loop 

transfer function (OLTF) is: 
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The equivalent DTSS model for        of         
obtained as: 

   
   
   

                   
     

 
 
 
     

                                     
The desired stable reference model considered as: 

     
   
   

                 
       

 
 
 
      

                                      
The tuning parameters are computed as follows for example 

2:                                               
                    The tuning parameters for 

Khandekar et. al. DSMC, Eker’s CSMC and Wang et. al.’s 

PID are used from [34]. 

In Fig.4(a), it can be seen that plant output reaches to unit step 

in less time compared to Khandekar et. al’s DSMC. 

Similarly, Eker’s CSMC and Wang et. al.’s PID produces 

quite oscillations. From Fig.4(d), it is seen that the proposed 

controller produces smooth response with less and smooth 

control effort while the response produced by Khandekar et. 

al’s DSMC results in large control effort. Eker’s CSMC and 

Wang et. al.’s PID controller responses seen are satisfactory. 

 

Fig. 4. (a) Output responses, (b) Plant, observer and model states, (c) Control efforts and (d) Sliding surfaces of 

Example 2. 

C. Example 3: Integrating process 

Consider an integrating process with OLTF [25] 

       
 

           
       

 

The equivalent DTSS model for        of        obtained 

as: 

   
   
   

                   
     

 
 
 
     

                                      
The desired stable reference model considered as: 

     
   
   

                 
       

 
 
 
      

                                       
The tuning parameters are computed as follows for example: 

                                              
                  The tuning parameters for Khandekar et. 

al. DSMC are considered from [34]. 

The system performances of example 3 are shown in Fig.5 

are without UAD. In Fig.5(a) plant output are compared with 

Khandekar et. al’s DSMC [34] and there is no solution for 

Eker’s CSMC and Wang et. al.’s PID. It is seen that proposed 

OMF method results in an better response with no overshoot 

and less settling time. Khandekar et. al.’s DSMC has large 

settling time. Fig.5(b) shows OMF plant, observer and model 

states responses converges to zero in less time. Fig.5(c) 

compares sliding surface responses. The proposed OMF 

surface converges to zero smoothly with less oscillations 

compared to Khandekar et.al.’s DSMC has large step size. 

Fig.5(d) further shows a controller performances. The 

proposed method requires similar control effort compared 

with Khandekar et.al’s DSMC [34]. 
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Fig. 5. (a) Output responses, (b) Plant, observer and model states, (c) Control efforts and (d) Sliding surfaces of 

Example 3.

 

D. Example 4: Unstable process 

A non-oscillatory process with continuous-time open-loop 

transfer function (OLTF) is: 

       
 

                   
       

The equivalent DTSS model for        of        obtained 

as: 

   
   
   

                   
     

 
 
 
      

                                              
The reference model that is to be followed is selected as:  

     
   
   
         

       
 
 
  
      

                                         
The tuning parameters are computed as follows for 

example4:                                     
                              The tu ning parameters 

for Khandekar et. al. DSMC are used from [34]. 

Fig. 6. (a) Output responses, (b) Plant, observer and model states, (c) Control efforts and (d) Sliding surfaces of 

Example 4. 

The closed-loop performances of example 4 without UAD 

are shown in Fig.6. In Fig.5(a) plant output of proposed OMF 

method has less settling time compared with Khandekar et. 

al’s DSMC [34] has large settling time. There is no solution 

for Eker’s CSMC and Wang et. al.’s PID. Fig.6(b) shows 

plant, observer and model states responses of OMF method. 

Fig.6(c) shows sliding surface responses. The proposed OMF 

surface converges to zero smoothly with less oscillations 

compared to Khandekar et.al.’s DSMC has large step size. 

Fig.6(d) further shows a controller performances. The 

proposed method requires small control effort compared with 

Khandekar et.al’s DSMC [34] requires large step size. 
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E. Example 5: Non-minimum phase process 

A non-oscillatory process with continuous-time open-loop 

transfer function (OLTF) is: 

       
      

                   
       

The equivalent DTSS model for        of        obtained 

   
   
   

                   
     

 
 
 
      

                                          

 

 

Fig. 7. (a) Output responses, (b) Plant, observer and model states, (c) Control efforts and (d) Sliding surfaces of 

Example 5. 

The desired stable reference model considered as: 

     
   
   

                 
       

 
 
 
      

                                      
The tuning parameters are computed as follows for 

example5: 

                                               
                 The tuning parameters for Khandekar et. 

al. DSMC are used from [34]. 

The comparative performances of example 5 without UAD 

are shown in Fig.7. In Fig.7(a) plant output of proposed OMF 

method produce no overshoot and minimum settling time 

compared to Khandekar et. al’s DSMC [34] shows small over 

shoot. There is no solution for Eker’s CSMC and Wang et. 

al.’s PID. Fig.7(b) shows plant, observer and model states 

responses of OMF method. Fig.7(c) shows sliding surface 

responses. The proposed OMF surface converges to zero 

smoothly with less oscillations compared to Khandekar 

et.al.’s DSMC has large step size. Fig.7(d) further shows a 

controller performances. The proposed method requires 

small control effort compared with Khandekar et.al’s DSMC 

[34] requires large step size. 

Table- II: Error Performance Index.     is Integral Square Error;      is Integral Time Square Error;    is 

Integral Absolute Error;      is Integral Time Absolute Error;   No Solution 

Ex. 

OMF-SMC Khandekar et. al.’s DSMC Eker’s CSMC Wang et. al.’s PID 

ISE ITSE IAE ITAE ISE ITSE IAE ITAE ISE ITSE IAE ITAE ISE ITSE IAE ITAE 

1 31.8 5.44 39.8 16.7 12.8 8.6 16.3 14.6 12.9 10.02 17.6 27.4 12.6 7.68 15.9 15.06 

2 31.8 5.44 39.8 16.7 10.39 4.89 13.6 10.4 10.75 5.63 14.35 21.5 13.9 11.29 18.11 21.9 

3 31.8 5.44 39.8 16.7 15.1 16.9 20.5 25.06 − − − − − − − − 

4 72.1 272.5 114.8 310.01 58.3 1368.6 85.9 494.2 − − − − − − − − 

5 237.1 6235.5 312.5 1852.4 122.8 11989 177.3 2340.2 − − − − − − − − 

VI. CONCLUSION 

In this study, OMF-SMC is presented to improve the 

performance of discrete linear control systems. The approach 

is investigated on different linear systems. Simulation results 

shown that the proposed control approach work well and 

shows robustness to changes in uncertainty and disturbance. 

Based on simulation results and performance analysis using 

peak overshoot, settling time and error performance indices, 

it can be concluded that performance of higher order linear 

time delay systems is improved with proposed controller 

compared with PID controller of Wang et. al, CSMC of 

Eker’s and DSMC of Khandekar et. al. Thus, the proposed 

OMF-SMC presented in this paper is effective and its use can 

be extended to experimental 

processes. 
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