
Generation of Smooth Cartesian Paths Using

Radial Basis Functions⋆

Leon Žlajpah1[0000−0002−2820−2697] and Tadej Petrič1[0000−0002−3407−4206]

Dept. of Automation, Biocybernetics and Robotics, Jožef Stefan Institute
Ljubljana, Slovenia

{leon.zlajpah,tadej.petric}@ijs.si

Abstract. In this paper, we consider the problem of generating smooth
Cartesian paths for robots passing through a sequence of waypoints. For
interpolation between waypoints we propose to use radial basis func-
tions (RBF). First, we describe RBF based on Gaussian kernel functions
and how the weights are calculated. The path generation considers also
boundary conditions for velocity and accelerations. Then we present how
RBF parameters influence the shape of the generated path. The proposed
RBF method is compared with paths generated by a spline and linear
interpolation. The results demonstrate the advantages of the proposed
method, which is offering a good alternative to generate smooth Carte-
sian paths.

Keywords: Robot Motion Generation, Gaussian RBF, Path Interpola-
tion

1 Introduction

One of the fundamental tasks in robotics is to provide the capability to move
the manipulator arm and its end effector from the initial pose to the final pose.
To plan the motion of the robot different planning algorithms are used that
generate appropriate trajectories to perform the task. First, it is necessary to
define a sequence of points that the robot has to follow. This pure geometric
description of the motion is termed as path. Next, a timing law has to be applied
to the path. i.e. the velocities (and accelerations) in each point along the path.
The path together with velocities (timing) defines the trajectory.

The trajectories can be generated in a joint or task (Cartesian) space. The
joint space trajectories fully specify the position and orientation of the robot’s
end-effector and are in general easier to generate as the trajectories in the task
space [8]. However, using joint trajectories it is not easy to predict the resulting
task-space motion of the end-effector due to the nonlinear effects introduced
by the direct kinematics. The geometric path can be more natural specified

⋆ This work was supported by EU Horizon 2020 Programme grant 820767, CoLLab-
oratE and by Slovenian Research Agency grant P2-0076, and IJS Director’s found
grant CoBoTaT.

This paper is a Post-Print version (i.e. final draft post-refereeing).

For access to Publisher's version, please access

https://doi.org/10.1007/978-3-030-48989-2_19

2 L. Žlajpah, T. Petrič

in the Cartesian (task) space. Therefore, it is preferred to do the path and
trajectory planning in the task space. The task space trajectories are usually
based on geometric paths that pass through several given waypoints and the
trajectory planning consists to generate a time sequence of values (considering
the constraints) that specify the evolution of positions and orientations of the
end-effector.

When the task does not specify the motion exactly, it can be specified in an
approximated way by using waypoints as the key path points and for the motion
between waypoints different interpolation methods can be used [8, 9, 12]. Selec-
tion of the suitable interpolation methods and the timing law to represent the
motion between waypoints depends on task requirements like continuity, veloc-
ity profile, limits, etc. Regardless of the particular method used, it is necessary
that the planning algorithm outputs smooth trajectories, which express a high
order of continuity. In practice, it is preferable that generated trajectories ensure
continuity of accelerations to obtain trajectories with bounded jerks. To obtain
smooth trajectories different blending algorithms have been proposed. The sim-
plest one are linear interpolation functions which result in straight line segments
between consecutive pairs of waypoints. However, such trajectories ensure only
C0 continuity, meaning that the velocities at waypoints are not smooth (infinite
accelerations at waypoints). To obtain higher-order continuity, parabolic blends
[7, 8] or circular blends [6] have been proposed, which ensure continuity but the
trajectory does not pass through the waypoints except at the beginning and at
the end of the path. Generating trajectories passing through the waypoints is
possible when higher-order polynomial functions are used where velocity (and
acceleration) boundary constraints ensure the desired continuity of the trajec-
tory at waypoints [3, 10, 8, 9].

For complex robot motion when the path cannot be defined analytically, a
common approach is to use a suitable parametrization. In this context, radial
basis functions (RBF) have been successfully used to approximate the path.
They can form a basis for dynamic motion primitives [5] or can be used directly
to parametrize a function [11]. The use of RBFs for trajectory generation is not
very common. Lately, in [1] RBFs have been proposed to be used to plan smooth
joint PTP trajectories.

In contrast to joint-space trajectories, where motion in all joints can be gen-
erated using the same algorithm, the task-space trajectory generation requires
to consider distinctive features of positions and orientations of the end-effector.
For positions, any Euclidean interpolation method can be used. On the other
hand, rotations are more complex and rotation interpolation methods depend
on the representation and implementation of rotation [2]. A good survey of in-
terpolation methods considering positions and orientations is given in [4]. They
conclude that it is preferable for most interpolations in Cartesian space to use
split interpolation of positions and rotations.

