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Abstract

Multi modal, generative models are able to learn underlying generative
factors of multiple data types without the need for supervision. Exist-
ing methods use a fixed, pre-selected aggregation function to merge the
learned representation of each modality into a joint posterior distribu-
tion. Here, we generalise previous work by implementing the aggreg-
ation over modalities using a trainable generalized f -means. We show
that this more flexible way to fuse the information between modalities
improves the ability of the model to learn a meaningful joint posterior
approximation and to generate coherent samples across data types.
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Chapter 1

Introduction

Similar to how humans learn and extract information from their surround-
ings using an aggregation of their senses, a machine learning model can
learn from multiple data types. Multimodal data naturally grants self-super-
vision in the form of shared information connecting the different data types.
It also serves as an inherent regularization which forces the model to learn
more robust features from the data, since these features need to be connected
between modalities (Baltrušaitis, Ahuja and Morency, 2019). This may lead
to more interpretable features for humans since they also infer from mul-
tiple modalities. A model that can generate any of the learned modalities,
given any subset of modalities can be used for translation between modalit-
ies for example, such as image captioning. It can also find applications in
the medical domain, where the model could generate, conditioned on im-
ages and medical data of a patient, a text describing the medical condition
of a patient.

However, the understanding of different modalities and the interplay between
data types are non-trivial research questions and longstanding goals in ma-
chine learning research (Ngiam et al., 2011). While fully supervised ap-
proaches have been applied successfully (Karpathy and Fei-Fei, 2015; Tsai
et al., 2018a), the labeling of multiple data types remains time-consuming
and expensive. Models that efficiently learn from multiple data types in
a self-supervised fashion are much more widely applicable for real world
problems. In the medical domain, for example, self-supervised training
paradigms are especially useful since there labeled data is expensive to ac-
quire and thus very scarce. Generative models represent a natural way to
learn underlying generative factors of the data, in a self-supervised fashion.

Self-supervised, multi modal generative models have been applied to toy
datasets (Wu and Goodman, 2018; Shi et al., 2019a; Sutter, Daunhawer and
Vogt, 2020b) and real world data (Klug, Sutter and Vogt, 2021), however res-
ults have shown that current methods are not able to aggregate well enough
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1. Introduction

over the modalities to generate coherent samples. For the model to generate
coherent samples, it needs to extract and fuse information from the mul-
tiple data types. An image captioning model for example, needs to extract
information from the image and generate text from it when generating the
caption for an image of a green apple. Captions such as ”A red apple.” or
”A yellow truck.” would not be coherent with the image of a green apple.

In previous work, the aggregation over modalities is done with multiple,
fixed, pre-selected methods, each coming with advantages and disadvant-
ages. Here, we generalise previous work by implementing the aggregation
over modalities using a generic function with trainable parameters. We show
that this more flexible way to fuse the information between modalities im-
proves the ability of the model to generate coherent samples across data
types.
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Chapter 2

Related Work

2.1 Generative Modeling

Generative adversarial networks (Goodfellow et al., 2014, GANs) and vari-
ational autoencoders (VAEs, section 3.1) are the two most popular methods
for generative modeling. Both attempt to model the distribution over the
data, however while for the VAEs, the resulting posterior approximation
is defined explicitly, the learned posterior of GANs can not be evaluated
directly. GANs are made of two models that are trained simultaneously, a
generative model G that captures the data distribution, and a discriminative
model D that estimates the probability that a sample came from the train-
ing data rather than G. The joint optimization of both models D and G can
be tricky in practice and GANs are known to suffer from mode collapse
since the objective does not require the learned representation to contain
all modes of the data. For images of animals for example, the generator G
could learn to generate only images of brown, short haired dogs, so well
that the discriminator D will not be able to distinguish them from the true
data. Mode collapse does not happen in VAEs since their objective explicitly
requires their learned representation to contain all modes of the data. Also,
since the learned posterior distribution of VAEs can be evaluated explicitly,
additional constraints can be added to the objective to push the posterior dis-
tribution to have specific characteristics and it can be used for downstream
tasks like clustering or classification. In this work, we focus on VAEs and
give a more in depth introduction in section section 3.1.

2.2 Multi Modal Generative Modeling

There have been a wide range of approaches for multi-modal generative
modeling, however most fall short of expressing the complete range of beha-
viour that we expect in this setting.
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2. Related Work

Modality Translation Most prior approaches to generative modelling with
multi modal data have targeted modality translation, where the model learns
to generate one modality conditioned on another one. In this case input an
output modalities of the model are not interchangeable. Modality transla-
tion has been proposed both as VAE based (Pu et al., 2016; Pandey and
Dukkipati, 2017), as well as GAN based, for domain translation of images
(Ledig et al., 2017; Liu et al., 2019). However, we expect our method to be
able to generate any modality given any subset of modalities which extends
translation between modalities. It would be possible to train 2M − 1 mod-
ality translation network pairs for M modalities, but this is intractable in
practice.

Joint approximation Other prior work has targeted to directly model the
joint distribution over the data. The joint multi modal VAE (JMVAE) from
(Suzuki, Nakayama and Matsuo, 2016) learns a joint posterior distribution
using a joint inference network. To handle missing data at test time, in-
ference networks need to be trained for every subset of modalities. While
feasible for two modalities, this setup quickly becomes intractable with more
data types. Similarly, the multimodal factorisation model (MFM) from (Tsai
et al., 2018b) explicitly defines a joint inference network on top of uni modal
encoders, however additional decoder networks are needed to generate miss-
ing modalities.

These approaches typically do not scale well with the number of modalities
since they require additional modelling components for each combination of
modalities. The MVAE from (Wu and Goodman, 2018) marked an improve-
ment over previous methods in this regard, proposing to model the joint pos-
terior as a product of experts (POE) over the marginal posteriors, enabling
cross-modal generation at test-time without requiring additional inference
networks and multi-stage training regimes. Since then, other methods have
emerged, each proposing another aggregation function over the marginal
posteriors. We refer to section 3.2 for a more in depth introduction to the
MVAE and other methods that build on it.

Next to the aggregation function with which the uni modal posteriors are
merged, other methods have been proposed to improve multi modal VAEs
(mmVAEs). In (Daunhawer et al., 2021), the authors propose to split the
latent space into modality specific and shared information in order to disen-
tangle (Burgess et al., 2018) them in a purely self-supervised manner. The
aggregation of modalities should only happen over the shared information
and thus it makes sense to separate it from the modality specific information
in order to simplify the aggregation. For this, the authors add a new term to
the mmVAE objective, which disentangles the shared representations with
the modality specific representations and encourages mutual information
between representations that contain shared information. This has been
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2.2. Multi Modal Generative Modeling

shown to improve the conditional generation of missing modalities, how-
ever the results from (Sutter, Daunhawer and Vogt, 2020a) point out that
independent of that separation, the generation coherence differs between
different merging functions. The goal of this work is solely to improve the
merging function, which is why we forgo this method even though we ex-
pect the separation of shared and modality specific information to improve
our results.
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Chapter 3

Background

Our methods build on concepts and previous work on variational autoen-
coders (VAEs), self-supervised multi modal generative learning paradigms
and normalizing flows, which we introduce in this section.

3.1 Variational Autoencoder

The VAE, first introduced by (Kingma and Welling, 2014) and (Rezende,
Mohamed and Wierstra, 2014), consists of an encoder network and a decoder
network. In contrast to a typical auto encoder network, the VAE is trained
such that its learned representation has the structure of a prior distribution.
The most popular choice for a prior is the standard Gaussian distribution
N (0, I), which we also use in this work. The latent representation being a
distribution, the decoder part can generate unseen data by sampling from it.
The model is trained such that it maximizes the log-likelihood of the data
(log p(x)) by maximizing the Evidence Lower BOund (ELBO):

log p(x) = log
∫

p(x, z)dz

= log
∫

p(x, z)
q(z|x)
q(z|x)dz

≥ Eq(z|x)[log
p(x|z)p(z)

q(z|x) ]

= Eq(z|x)[log p(x|z)]−Eq(z|x)[log
q(z|x)
p(z)

]

= Eq(z|x)[log p(x|z)]− DKL (q(z|x) || p(z))

= ELBO

(3.1)

The ELBO consists of two parts: the reconstruction loss which pushes the
generated samples to resemble the real data and a regularization term which
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3. Background

forces the latent representation to be structured like the prior. In (Higgins
et al., 2016), the authors introduce the hyperparameter β, which allows to
weight the regularization term in the VAE objective:

LELBO = Eq(z|x)[log p(x|z)]− βDKL (q(z|x) || p(z)) (3.2)

A lower β gives the model more freedom in learning the latent represent-
ation, while a higher β forces the model to learn a latent distribution that
is disentangled, like the prior. ”Disentangled” here means that each dimen-
sion in the learned latent representation is independent of each other, and
represents a latent factor that corresponds to a different attribute in the data.
In images of animals for example, one dimension in the latent representa-
tion could represent the color of the fur, while another might correspond to
the color of the eyes. Both the color of the fur and the color of the eyes are
independent, and so should be the corresponding latent variables. A struc-
tured and disentangled representation leads to better interpretability and is
widely believed to lead to better results in down-stream tasks, however this
claim has been challenged in (Locatello et al., 2019) where the authors could
not find evidence for it.