In the following, we present a new approach to generate smooth Cartesian
paths. In Section 2 a method for path generation based on RBF interpolation is
described, and we discuss how to select RBF parameters to obtain the desired

Generation of Smooth Cartesian Paths Using Radial Basis Functions 3

shape of the path. Then, in Section 3 we apply the RBF method to generate
a Cartesian path. Next, in Section 4 we compare the proposed method with
the common methods using spline or linear interpolation. Finally, we give some
concluding remarks.

2 Path generation problem

The path generation problem can be defined as follows. Given the data set of
points (xi, yi), i = 1, . . . , N , which represent the waypoints of a trajectory, find
a Ck continuous functions such that

f(xi) = yi, for i = 1, . . . , N and xi 6= xj , i 6= j (1)

We assume that (x1, y1) is the start and (xN , yN) the end of the path.

2.1 Radial basis functions

To solve the problem we propose to use radial basis functions (RBF). Among
many possible radial basis functions we have selected ones with Gaussian kernels
defined as

Ψ(x) = exp(−
(x− c)2

2σ
) , (2)

which is centered at c and h is defining the width of the kernel function. An
important feature of this kernel function is that it expresses C∞ continuity.

The function f can be defined as a linear combination of wighted radial basis
functions. Instead of using directly the function Ψ as defined in (2), we use a
normalized version of this function, which yields

f(x) =

m
∑

j=1

wjΨj(x)

m
∑

j=1

Ψj(x)

(3)

where m is the number of kernel functions. Applying this to the given data set, it
makes sense that a kernel function is assigned to each point in the data set. This
means that m = N and kernel functions centered at the data points, ci = xi.
Using Φ(s) ∈ R

m defined as a row vector with components

Φk(x) =
Ψk(x)

m
∑

j=1

Ψj(s)

(4)

in (3) yields
f(x) = Φ(x)w . (5)

4 L. Žlajpah, T. Petrič

where w ∈ R
N is a vector with elements wj . Applying (3) to the given data set

of points (1) we obtain a set of linear independent equations

Aw = y (6)

where y ∈ R
N is a vector with elements yi, and A ∈ R

N×N is a matrix with
rows Φ(xi). The corresponding wights w can be found by solving (6)

w = A−1y . (7)

Having in mind that we are generating a path for a robot, it is necessary
to assign the initial and the final state. In most cases this means to define the
velocity and acceleration for the first and the last point. Therefore, we add two
auxiliary kernel functions near x1 and two near xN . Hence, Φ̂ ∈ R

N+4. Next, the
system of equations (6) is augmented with the equations for boundary conditions

∂Φ̂(x)

∂x

∣

∣

∣

∣

∣

xi

ŵ = ẏi, i = 1, N (8)

∂2Φ̂(x)

∂2x

∣

∣

∣

∣

∣

xi

ŵ = ÿi, i = 1, N (9)

and new weights ŵ ∈ R
N+4 are calculated by solving the augmented set of

equations.

2.2 Selection of kernel function parameters

When RBFs are used for approximation there are many more data points than
kernel functions, m ≫ N , and the RBFs are centered equidistantly. Here, one
kernel function is centered at each data point. When the distance between the
data points is not equal, the influence of the kernel functions is not the same
on both sides. Therefore, we propose to map the data points so, that they are
spread equidistantly, calculate the weights for mapped data points and finally,
remap them back. Fig. 1 shows interpolation for an example data set. As we
can see, interpolation with equidistant data points gives better results, i.e. lower
oscillations.

The interpolation depends significantly also on the parameter σ as shown
in Fig. 2. We can se that the selection of σ is trade-off between oscillatory
interpolation and higher values of velocities and accelerations.

Although the auxiliary kernel function for boundary conditions can be placed
anywhere, we propose to center relatively close to the first and the last point,
ca = x1 + k(x2 − x1) and ca = xN − kc(xN − xN−1) with kc = (0.05, 0.1),
respectively. Additionally, we use for them larger σa, σa = 3σ.

6 L. Žlajpah, T. Petrič

3.1 Path generation using waypoints

Compared to the trajectory generation in the joint space, the problem with
Cartesian space methods is that for orientations we can not use methods devel-
oped for Euclidean space interpolation directly. In practice, a good approxima-
tion is to interpolate orientations using methods for Euclidean space followed by
a renormalization or re-orthogonalization.