The β allows to weight the trade-off introduced by the modified training
objective that punishes reconstruction quality in order to encourage disen-
tanglement within the latent representations (Burgess et al., 2018). Disen-
tanglement is a popular objective in representation learning and has been
addressed in recent works (Chen et al., 2019; Locatello et al., 2019). In this
work, we also make use of β as a hyperparameter that we adapt for each
method.

3.2 Multi Modal VAEs

In order for the VAE model to learn a representation which captures the un-
derlying factors of multiple modalities, several adaptations to the objective
in eq. (3.1) need to be made. The first approach that scales with the number
of modalities, allows for a coherent joint generation over all modalities and
cross-generation across individual modalities, the MVAE, was introduced in
(Wu and Goodman, 2018). The MVAE makes the assumption that the joint
posterior of data containing M modalities X = {Xm}M

m=1 is a product of uni
modal posteriors, also called a Product-of-Experts (PoE) (Hinton, 2002):

p(z|X1, . . . , XM) ∝
M

∏
m=1

q(z|Xm) (3.3)

The PoE has the advantage of aggregating information across any subset
of uni modal posteriors which allows for missing modalities. However, the
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3.2. Multi Modal VAEs

product of experts does not train the individual inference networks and
they don’t learn to handle missing data at test time. To address this issue,
the MVAE requires a sub-sampling of uni modal log-likelihoods, which no
longer guarantees a valid lower bound on the joint log-likelihood (Wu and
Goodman, 2019).

Another approach was proposed with the MMVAE in (Shi et al., 2019b),
which models the joint posterior as a mixture of uni modal posteriors, i.e. a
mixture of experts (MoE):

p(z|X1, . . . , XM) =
1
M ∑

m=1
q(z|Xm) (3.4)

The MoE has the advantage of optimizing each inference network individu-
ally, however it does not merge the information between posteriors since
only uni modal posteriors are considered during training.

Both advantages of the PoE, which results in a good approximation of
the joint distribution and the MoE which optimizes each uni modal pos-
terior individually are combined in the MoPoE (Sutter, Daunhawer and Vogt,
2021). The MoPoE-VAE takes advantage of both methods by merging the uni
modal posteriors into 2M − 1 subsets, which are then combined with a MoE
(see fig. 3.1).

qφ1

qφ2

PoE

PoE

PoE

q̃φ1

q̃φ2

q̃φ12 MoE
joint

posterior

enc1

enc2

dec2

dec1

Figure 3.1: The MoPoE makes use of the PoE to create 2M subsets, which
are then merged with a MoE. Here M = 2, the empty subset is not shown.
On the left side are the two input modalities from the polymnist dataset (see
section 5.1.1), on the right side are the generated samples. In the header of
each generated sample is described from which subset the decoder sampled
for the generation (left side of the →) and which modality was generated
(right side of the→).

Similar to the MoE, the MoPoE models the joint posterior as a mixture.
However the mixture of experts consists of subsets instead of uni modal
posteriors. For multi modal data X = {Xm}M

m=1 with M modalities, and

9



3. Background

2M − 1 subsets of modalities Xs ∈ X, the objective of the MoPoE, which is
an evidence lower bound (ELBO) on the joint log-likelihood log pθ(X), can
be written as follows:

LMoPoE(θ, φ; X) := Eqφ(z|X)[log(pθ(X|z))]−DKL

(
1

2M ∑
Xs∈P(X)

q̃φ(z|Xs) || pθ(z)
)

(3.5)

with qφ(z|X) the joint posterior:

qφ(z|X) =
1

2M ∑
Xs∈P(X)

q̃φ(z|Xs) (3.6)

and q̃φ(z|Xs) the posterior approximation of subset Xs:

q̃φ(z|Xs) = PoE({qφm(z|Xm)∀Xm ∈ Xs}) ∝ ∏
Xm∈Xs

qφm(z|Xm)) (3.7)

For gaussian posteriors, the PoE in eq. (3.7) can be computed in closed form.
Lemma 3.1 from (Sutter, Daunhawer and Vogt, 2020a) states that the KL-
divergence of the multimodal posterior distribution is a lower bound for the
weighted sum of the KL-divergences of the unimodal variational approxim-
ation functions. Accordingly, Equation (3.5) can be further simplified:

LMoPoE(θ, φ; X) ≤ Eqφ(z|X)[log(pθ(X|z))]−
1

2M ∑
Xs∈P(X)

DKL

(
q̃φ(z|Xs) || pθ(z)

)
(3.8)

It has been shown in (Sutter, Daunhawer and Vogt, 2020a) that the joint
generation coherence of the MoE surpasses that of the MoPoE, suggesting
that a more flexible aggregation function might be needed to further im-
prove results. In this work, the MoPoE is taken as the current state of the
art for scalable, self-supervised, multi modal generative models and is used
as baseline to compare our methods against. We also compare to the PoE
which is seen as the gold standard for aggregating information across mod-
alities and the MoE for learning each modality equally well and obtaining
an informative joint posterior.

Lemma 3.1 (Joint Approximation Function) The KL-divergence of the multimodal
variational posterior approximation is a lower bound for the weighted sum of the KL-
divergences of the unimodal variational approximation functions (Sutter, Daunhawer
and Vogt, 2020a):

DKL

(
M

∑
i=1

1
M

qφm(z|Xm) || pθ(z)

)
≤

M

∑
i=1

1
M

DKL
(
qφm(z|Xm) || pθ(z)

)
(3.9)
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3.3. Normalizing Flows

3.3 Normalizing Flows

Normalizing flows (Papamakarios et al., 2019) represent an approach for de-
fining invertible and differentiable transformations of probability distribu-
tions. They are widely used for generative modeling (Dinh, Sohl-Dickstein
and Bengio, 2017; Kingma and Dhariwal, 2018) and variational inference
(Rezende and Mohamed, 2016; Berg et al., 2019). In this work, we make use
of normalizing flows both as a simple parameterizable invertible function
for the f -mean, as well as a transformation of the joint posterior into an
arbitrary complex distribution in order to improve its ability to capture the
underlying factors of multiple modalities.

In practice, flow-based models are typically constructed by implementing
the diffeomorphic transformation T (or T−1) with a neural network. Because
invertible and differentiable transforms are composable, complex transform-
ations can be built by composing multiple instances of simpler ones: T =
TF ◦ · · · ◦ T1. The density of the transformed posterior q̃φ can easily be ob-
tained with the change of variable formula (Bogachev, 2007):

q̃φ = T(qφ) where qφ ∼ pqφ(qφ) = N (µφ, σ2
φ) (3.10)

pq̃φ(q̃φ) = pqφ(qφ)|det JT(qφ)|−1 (3.11)

In generative modeling, normalizing flows are used to learn a diffeomorphic
mapping T from images to a prior, like Gaussian noise. Since T is invertible,
one can then transform samples from the prior into new images with T−1.

For variational inference, normalizing flows are used to transform the pos-
terior into a flexible, arbitrarily complex distribution by transforming it with
a normalizing flow. The transformed posterior can be a much more faithfull
approximation of the true underlying distribution than posterior approxima-
tions that are limited to one class, like a normal distribution with a diagonal
covariance.

In this work, we make use of chained coupling blocks as normalizing flows,
implemented by the Framework for Easily Invertible Architectures (FrEIA).
Coupling blocks were first introduced in (Dinh, Krueger and Bengio, 2015)
for their Nonlinear Independent Components Estimation (NICE) method.
Chained coupling blocks are constructed such that at every block, the data
is split into two halves. One half is transformed by a simple linear transform-
ation with parameters depending on the other half. The transformed half
is then concatenated with the other, unchanged half. This process is shown
in fig. 3.2. This transformation has a Jacobian which determinant is easily
computable since it is triangular. This gives: det D f (x) = det D f̂ (xB|Θ(xA)).
Affine coupling blocks have been shown to provide good results, especially
for image data (Dinh, Sohl-Dickstein and Bengio, 2017)
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3. Background

Figure 3.2: Flowchart depicting the workings of a coupling block, taken from
the ECCV2020’s Tutorial: ”Introduction to Normalizing Flows” (Brubaker,
2020)

3.4 Importance Weighted Autoencoder

It has been shown that the tightness of the ELBO in eq. (3.2) can be improved
by sampling multiple samples from the posterior at each step (Burda, Grosse
and Salakhutdinov, 2016), which results in the following lower bound:

log p(x) ≥ Ez1,...,zK∼qφ(z|x)

[
log

1
K

K

∑
k=1

pθ(x|zk)pθ(z)
qφ(zk|x)

]
:= LK (3.12)

Equation (3.12) yields useful properties summarized in (Nowozin, 2018),
namely that one recovers the ELBO for K = 1, LK approaches the true
log p(x) for K >> 1 (limK→inf LK = log p(x)) and L1, . . . ,LK provide stochastic
monotonicity (LE = L1 ≤ L2 ≤ . . . ≤ log p(x)). The MMVAE from (Shi et
al., 2019b) adapts this for multi modal data:

LMoE
K (x1:M) =

1
M

M

∑
m=1

Ez1:K
m ∼qφm (z|xm)

[
log

1
K

K

∑
k=1

pθ(x1:M|zk
m)pθ(zk

m)

qφ(zk
m|x1:M)

]
(3.13)

which is a valid lower bound of the multi modal log likelihood log p(X).

In our work, we make use of this importance sampling training paradigm to
improve the tightness of the ELBO and to approximate the KL-divergence
between the posterior and the prior (see section 4.3.4).

12



Chapter 4

Methods

4.1 Learning a flexible joint posterior with a generalized
f -Mean

As introduced herein, we are working with a multi modal VAE (mmVAE),
which learns a joint distribution that contains the combined information of
each learned uni modal latent distribution. For M modalities, M different
encoder and decoder pairs are needed, each encoder learning a unimodal
latent distribution qφm(z|Xm). To learn a joint distribution of multiple data
modalities, some function F is needed that merges the information from all
unimodal latent distributions into one joint distribution (see fig. 4.1). In pre-
vious work (Wu and Goodman, 2018; Shi et al., 2019a; Sutter, Daunhawer
and Vogt, 2020b), learning a joint distribution has been done effectively by
combining learned unimodal distributions with a PoE (Wu and Goodman,
2018), an MoE (Shi et al., 2019a) or both (Sutter, Daunhawer and Vogt, 2020b).
While for both the MoE and PoE, reasons have been established why they
are good choices for the aggregation function, both come with several short-
comings (section 3.2). A more flexible and generic function could improve
the fusion of information from each modality and improve the expressive-
ness of the joint posterior.

To this end, we generalize previous methods and implement the fusion of
the uni modal latent distributions utilizing a trainable generalized f -mean,
with parameters ψ.

Since the generalized f -Mean is a generalisation of the arithmetic and the
geometric mean, it should bring results that are at least equally good or
better than previous results if the objective is right. E.g. if the geometric
or the arithmetic mean were the best functions to merge the uni modal pos-
teriors, the model could learn parameters ψ such that the f -Mean equals an
arithmetic or geometric mean.
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4. Methods

The generalized f -Mean is defined as follows:

M f (p) = f−1

(
1
N

N

∑
i=1

f (pi))

)
(4.1)

In eq. (4.1), f can be anything as long as it is invertible and differentiable.
Normalizing Flows (Papamakarios et al., 2019) present an approach to im-
plement a sequence of invertible transformations with neural networks and
provide a natural implementation for a parameterized fψ. We refer to sec-
tion 3.3 for a more in-depth introduction to normalizing flows.

Mod1

. . .

q1

ModM qN

. . . F Joint Distr

Mod1

. . .

ModM

enc1

encM

dec1

decM

Figure 4.1: Flowchart depicting the main elements of a multi modal VAE
wit M different modalities. Each input modality m gets mapped to a un-
imodal latent distribution qm by an encoder encm. The M unimodal learned
distributions then get merged by a function F into a joint distribution from
which the decoders can sample in order to reconstruct each of the M modal-
ities.

4.2 Evaluating the joint posterior distribution

The main difficulty in our approach comes from the fact that the f -mean of
the uni modal approximations follows an unknown distribution. While this
makes the joint distribution more flexible, this also makes the computation
of the regularization term in the ELBO, the KL-divergence, more difficult to
compute. In fact, if the density of the joint distribution is unknown, it is
impossible to compute the KL-divergence in closed form.

An intuitive alternative would be to find an upper bound of the KL-divergence
which can be computed in closed from, such that it can be minimized in or-
der to minimize the true divergence:

D′KL ≥ DKL(M f ({qφm(z|Xm) ∀ Xm ∈ Xs}))

= DKL

(
f−1

(
∑

Xm∈Xs

f (qφm(z|Xm))

|Xs|

)
|| pθ(z)

)
(4.2)
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Using the change of variable formula (eq. (3.11)), the f -mean in eq. (4.2) can
be rewritten as follows:

M f = f−1(Q)|J f−1(Q)| (4.3)

with

Q = ∑
Xm∈Xs

qφm(z|Xm)|J f (qφm(z|Xm))|
|Xs|

(4.4)

Here Q is a sum of random variables, which can be rewritten as chained
convolutions (Wikipedia, 2021) and is hard to evaluate.

Instead, we propose four workarounds to the computation of the KL-divergence
in eq. (4.2).

1. For one, eq. (4.2) can be simplified by skipping the backwards trans-
formation f−1. This leads to a mixture of transformed posteriors,
which divergence can be bounded using lemma 3.1 from (Sutter, Daunhawer
and Vogt, 2020a).

We then get an upper bound that can be minimized:

DKL

(
∑

Xm∈Xs

fψ(qφm(z|Xm))

|Xs|
|| pθ(z)

)

≤ 1
|Xs| ∑

Xm∈Xs

DKL
(

fψ(qφm(z|Xm)))|| pθ(z)
) (4.5)

We implement this in the Mixture of flow of product of experts (Mofo-
PoE) model, which is described in section 4.3.1.

2. Another way to simplify the KL-divergence in eq. (4.2) is to force the
output of the f -mean to be a Gaussian distribution. This can be done
by, instead of mixing the posteriors which follow a normal distribution,
mixing their parameters µs and σs. The joint posterior is then described
as follows:

qφ,joint ∼ N
(

f−1
µ ( ∑

Xm∈Xs

fµ(µs)

|Xs|
), f−1

σ ( ∑
Xm∈Xs

fσ(σ2
s )

|Xs|
)

)
(4.6)

This is implemented as the mixture of parameter generalized f -mean
(MopgfM) and described in section 4.3.2.

3. The sum of random variables in the f -mean (eq. (4.2)) is hard to evalu-
ate since the transformed uni modal posteriors (qφm(z|Xm)) follow an
unknown distribution. It is however possible to steer the normalizing
flow fψ to map qφm(z|Xm) towards a normal distribution, such that the
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sum of random variables can be evaluated. This normal distribution
can be amortized by making it dependent on the input. We implement
this as the MogfM amortized method, described in section 4.3.3.

4. Instead of evaluating the density of the sum of random variables in-
side the f -mean, we investigate if it is possible to approximate it with
a normal distribution. The mean and variance can be inferred using
importance samples from the sum of random variables. We imple-
ment this as the importance weighted mixture of generalized f -mean
(iwMogfM), described in section 4.3.4.

4.3 Models

In this section, we describe the models that implement the four methods
introduced above and enumerate their advantages and disadvantages.

4.3.1 Mixture of flow of Products of Experts

The Mixture of flow of Products of Experts (MofoP) builds on the MoPoE
by transforming the subset posterior approximations q̃φ(z|Xs) with a series
of F invertible transformations with trainable parameters ψ:

zF,S = fψ(z0,S ∼ q̃φ(z|Xs)) = fF ◦ . . . ◦ f2 ◦ f1(z0,S ∼ q̃φ(z|Xs)) (4.7)

The density of the resulting transformed subset posterior distribution can
be evaluated with the change of variables formula (eq. (3.11)):

ln f (q̃φ(z|Xs)) = ln qφ(z0|Xs)−
F

∑
i=1

ln
∣∣∣∣det

d fi

dzi−1

∣∣∣∣ (4.8)

Here f (q̃φ(z|Xs)) can follow any distribution and is thus more flexible than
the gaussian subset posterior approximation in the MoPoE model. A flow
chart depiction of the MofoP is shown in fig. 4.2. During a forward pass, a
sample is taken from each subset posterior distribution, transformed with a
normalizing flow f and then mixed with a MoE.

The resulting objective can be written as follows, by slightly modifying the
MoPoE objective from eq. (3.8):
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4.3. Models

LMo f oP(θ, φ, ψ; X)

= Eqφ(z|X)[log(pθ(X|z))]−
1

2M ∑
Xs∈P(X)

DKL

(
q̃φ(z|Xs) || pθ(z)

)

= Eqφ(z|X)[log(pθ(X|z))]−
1

2M ∑
Xs∈P(X)

DKL

(
fψ(qφm(z|Xm))) || pθ(z)

)
(4.9)

The KL-divergence between the transformed subset posteriors and the prior
can be evaluated as follows using eq. (4.8):

DKL

(
fψ(qφm(z|Xm))) || pθ(z)

)
= E fψ(qφm )

[
log fψ(qφm( fψ(z)|xm))− log pθ( fψ(z))

]
= Eqφm

[
log qφm(z|xm)− log det J fψ

− log pθ( fψ(z))
] (4.10)

We use the MofoP method in comparison to the other methods that make
use of the inverse transform f−1 to evaluate if the merging of information
between unimodal posteriors can be improved by simply making the subsets
more flexible.