Following this strategy, we apply the previously defined RBF interpolation
method to a set of Cartesian points representing the waypoints defined as Pi =
(pi,Qi) ∈ R

7, where Qi are quaternions representing the orientation. Using (5)
to represent Cartesian path f(ŝ) with same RBF kernels (4) for all dimensions
yields

xi = Φ(s(xi))w , (11)

where s(xi) is the path parameter value for the point xi, and w ∈ R
N×7 is a

matrix representing wights for all components of x. Regardless of how the path
parameter s is defined, we calculate the wights using equidistant kernel functions
by selecting path parameter ŝ(xi) = i−1. To use another parametrization of the
path s it is necessary to define the mapping between the path parameter ŝ and
the parameter s and then use the interpolated points with this path parameter.

Note that the proposed method gives the correct (unit) quaternion only at
the waypoints. To get the correct quaternion component values for the path
points between the waypoints it is necessary to renormalize the quaternion part
of the interpolated point x from the (11) so that the quaternion becomes a unit
quaternion.

4 Illustrative example of Cartesian path generation

To test the proposed method and compare it with the cubic spline interpolation
method we have selected a task where the robot has to move along a path passing
through a sequence of waypoints defined in Table 1.

Table 1. Waypoints defining a Cartesian path

pi = (x, y, z) Qi

(-0.2, -0.2, -0.3) (1.0, 0.0, 0.0, 0.0)

(-0.2, -0.2, 0.1) (
√
2/2, -

√
2/2, 0.0, 0.0)

(-0.2, 0.1, 0.1) (0.5, -0.5, 0.5, -0.5)

(0.3, 0.1, 0.1) (
√
2/2, 0.0, 0.0, -

√
2/2)

For spline interpolation, we have used for the positions the classic Euclidean
space cubic spline interpolation and for the orientations the spherical spline
quaternion interpolation (Squad) [2]. Figs. 3 and 4 show the generated curves
using RBFs and splines. As we can see, tuning the σ parameter of RBF kernels
allows obtaining with RBF interpolation method a curve, which is very similar to

10 L. Žlajpah, T. Petrič

interpolation methods can generate paths similar to spline or linear interpolation
with the benefit of C∞ continuity and lower computational complexity.

We think that RBF based interpolation can be successfully used in a variety
of robot applications. This approach is interesting when the path has to be
modified, e.g by kinesthetic guidance. Namely, the RBF parametrization allows
easy modifications of the path.

References

1. Chettibi, T.: Smooth point-to-point trajectory planning for robot manipulators by
using radial basis functions. Robotica 37(3), 539–559 (2019)

2. Dam, E.B., Koch, M., Lillholm, M.: Quaternions, Interpolation and Animation.
Tech. rep., Department of Computer Science, University of Copenhagen, Technical
Report DIKU-TR-98/5 (1998)

3. Froissart, C., Mechler, P.: On-line polynomial path planning in Cartesian space for
robot manipulators. Robotica 11(3), 245–251 (1993)

4. Haarbach, A., Birdal, T., Ilic, S.: Survey of higher order rigid body motion interpo-
lation methods for keyframe animation and continuous-time trajectory estimation.
Proceedings - 2018 International Conference on 3D Vision, 3DV 2018 (September),
381–389 (2018)

5. Ijspeert, A., Nakanishi, J., Shibata, T., Schaal, S.: Movement imitation with non-
linear dynamical systems in humanoid robots. In: Proceedings of the IEEE-RAS
International Conference on Humanoid Robots. pp. 219–226. IEEE (2001)

6. Kwon, H., Ahn, K.H., Song, J.B.: Circular Path Based Trajectory Blending Algo-
rithm Considering Time Synchronization of Position and Orientation Trajectories.
2018 15th International Conference on Ubiquitous Robots, UR 2018 pp. 847–851
(2018)

7. Paul, R.: Manipulator Cartesian Path Control. IEEE Transactions on Systems,
Man and Cybernetics 9(11), 702–711 (1979)

8. Sciavicco, L., Siciliano, B.: Modelling and Control of Robot Manipulators. Ad-
vanced textbooks in control and signal processing, Springer, London, 2nd edn.
(2000)

9. Visioli, A.: Trajectory planning of robot manipulators by using algebraic and
trigonometric splines. Robotica 18(6), 611–631 (2000)

10. Volpe, R.: Task space velocity blending for real-time trajectory generation. In:
[1993] Proceedings IEEE International Conference on Robotics and Automation.
pp. 680–687. No. 2, IEEE Comput. Soc. Press (1993)

11. Žlajpah, L., Petrič, T.: Unified Virtual Guides Framework for Path Tracking Tasks.
Robotica pp. 1–17 (2019)

12. Williams, R.L.: Improved robotics joint-space trajectory generation with via point.
Proceedings of the ASME Design Engineering Technical Conference 6(PARTS A
AND B), 669–676 (2011)