One advantage of the MofoP method is that since the inverse of the flow
transformation is not needed, implementations of normalizing flows can be
used where the evaluation of the inverse flow does not need to be tractable.
This gives more flexibility in the choice of the flow implementation.

4.3.2 Mixture of parameter generalized f -means

The Mixture of parameter generalized f -mean (Mopgfm) mixes the means
and the standard deviations of the unimodal posteriors, in order to obtain a
normal distribution that depends on each of the uni modal posteriors (see
eq. (4.6)). The aggregation over the means and the standard deviations is
done with a parameterized f -mean.

This is a generalisation of the PoE method since a product of gaussian ex-
perts is itself Gaussian with mean µPoE = (∑i µiVi)(∑i Vi)

−1 and covariance
VPoE = (∑i Vi)

−1 where µi, Vi are the parameters of the i-th Gaussian.
Without loss of generality, it can be assumed that:
f−1
µ (∑Xm∈Xs

fµ(µs)

|Xs| ) = µPoE and f−1
σ (∑Xm∈Xs

fσ(σ2
s )

|Xs| ) = VPoE.
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Figure 4.2: Fowchart depicting the MofoP method. The MofoP creates
more expressive subset posteriors by transforming the PoE posteriors with
a series of invertible transformations. Here, an example with 2 subsets is
shown. On the left side are the two input modalities from the polymnist
dataset (see section 5.1.1), on the right side are the generated samples. In
the header of each generated sample is described from which subset the
decoder sampled for the generation (left side of the→) and which modality
was generated (right side of the→).

The main advantage of this method is that since it is a generalisation of the
PoE, it gives more flexibility to the modality fusion. However, this comes at
the cost that the expressiveness of the joint distribution is limited by being
a Gaussian, and since the transformations are applied on the parameters of
the uni modal distributions, transparency of the resulting transformation is
lost. It is hard, if not impossible, to translate eq. (4.6) into the following
equation:

qφ,joint = T({qφm(z|Xm)∀Xm ∈ X}) (4.11)

with T a well defined transformation. The internal workings of the MopgfM
method are depicted in a simplified manner in fig. 4.3.

4.3.3 Amortized Mixture of generalized f -means

For the Amortized Mixture of generalized f -means (MogfM amortized) method,
we introduce a new loss L2 that pushes fψ to map the uni modal posteriors
to an amortized prior distribution, i.e. such that:

fψ(qφm(z|Xm)) ∼ N ( fψ(µm), I) (4.12)

Then, the density of the sum of random variables G f can easily be evaluated
with:

G f (z|X1:|Xs|) = ∑
Xm∈Xs

f (qφm(z|Xm))

|Xs|
∼ N

(
∑

Xm∈Xs

f (µm)

|Xs|
,

1√
|Xs|

· I
)
(4.13)
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Figure 4.3: The MopgfM makes use of the f -mean to aggregate the means
und standard deviations of the unimodal posteriors create 2M normally
distributed subsets, which are then merged with a MoE. Here, an example
with 2 subsets is shown. On the left side are the two input modalities from
the polymnist dataset (see section 5.1.1), on the right side are the generated
samples. In the header of each generated sample is described from which
subset the decoder sampled for the generation (left side of the→) and which
modality was generated (right side of the→).

Equation (4.12) can be achieved by minimizing the KL-divergence between
the transformed uni modal posteriors and the amortized prior:

L2 = ∑
Xm∈X

DKL
(

f (qφm(z|Xm)) || N ( f (µm), I)
)

= ∑
Xm∈X

DKL
(

f (qφm(z|Xm)) || pθm(z)
)

= ∑
Xm∈X

E f (qφm (z|Xm))[log f (qφm(z|Xm))− log pθm(z)]

= ∑
Xm∈X

Ezm∼qφm (z|Xm)[log qφm(zm|Xm)− log det J f − log pθm( f (zm))]

(4.14)

The ELBO can then be evaluated as following:

L1 = Eqφ(z|X)[log(pθ(X|z))]−
1

2M ∑
Xs∈P(X)

DKL

(
q̃φ(z|Xs) || pθ(z)

)
= Eqφ(z|X)[log(pθ(X|z))]−

1
2M ∑

Xs∈P(X)

Eq̃φ(z|Xs)[log q̃φ(z|Xs)− log pθ(z)]

= Eqφ(z|X)[log(pθ(X|z))]−
1

2M ∑
Xs∈P(X)

EG f (z|x1:|Xs |)
[log G f (z|X1:|Xs|)

+ log det J f−1 − log pθ(z)]
(4.15)
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The total loss is then:

L = L1 + L2

= Eqφ(z|X)[log(pθ(X|z))]−
1

2M ∑
Xs∈P(X)

EG f (z|x1:|Xs |)
[log G f (z|X1:|Xs|)

+ log det J f−1 − log pθ(z)]

+ ∑
Xm∈X

Ezm∼qφm (z|Xm)[log qφm(zm|Xm)− log det J f − log pθm( f (zm))]

(4.16)

The resulting joint posterior G f :

G f (z|X1:|Xs|) = ∑
Xm∈Xs

f (qφm(z|Xm))

|Xs|
(4.17)

of the MogfM amortized method can follow any distribution and can thus
be more expressive than the joint posterior in the MopgfM or MoPoE meth-
ods. The main disadvantage of this method is that the KL-divergence term
in L1 can only be evaluated when the flow f has already learned to map the
uni modal posteriors towards the amortized priors.

4.3.4 Importance Weighted Mixture of generalized f -means

The central limit theorem states that a sum of independent random vari-
ables tends towards a normal distribution, even if the original variables
themselves are not normally distributed. With the Importance Weighted
Mixture of generalized f -means (iwMogfM) method, we evaluate if the sum
of unimodal posteriors from eq. (4.2) can be approximated with a normal dis-
tribution. It is important to note that since the unimodal posteriors should
contain shared information they are assumed to be dependent such that
the independence condition for the central limit theorem is not met. We
find however that the normal distribution with inferred parameters is a use-
ful proxy which allows to evaluate the KL-divergence term in the objective
from eq. (3.1). To infer the parameters of the normal distribution, we take
K importance samples from the sum of unimodal posteriors and evaluate
their average and variance. Importance sampling from the posterior has
been done before for the iwVAE in (Burda, Grosse and Salakhutdinov, 2016)
(see section 3.4).

Like the MoPoE, the iwMogfM creates the joint posterior by creating 2M − 1
subsets from the uni modal posteriors and then mixes them with a mixture
of experts. However, instead of using a PoE to create the subsets, it uses an
f -mean. To derive the resulting objective, we rewrite the objective from the

20



4.3. Models

MoPoE for K importance samples in a first step:

Lmopoe
1 = Eqφ(z|X)

[
log

pθ(X, z)
qφ(z|X)

]
=

1
|P(X)| ∑

Xs∈P(X)

Eq̃φ(z|Xs)

[
log

pθ(Xs, z)
q̃φ(z|Xs)

]
=

1
|P(X)| ∑

Xs∈P(X)

Ezs∼q̃φ(z|Xs)

[
log

pθ(Xs, zs)

q̃φ(zs|Xs)

]

≤ 1
|P(X)| ∑

Xs∈P(X)

Ez1:K
s ∼q̃φ(z|Xs)

[
log

1
K

K

∑
k=1

pθ(Xs, zk
s)

q̃φ(zk
s |Xs)

]
= Lmopoe

K

(4.18)

Using Jensens inequality, Lmopoe
K can be rewritten as follows:

1
|P(X)| ∑

Xs∈P(X)

Ez1:K
s ∼q̃φ(z|Xs)

[
log

1
K

K

∑
k=1

pθ(Xs, zk
s)

q̃φ(zk
s |Xs)

]

≥ 1
|P(X)| ∑

Xs∈P(X)

Ez1:K
s ∼q̃φ(z|Xs)

[
1
K

K

∑
k=1

log
pθ(Xs, zk

s)

q̃φ(zk
s |Xs)

]

=
1

|P(X)| ∑
Xs∈P(X)

Ez1:K
s ∼q̃φ(z|Xs)

[
1
K

K

∑
k=1

log pθ(Xs|zk
s)− log

q̃φ(zk
s |Xs)

pθ(zk
s)

]

=
1

|P(X)| ∑
Xs∈P(X)

R1:K
s − D1:K

s

(4.19)

where R is the reconstruction loss and D the KL-divergence between the
subset posterior and the prior. The subset posteriors are obtained with an
f -mean of the uni modal posteriors:

q̃φ(z|Xs) = f−1

(
∑

Xm∈Xs

f (qφm(z|Xm))

|Xs|

)
= f−1(Qs) (4.20)

Since the density of QS is hard to evaluate, D1:K
s is calculated with a normally

distributed proxy Q̃s. The mean and the variance of Q̃s are inferred from
the mean and the variance of the K importance samples z1:K

Qs
∼ Qs

D1:K is then approximated with:

D1:K
s ≈ Ezs∼q̃φ(z|Xs)

[
log q̃φ(zs|Xs)− log pθ(zs)

]
= Ezs∼q̃φ(z|Xs)

[
log Qs + log det J f−1 − log pθ(zs)

] (4.21)

The sampling from the uni modal posteriors is depicted in fig. 4.4.
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Figure 4.4: The iwMogfM makes use of the f -mean to create 2M subsets,
which are then merged with a MoE. Here M = 2, the empty subset is not
shown. On the left side are the two input modalities from the polymnist
dataset (see section 5.1.1), on the right side are the generated samples. In
the header of each generated sample is described from which subset the
decoder sampled for the generation (left side of the→) and which modality
was generated (right side of the→).
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Chapter 5

Experiments

In this section we describe the experimental setup that was used in order to
compare our methods to each other as well as to the MVAE, the MMVAE
and the MoPoE methods.

5.1 Datasets

We evaluate on three datasets, each providing different difficulties in order
to filter out advantages and disadvantages of our methods.

5.1.1 PolyMNIST

The PolyMNIST dataset, first introduced in (Sutter, Daunhawer and Vogt,
2020b), consists of MNIST digits overlayed over a random part of a certain
background image. The modality specific information of each sample in
this dataset is defined by the background image and the shared informa-
tion by the digit. In this case the modality specific information is harder
to learn than the shared information (for the modality specific information
the model has to have learned the set of possible backgrounds and styles of
handwriting while the shared information is simply the set of digits). Ex-
amples from the PolyMNIST dataset are shown in fig. 5.1. In total there
are 60,000 tuples of training examples and 10,000 tuples of test examples.
The PolyMNIST dataset is useful to study how the number of modalities im-
pacts the performance of multi modal methods, since an abritrary amount
of modalities can easily be generated.

5.1.2 MIMIC-CXR Database

The MIMIC-CXR Database (Johnson et al., 2019) is a large publicly avail-
able dataset of chest radiographs with free-text radiology reports containing
377,110 images corresponding to 227,835 radiographic studies performed at
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Figure 5.1: The PolyMNIST dataset consists of sets of MNIST digits where
each set consists of M images with the same digit label but different back-
grounds and different styles of hand writing for M different modalities.

the Beth Israel Deaconess Medical Center in Boston, MA. In this work, three
modalities were extracted from the database: frontal and lateral chest radio-
graphs together with their corresponding text reports (fig. 5.2). Only data-
points where all three modalities are present were selected. Every sample
is labeled with one or more of the following categories: ’Atelectasis’, ’Car-
diomegaly’, ’Consolidation’, ’Edema’, ’Enlarged Cardiomediastinum’, ’Frac-
ture’, ’Lung Lesion’, ’Lung Opacity’, ’Pleural Effusion’, ’Pleural Other’, ’Pneu-
monia’, ’Pneumothorax’, ’Support Devices’. For our purposes, all images
were resized to (128, 128).

Text preprocessing Every word that occurs at least 3 times in all the text re-
ports is mapped to an index. Using this mapping each sentence is encoded
into a sequence of indices. All sentences with a word count above 128 are
truncated and all sentences consisting of less words are padded with a pad-
ding token ”< pad >” such that all text samples are of equal length (128
words).

The MIMIC-CXR dataset is extremely challenging since both the modality
specific and shared information present small details that are hard to learn.
In particular, the pathologies represent only a small fraction of the images
such that they are hard to distinguish, even for human experts. Also, the
shared information between modalities is different between the image mod-
alities and the image and text modalities together. The shared information
between images contains information about the patient such as the posture
and size, that is not contained in the text modality. The MIMIC-CXR dataset
provides a good representation of real world data with all the challenges
that come with it, such as unevenly represented classes and different shared
information between modalities.
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Figure 5.2: An example from the MIMIC-CXR dataset is shown: the frontal
view image together with the corresponding lateral view image and the text
report.

5.2 Metrics

In order to compare the proposed methods in a meaningful manner, we
make use of three metrics that each quantifies the performance of a different
aspect of mmVAEs. Namely, we compare the quality of the learned latent
representation, the coherence of the generated samples and the quality of
the generated samples, as described in the follwing sections.

5.2.1 Evaluation of the Latent Representation

To evaluate if the different mmVAEs are able to extract characteristic inform-
ation and compress it in the latent representation in a meaningful manner,
we evaluate the separability of the latent space via linear classifiers. If the
classifier can separate the latent space into the corresponding classes, we
conclude that the posterior approximations are meaningful. One classifier
for each class and for each latent space is trained on 1000 encoded samples
from the training set and tested on the test set. Note that this can be seen
as a variant of the disentanglement metric from (Higgins et al., 2016) where
each class is a different generative factor. If the dimensions of latent repres-
entation are independent and interpretable, there will be less variance in the
samples belonging to the same class and thus make them separable from the
rest with low capacity classifiers. It has been shown in (Locatello et al., 2019)
that this disentanglement metric correlates with other disentanglement met-
rics.
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5.2.2 Evaluation of the Generation Coherence

To evaluate if the method is able to separate the shared information from the
modality specific information, we verify that all generated tuples belong to
the same class using pretrained classifiers. For conditional generation, the
conditionally generated samples have to be coherent to the input samples.
The coherence accuracy is the ratio of coherent samples divided by the num-
ber of generated samples. For every data type, we train a neural network
classifier in a supervised way and the architecture is identical to the encoder
except from the last layer.

When comparing the coherence accuracy for methods trained on only one
modality, the coherence is evaluated by verifying if the generated sample
belongs to the same class than the input sample. We compare the coherence
accuracy for the generation of missing modalities, reconstruction of modal-
ities and randomly generated samples.

5.2.3 Evaluation of the Generation Quality

To evaluate the quality of the generated samples, we make use of the precision-
recall score from (Sajjadi et al., 2018). The Precision and Recall for Disitribu-
tions (prd) metric is similar to the Fréchet Inception Distance (FID) (Heusel
et al., 2017), but disentangles the quality of generated samples (precision)
from the coverage of the target distribution (recall). The prd metric reduces
the problem of comparing a distribution Q (the distribution of generated
samples) to a reference distribution P (the distribution of true images) into
a one dimensional problem by applying a pre-trained classifier trained on
natural images and to compare P̂ and Q̂ at a feature level. The embeddings
are then clustered such that the histogram over the cluster assignments can
be meaningfully compared. Failing to produce samples from a cluster with
many samples from the true distribution will hurt recall, and producing
samples in clusters without many real samples will hurt precision (Sajjadi
et al., 2018). Here we compute the prd score by taking the area under the
precision-recall curve.

5.3 Comparison across different number of importance
samples

As introduced in section 3.4, the tightness of the ELBO in eq. (3.2) can be
improved by sampling multiple importance samples from the posterior at
each step (Burda, Grosse and Salakhutdinov, 2016). To test if the advant-
age of our more flexible aggregation over modalities using the generalized
f -mean can be overcome by taking more importance samples, we compare
the mopoe and the mopgfm methods using the importance weighted train-
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ing paradigm from (Burda, Grosse and Salakhutdinov, 2016), with different
number of importance samples. The results are shown in section 6.2.4.

5.4 Hyperparameter Selection

We select three hyperparameters for the standard mmVAE models (MoPoE,
MoE, PoE) that we optimize for our experiments:

• The dimension of the latent representation (the bottleneck of the VAE).
A higher dimensional latent representation gives the model more free-
dom to separate the different classes and can contain more information
in general. However, for a too large latent representation, the encoder
is not constrained to extract only the most informative features of the
input such that the latent representation will contain much informa-
tion that is non-informative for the decoder.

• The learning rate for the stochastic optimization of the parameters,
using the Adam optimizer (Kingma and Ba, 2017). For a low learning
rate, the objective will take a very long time to converge and for a too
high learning rate it might oscillate around a local minimum and never
converge.

• The β in the modified ELBO from eq. (3.2), described in section 3.1

Since the choice for these parameters is non trivial, we optimize them us-
ing the hyperparameter optimization framework Optuna (Akiba et al., 2019).
As objective, we use a weighted average of the generation coherence metric
(section 5.2.2) and the area Under the precision-recall curve (prd-score, sec-
tion 5.2.3, where a higher weight is given to the prd-score since its values are
generally lower than those of the generation coherence metric. The results
for the MoPoE method can be seen in fig. 6.1.

For our methods that make use of normalizing flows, we add three addi-
tional hyperparameters:

• The number of chained transformations with which the normalizing
flow is constructed (Nbr Flows).

• The number of coupling block layers per transformation (Nbr Coup-
ling Block layers).

• The number of parameters of each coupling block layer Coupling Dim).

For the optimization of those, we fixed the dimension of the latent repres-
entation and the learning rate according to what gave the best results for the
MoPoE method. Namely, a latent representation of dimension 1280 and a
learning rate of 5e− 4. The results can be seen in fig. 6.2 and fig. 6.3.
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Class Dim Coupling Dim End Epoch Learning Rate Nbr Coupling Block layers Nbr Flows beta
Method

moe 1280 500 0.0005 2.0
mopgfm 1280 64 500 0.0005 8 1 2.0

poe 512 500 0.0005 2.0
mogfm amortized 1280 512 500 0.0005 2 4 0.0

mofop 1280 64 500 0.0005 8 1 2.0
iwmogfm2 1280 512 500 0.0005 2 4 0.0

mopoe 1280 500 0.0005 2.0

Table 5.1: Parameters used for the models evaluated on the PolyMNIST
dataset.

5.5 General Setup

5.5.1 PolyMNIST

We present our results for the PolyMNIST dataset in section 6.2, for which
we trained each method 2 times for 500 epochs. All results are presented
as averages over the 2 runs, accompanied with the standard deviations. If
the number of modalities is not explicitely specified, the model was trained
with three modalities from the PolyMNIST dataset. All parameter values
for the experiments on the PolyMNIST dataset studied in section 6.2 can
be found in table 5.1. To reduce training time we chose to use a small
number of chained transformations (Nbr Flows) for all normalizing flow
methods. A lower number of flows also yielded more stable results. We
adapted the parameters of the PoE and the MoE method to match those
selected for the MoPoE using the hyperoptimization. Only the dimension
of the latent representation (class dim) of the PoE was reduced since the
performance of the PoE dropped significantly with a higher dimension. All
methods are trained with one importance sample from the joint posterior if
not specified otherwise, except for the iwmogfm, which is trained with two
importance samples (section 4.3.4). We use the same network architecture
that was used in (Sutter, Daunhawer and Vogt, 2020b), a simple 3 layer
convolutional network as encoder and decoder.

All parameters for the iwmogfm and mogfm amortized methods have been
chosen without any hyperoptimization. For both methods, we found it dif-
ficult to find the optimal β, but found that both are able to learn mean-
ingful representations and yield good generative results, without the KL-
divergence as regularisation. We set β to 0 for the mogfm amortized and to
0.001 for iwmogfm. A very low β yielded better results for the iwmogfm
method than β = 0.

5.5.2 MIMIC-CXR

We present our results for the MIMIC-CXR dataset in section 6.3, for which
each method was trained once for 150 epochs. All parameter for the methods
evaluated on the MIMIC-CXR dataset were selected to match those used in
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Class Dim Coupling Dim End Epoch Learning Rate Nbr Coupling Block layers Nbr Flows beta
Method
mopoe 512 149 0.0005 1.0
mofop 512 64 149 0.0005 8 3 1.0

mopgfm 512 64 149 0.0005 8 3 1.0

Table 5.2: Parameters used for the models evaluated on the MIMIC-CXR
dataset.

(Klug, Sutter and Vogt, 2021). We chose to weight every modality equally
in the reconstruction loss. A table with all parameters for every method
evaluated on the MIMIC-CXR dataset is shown in table 5.2. We use the
same ResNet (He et al., 2016) type architecture for the encoder and decoder,
with 5 residual layers for the image modalities and 6 residual layers for the
text modality. We refer to the published codebase for more details on the
implementation of the models (MMVAE Hub, 2021).

5.6 Reproducibility

Advances in scientific research are contingent on reproducibility and verifi-
ability of previous work. To this end, we make the framework used to train
all models evaluated in this work available as an open source python pack-
age (MMVAE Hub, 2021), tested with continuous integration using (Travis,
2011) and kept up to date with (Dependabot, 2020). We publish this thesis as
a reproducible self publishing document (Ioanas and Rudin, 2018, RepSeP)
made available on GitHub (Klug, 2021b). All data used to produce this doc-
ument, including the trained models are made available on Zenodo (Klug,
2021a). Using LATEX and PythonTeX (Poore, 2015), we make all steps de-
scribed herein easily reexecutable and extendable. It is thus easy to repro-
duce all figures using different parameters for each method for future work.
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Chapter 6

Results

6.1 Hyperoptimization Results

The results for the optimization of the hyperparameters described in sec-
tion 5.4 can be seen in fig. 6.1 for the MoPoE method and in fig. 6.2 and
fig. 6.2 for the Mopgfm method. Note that every figure in fig. 6.1, fig. 6.2
and fig. 6.3 represents results in function of a parameter, however all other
parameters are not fixed and might vary for every point.

MoPoE Results Descriptively, we find that the MoPoE performs best on
the PolyMNIST dataset with a learning rate ≈ 5e− 4 and a latent dimension
of 1280. The performance of the MoPoE seems to be robust to a change of β
in the range of 1.1 to 2.1.

MopgfM Results The optimal number of coupling layers appears to be 8
with the best number of dimensions being 64. Figure 6.3a shows that better
scores are achieved with a higher number of chained transformations, how-
ever more flow transformations also lead to more variance in the resulting
score. In practice, we have also experienced that models with a high number
of normalizing flows can provide better performance but are more unstable.
The Mopgfm seems to perform best with a β between 1.5 and 2.4.

Overall the hyperoptimization results show that while the MoPoE presents
results that are much more stable (from fig. 6.1a, one can infer that the only
true variance in the objective value is due to a high learning rate), the highest
achieved scores are lower than those achieved by the Mopgfm method.
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6. Results

(a) Results shown in function of the learning rate

(b) Results shown in function of the dimension of the latent representation

(c) Results shown in function of β

Figure 6.1: Hyperoptimization run results for the MoPoE method. Every
subfigure presents results in function of one parameter, with all other para-
meters varying.32



6.1. Hyperoptimization Results

(a) Results shown in function of the number of coupling layers in each flow

(b) Results shown in function of the coupling layer dimension

Figure 6.2: Hyperoptimization run results for the Mopgfm in function of
the number of coupling layers and coupling layer dimension. Every subfig-
ure presents results in function of one parameter, with all other parameters
varying.
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(a) Results shown in function of the number of flows

(b) Results shown in function of β

Figure 6.3: Hyperoptimization run results for the Mopgfm method in func-
tion of the number of flows and β. Every subfigure presents results in func-
tion of one parameter, with all other parameters varying.
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6.2. PolyMNIST

6.2 PolyMNIST

6.2.1 Evaluation of the Latent Representation

Evaluation over epochs Evaluating the separability of the latent represent-
ation (section 5.2.1) for models trained on 3 modalities, we find that the
mofop, the mopgfm and the mopoe perform similarly, yielding on aver-
age a linear classification accuracy of 0.92, 0.91 and 0.92 respectively for
all subsets after 500 training epochs (see fig. 6.4). The two methods that do
not regularize the latent representation with the KL-divergence (iwmogfm,
mogfm amortized) perform worse than those that do, except for the moe
and poe methods. The two latter methods have the worst performance over-
all.

Evaluation across subset posterior approximations Table 6.1 compares the
classification accuracies of linear classifiers trained on each subset posterior.
Overall, we see that the classification accuracy improves when more modalit-
ies make up the latent representation which shows that all methods are able
to aggregate the modalities. In particular, we find that the iwmogfm method
has the best performance when all modalities are given. Comparatively, the
mopgfm is able to optimize the uni modal posteriors better than the mopoe
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Figure 6.4: Linear classification accuracy for different epochs over the test
set, averaged over all subsets. All methods were trained with 3 modalities.
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m0 m1 m2 m0 m1 m0 m2 m1 m2 m0 m1 m2
Method
moe 0.82±0.005 0.899±0.001 0.87±0.013 0.843±0.008 0.826±0.011 0.876±0.008 0.844±0.002
mopgfm 0.837±0.004 0.928±0.007 0.924±0.011 0.936±0.006 0.938±0.011 0.956±0.007 0.948±0.011
poe 0.224±0.016 0.893±0.062 0.723±0.098 0.861±0.059 0.69±0.1 0.957±0.005 0.941±0.012
mogfm amortized 0.615±0.007 0.84±0.008 0.824±0.005 0.905±0.003 0.904±0.007 0.96±0.003 0.96±0.003
mofop 0.783±0.004 0.936±0.002 0.921±0.008 0.936±0.001 0.938±0.002 0.97±0.002 0.953±0.0
iwmogfm 0.651±0.014 0.855±0.009 0.833±0.002 0.92±0.006 0.929±0.002 0.969±0.004 0.972±0.003
mopoe 0.793±0.011 0.927±0.002 0.908±0.003 0.938±0.005 0.942±0.004 0.964±0.001 0.962±0.006

Table 6.1: Linear classification accuracy of all subset posterior approxima-
tions for the test set.

and the mofop, yielding an average accuracy of 0.896 compared to 0.876 and
0.88. Our results show that the m0 modality is the most difficult modality to
learn from and as expected the poe struggles the most to optimize for it. It
has the lowest accuracy on the subset containing only the m0 modality but
compensates with the other modalities in the multi modal subsets. Similarly,
both the iwmogfm and mogfm amortized yield their lowest score on the m0
subset, while their performance improves significantly on the multi modal
subsets.

Scalability with the number of modalities Figure 6.5 shows a comparison
of how well each method scales with the number of modalities it is trained
on, using the linear classification metric (section 5.2.1). Again, we see that
the mofop, the mopoe and the mopgfm scale equally well with the number
of modalities, the latter yielding a slightly better score for 1 modality.

6.2.2 Evaluation of the Generation Coherence

Evaluation over epochs Evaluating the generation coherence (section 5.2.2),
we find that the mogfm amortized and the iwmogfm perform the best over-
all, yielding an accuracy of ≈ 0.88 after only 100 epochs (fig. 6.6). However,
the performance of both methods does not improve after 100 epochs such
that after 500 epochs, it almost matches that of the mopgfm and mofop.
Overall, all methods making use of normalizing flow yield higher scores
than the baseline methods.

Comparison across missing modalities, reconstruction and random genera-
tion For the generation coherence accuracy of missing modalities the mop-
gfm performs the best, followed by the mogfm amortized and iwmogfm
methods. For the reconstruction of modalities, both the mogfm amortized
and iwmogfm methods perform the best, followed by the mopgfm and mo-
fop methods. For the generation of random samples, the moe provides a
much higher coherence accuracy score than all other methods, implying that
the moe learns a joint posterior that corresponds better to the prior than the
other methods. Since the iwmogfm and mogfm amortized were not trained
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Figure 6.5: Linear classification accuracy for models trained with different
number of modalities, averaged over all subsets. All methods were trained
for 500 epochs.

with a regularization term in the objective that pushes their joint posterior
to match the prior, their decoder networks do not recognize samples from
the latter which explains the low accuracy for randomly generated images.
Interestingly, the coherence accuracy of randomly generated samples with
the mofop method is very low, suggesting that a higher regularization para-
meter β might be needed.

Scalability with the number of modalities Overall, the mopgfm, the mo-
poe and the moe methods scale equally well with the number of modalities,
the mopgfm yielding better performance than the mopoe, which itself per-
forms better than the moe (fig. 6.7). For models trained on one modality, the
coherence score is evaluated as self coherence only (section 5.2.2), which is
an easier task than coherence across generated samples. This explains the
slight dip in performance for all methods trained with 2 modalities.

6.2.3 Evaluation of the Generation Quality

Evaluating the generation quality (section 5.2.3), we find that overall the
methods making use of the generalized f -mean perform the best. The mop-
gfm yields the best prd score for the generation of missing modalities, while
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Figure 6.6: Generation classification accuracy for different epochs over the
test set, averaged over all combinations of input modalites and all output
modalities. All methods were trained with 3 modalities.

Missing Mod Reconstruction Random
Method
moe 0.732±0.011 0.742±0.013 0.303±0.01
mopgfm 0.794±0.003 0.834±0.005 0.156±0.003
poe 0.186±0.01 0.726±0.008 0.046±0.004
mogfm amortized 0.778±0.005 0.861±0.001 0.012±0.0
mofop 0.766±0.009 0.833±0.003 0.079±0.015
iwmogfm 0.774±0.009 0.869±0.004 0.016±0.001
mopoe 0.727±0.008 0.796±0.005 0.194±0.017

Table 6.2: Coherence accuracy values evaluated for the generation of miss-
ing modalities, reconstruction of modalities and random generation on the
Test set, for a model trained with 3 modalities. The coherence score for miss-
ing modalities is the average of all generation coherence accuracies for every
subset of input modalities that does not contain the generated modality. Sim-
ilarly, the coherence score for reconstruction is the average of all generation
coherence accuracies for every subset of input modalities that does contain
the generated modality.
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6.2. PolyMNIST
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Figure 6.7: Generation classification accuracy for models trained with dif-
ferent number of modalities. The average over all classification accuracies
is taken, across all possible combinations of input modalities and all output
modalities, for three modalities from the PolyMNIST dataset.

both the mogfm amortized and iwmogfm perform best on the reconstruc-
tion of modalities. Interestingly, the mopoe method provides prd scores
with a higher variance than the other methods. The poe yields the best
prd score for randomly generated samples followed by the mopoe, however
a qualitative evaluation of randomly generated samples in fig. A.22 shows
that while the mopoe generates the digits well, there is not much variance
in the backgrounds. The modalitiy specific information (the background) of
the randomly generated images from the mopoe actually seem to only cor-
respond to an average of all pixels of the background image correspond to
each modality. The same can be seen for the randomly generated images of
the mopgfm and the moe. Overall the poe method captures best the modal-
ity specific information and provides the highest variance in the background
of generated images.

Examples of generated samples for each method can be found in appendix A.
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6. Results

Missing Mod Reconstruction Random
Method
moe 0.094±0.007 0.2±0.002 0.125±0.005
mopgfm 0.283±0.013 0.352±0.002 0.209±0.007
poe 0.263±0.032 0.329±0.035 0.261±0.034
mogfm amortized 0.246±0.003 0.527±0.005 0.0±0.0
mofop 0.128±0.01 0.333±0.009 0.157±0.002
iwmogfm 0.205±0.01 0.523±0.02 0.004±0.002
mopoe 0.135±0.048 0.334±0.044 0.222±0.025

Table 6.3: Area under the Precision and Recall curve of the PRD metric (Saj-
jadi et al., 2018) evaluated for the generation of missing modalities, recon-
struction of modalities and random generation on the Test set, for a model
trained with 3 modalities. The prd score for missing modalities is the av-
erage of all prd scores for every subset of input modalities that does not
contain the generated modality. Similarly, the prd score for reconstruction
is the average of all prd scores for every subset of input modalities that does
contain the generated modality.

6.2.4 Comparison across different number of importance samples

Comparing how the mopoe, the mopgfm and the moe perform with dif-
ferent number of importance samples (K) (section 3.4) reveals that for the
generation coherence (fig. 6.8) and the generation quality (fig. C.2), the per-
formance of all three methods improves with a higher K. The evaluation on
those two metrics also shows that the mopgfm performs better than the mo-
poe or the moe for any K. Interestingly, the generation coherence of the moe
scales particularly well with a higher K, even surpassing the performance of
the mopoe for K = 3 and K = 5. The improvement in the separability of the
latent representation for a higher K is less clear (fig. C.1). A comparison of
generated samples across different number of importance samples is shown
in Appendix C.
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Figure 6.8: Generation classification accuracy for models trained with dif-
ferent number of importance samples, evaluated on the PolyMNIST test
set. The average over all classification accuracies is taken, across all pos-
sible combinations of input modalities and all output modalities, for three
modalities from the PolyMNIST dataset. All methods were trained with 3
modalities.

6.3 Mimic-CXR

A qualitative evaluation of generated samples from the MIMIC-CXR dataset
reveals that the models are not able to capture smaller details in both the
modality specific and the shared information. Figure 6.9 shows that the gen-
erated samples from the mopoe and mofop methods are extremely blurry
and while approximately portraying the shape of the patient and its organs,
smaller details like the ribs are lost. In fig. 6.9, the patient also has a sup-
port device, which is not represented in the generated samples. Figure B.14
shows that the quality of generated missing modalities is even worse, the
generated Lateral modality being so blurred that it is hardly recognizable.
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Input PA Input Lateral

MoPoE output MofoP output MopgfM output

Figure 6.9: Comparison of conditionally generated PA samples from the
mopoe and the mofop method. The generated samples are conditioned on
images from a patient with a support device.

42



Chapter 7

Conclusion & Discussion

We have implemented and tested new methods that provide a more flexible
way to aggregate over multiple modalities in multi modal VAEs, using the
generalized f -mean. Evaluating three metrics on the PolyMNIST dataset has
shown that these methods improve results, especially for the coherence and
the quality of the generated samples. This indicates that the generalized f -
mean is able to better merge the information from each modality into a joint
distribution than previous, fixed aggregation functions. However, a study
of how well the methods scale with the number of modalities has shown
that the methods utilizing normalizing flows scale less than those that do
not. We hypothesise that this comes from the fact that each modalitiy is
transformed with the same normalizing flow, such that with more modalit-
ies, the task of the flow to learn a meaningful mapping for each modality
becomes increasingly difficult. We argue that this can be compensated with
a higher amount of chained transformations, but which comes at a higher
computational cost.

MofoP & MopgfM As introduced in section 4.3.1, the mofop builds on the
mopoe by transforming each subset posterior approximation with a normal-
izing flow. While providing a more flexible joint posterior approximation,
this does not make the aggregation over modalities more flexible, since the
subset distributions are obtained with PoEs and the joint distribution with
a MoE over subsets. We implemented and tested this method in compar-
ison to our methods that utilize the generalized f -mean, to evaluate if the
improved performance of those is due to a more flexible joint posterior distri-
bution or a more flexible aggregation over modalities. The mopgfm provides
a good comparison for this matter, since it utilizes the generalized f -mean,
but uses a normal distributed posterior approximation. It thus has a flexible
aggregation over modalities but does not have a more flexible joint posterior
distribution. A comparison between the mofop and the mopgfm has shown
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7. Conclusion & Discussion

that in general the mopgfm performs only slightly better than the mofop,
indicating that both a more flexible joint posterior distribution and a more
flexible aggregation function are able to improve results on the PolyMNIST
dataset. This shows that transforming the subset posterior approximation of
the mopgfm with normalizing flows to obtain a more flexible joint posterior
distribution should further improve its results. Of course, this comes at the
cost of increased computational cost and training time.

mogfm amortized & iwmogfm The mogfm amortized and the iwmofgm
provide a way to obtain both, a more flexible aggregation function and a
more flexible joint posterior approximation. The two methods make use of
a modified objective to steer the joint posterior approximation towards a dis-
tribution that can be evaluated, but we have found this to be too unstable
in practice. However, our results have shown that both methods are able
to learn a good joint posterior distribution, even without the KL-divergence
as regularization term in the objective (i.e. with β = 0). While this results
in a very high generation coherence and quality, this also results in a less
structured joint posterior distribution since both methods yield lower linear
classification accuracies (section 5.2.1). In addition, since the joint posterior
distribution of both methods cannot be evaluated explicitly, one cannot gen-
erate new data by sampling from it. Overall the mogfm amortized and the
iwmofgm provide very promising results and it would be interesting to eval-
uate in a more extensive study, if the weight of the regularization term in
the objective can be adapted such that the learned posterior distribution of
both methods matches a prior distribution.

A qualitative evaluation on the challenging MIMIC-CXR dataset shows that
the methods are not able to extract meaningful information from the three
provided modalitities. Independent of a more flexible joint posterior dis-
tribution and a more flexible aggregation over modalities, the generated
samples are extremely blurry and fail to show details in both the modality
specific and shared information. We argue that further adaptations to the
training paradigm are needed to capture small details in real world datasets.
Especially for medical images where the shared information between the
modalities are pathologies that are sometimes hardly recognizable, even for
human experts. In (Dorent et al., 2019), the authors show with their modi-
fied MVAE model, that aggregating over the modalities on multiple scales
provides high quality results for the segmentation of brain tumours. This
could be adapted for our more flexible aggregation function in future work.

Overall, we have shown that the generalized f -mean provides a great tool
to improve the objective of multi modal VAEs. In future work, it would be
interesting to evaluate theoretical properties of the more flexible aggregation
function and how it impacts the tightness of the modified ELBO.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.1: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m0 and the generated modal-
ity is m0.
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Figure A.2: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m0 and the generated modal-
ity is m1.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.3: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m0 and the generated modal-
ity is m2.
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Figure A.4: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m1 and the generated modal-
ity is m0.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.5: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m1 and the generated modal-
ity is m1.

56



Input

mopoe

mopgfm

moe

poe

mofop

mogfm
amortized

iwmogfm

Figure A.6: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m1 and the generated modal-
ity is m2.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.7: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m2 and the generated modal-
ity is m0.
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Figure A.8: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m2 and the generated modal-
ity is m1.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.9: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modality is m2 and the generated modal-
ity is m2.
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Figure A.10: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m1 and the generated
modality is m0.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.11: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m1 and the generated
modality is m1.
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Figure A.12: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m1 and the generated
modality is m2.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.13: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m2 and the generated
modality is m0.
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Figure A.14: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m2 and the generated
modality is m1.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.15: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m2 and the generated
modality is m2.
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Figure A.16: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m1, m2 and the generated
modality is m0.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.17: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m1, m2 and the generated
modality is m1.
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Figure A.18: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m1, m2 and the generated
modality is m2.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.19: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m1, m2 and the gen-
erated modality is m0.
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Figure A.20: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m1, m2 and the gen-
erated modality is m1.
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A. Qualitative comparison of generated PolyMNIST samples
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Figure A.21: Generated examples, conditioned on samples from the
PolyMNIST Test set. The input modalities are m0, m1, m2 and the gen-
erated modality is m2.

72



moe

mopgfm

poe

mogfm amortized

mofop

iwmogfm

mopoe

Figure A.22: Comparison of randomly generated samples between meth-
ods. The samples are generated by sampling from the prior and decoding
them with a randomly selected decoder from the modalities m0, m1, m2.
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Appendix B

Qualitative comparison of generated
Mimic-CXR samples
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Figure B.1: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is PA and the generated modality is PA.
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B. Qualitative comparison of generated Mimic-CXR samples
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Figure B.2: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is PA and the generated modality is Lat-
eral.
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Figure B.3: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is PA and the generated modality is text.
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Figure B.4: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is Lateral and the generated modality is
PA.
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Figure B.5: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is Lateral and the generated modality is
Lateral.
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B. Qualitative comparison of generated Mimic-CXR samples

Input
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Figure B.6: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is Lateral and the generated modality is
text.
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Figure B.7: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is text and the generated modality is PA.
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Figure B.8: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is text and the generated modality is
Lateral.
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Figure B.9: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modality is text and the generated modality is text.
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B. Qualitative comparison of generated Mimic-CXR samples

Input
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Figure B.10: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, PA and the generated mod-
ality is PA.
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Figure B.11: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, PA and the generated mod-
ality is Lateral.
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Figure B.12: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, PA and the generated mod-
ality is text.
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Figure B.13: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are PA, text and the generated modality
is PA.
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B. Qualitative comparison of generated Mimic-CXR samples
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Figure B.14: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are PA, text and the generated modality
is Lateral.
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Figure B.15: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are PA, text and the generated modality
is text.
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Figure B.16: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, text and the generated mod-
ality is PA.
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Figure B.17: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, text and the generated mod-
ality is Lateral.
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B. Qualitative comparison of generated Mimic-CXR samples

Input

mofop

mopoe

mopgfm

Figure B.18: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, text and the generated mod-
ality is text.
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Figure B.19: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, PA, text and the generated
modality is PA.
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Figure B.20: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, PA, text and the generated
modality is Lateral.
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Figure B.21: Generated examples, conditioned on samples from the MIMIC-
CXR Test set. The input modalities are Lateral, PA, text and the generated
modality is text.

85





Appendix C

Qualitative comparison across different
number of importance samples
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C. Qualitative comparison across different number of importance samples
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Figure C.1: Linear classification accuracy for different importance samples
over the PolyMNIST test set, averaged over all subsets. All methods were
trained with 3 modalities.
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Figure C.2: Area under the Precision and Recall curve of the PRD metric
(Sajjadi et al., 2018), evaluated on the PolyMNIST test set. All methods
were trained with 3 modalities.
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C. Qualitative comparison across different number of importance samples
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Figure C.3: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m0 and the generated modality is m0.
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Figure C.4: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m0 and the generated modality is m1.
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C. Qualitative comparison across different number of importance samples
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Figure C.5: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m0 and the generated modality is m2.
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Figure C.6: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m1 and the generated modality is m0.
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C. Qualitative comparison across different number of importance samples
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Figure C.7: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m1 and the generated modality is m1.
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Figure C.8: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m1 and the generated modality is m2.
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Figure C.9: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m2 and the generated modality is m0.
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Figure C.10: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m2 and the generated modality is m1.
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Figure C.11: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modality is m2 and the generated modality is m2.
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Figure C.12: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m1 and the generated modality is m0.
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Figure C.13: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m1 and the generated modality is m1.
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Figure C.14: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m1 and the generated modality is m2.
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Figure C.15: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m2 and the generated modality is m0.
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Figure C.16: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m2 and the generated modality is m1.
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Figure C.17: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m2 and the generated modality is m2.
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Figure C.18: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m1, m2 and the generated modality is m0.
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Figure C.19: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m1, m2 and the generated modality is m1.
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Figure C.20: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m1, m2 and the generated modality is m2.
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Figure C.21: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m1, m2 and the generated modality is m0.
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Figure C.22: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m1, m2 and the generated modality is m1.

109



C. Qualitative comparison across different number of importance samples

Input

iwmopoe (K=1)

iwmopgfm (K=1)

iwmoe (K=1)

iwmopoe (K=3)

iwmopgfm (K=3)

iwmoe (K=3)

iwmopoe (K=5)

iwmopgfm (K=5)

iwmoe (K=5)

Figure C.23: Generated examples with different number of important
samples (K), conditioned on samples from the PolyMNIST Test set. The
input modalities are m0, m1, m2 and the generated modality is m2.
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