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Abstract
We analyse how the training and performance of VQC models is affected by
noise inherent to NISQ devices. In particular, we study the influence of three
different types of quantum hardware noise: measurement errors, single qubit
gate errors, and two-qubit gate errors (e.g., CNOT gate). Furthermore, we train
the previously mentioned QML algorithms using noise models that emulate the
behaviour of available quantum computers with high accuracy. We conclude
that the tested QML models are suitable for operation on current NISQ devices.
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1 Introduction and outline
1.1 Opening remarks
In this work, we study Quantum Machine Learning architectures called Quantum Classifiers in the
particle physics context of trying to distinguish from the background the events in which Higgs bo-
son was produced. The study is a continuation of the work done inside the AI and Quantum group at
CERN openlab which recently was published [1]. This particular research focuses solely on the Vari-
ational Quantum Circuit architecture proposed for the given classification task in [1]. The effects of the
different noise components in NISQ devices are explored as we transition from ideal simulation stud-
ies to implementing the developed algorithms on available quantum computers. This work serves as a
crucial step in the group’s ongoing efforts towards robust QML applications in High Energy Physics.

1.2 Report outline
This report presents the results of the simulations for the noise studies. It is also complemented by the
technical details valuable for future members of the group.

In Section 2 we describe used computing resources, details of how to use the cluster’s computing abilities
and how to run multiple machine learning jobs at the same time. Section 3 constitutes the main part of the
report in which we present the performed experiments with regards to noise effects studies and we discuss
them in the light of the state of the current quantum computing hardware capabilities. We conclude the
work in Section 4.

2 Technical setup
In this section we introduce the computing platform that allowed for extensive training of Quantum
Machine Learning models.

2.1 Quantum computing toolkit
The studies presented in this report are based upon the code written by Samuel Gonzalez Castillo. The
code, to incorporate the possibility of training quantum circuits, employs the cross-platform Python



library Pennylane1. Pennylane software does allow for efficient simulation of quantum circuits and dif-
ferentiation thereof.

For the studies of how different noise models affect the training of the QML architectures we decided
to use open source SDK (software development toolkit) Qiskit2. Qiskit provides means of implementing
custom noise models with the parameter and specifics chosen by the user and furthermore it allows to
test the models with the noise emulating the real hardware environment. Hence, such a solution offers
a comprehensive playground for testing the suitability of using QML methods on current quantum hard-
ware.

To take advantage of the combined use of both Pennylane and Qiskit, we utilized the Qiskit plug-in inside
Pennylane. To do so, one has to specify that the quantum device used for circuit classical simulation is
the qiskit simulator as in Figure 1.

Figure 1: Figure presents how to specify the device(dev) used by Pennylane to the the Qiskit quantum simulator.
This embedding allows us to make use of both of the libraries simultaneously.

Technical remarks (as of August 2021) for using the Qiskit plug-in inside the Pennylane:

– qiskit.aer requires approximately 60 times more time than Pennylane’s default.qubit for training
4-qubit VQC – ZZ feature map encoding, 4 repetitions of 2local variational form, ZZ feature map
reuploading, 4 repetitions of 2local variational form with 2000 points of training data.

– qiskit.ibmq simulators (simulatorstatevector, qasmsimulator) experience additional 30 fold slow-
down with respect to qiskit.aer.

– The slowdown occurs both for the hybrid NNVQC and purely quantum version of the VQC.
– qiskit.aer and qiskit.ibmq are only compatible with hardware compatible differentiation methods

(see link3).
– The reason for the slowdown is not the chosen differentiation method. Pennylane can run equally

fast (factor of 2 slowdown which in negligible compared to the Qiskit slowdowns) with hardware
compatible differentiation methods as with simulator and default differentiation methods.

– There is not slowdown when Qiskit plug-in in Pennylane when is used solely to transpile and run
circuits on their own. Slowdown seems to occur only if the optimization algorithms are taken into
account (contact Samuel Gonzalez Castillo for more details regarding this insight).

1https://pennylane.ai/
2https://qiskit.org/
3https://pennylane.readthedocs.io/en/stable/introduction/interfaces.html
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2.2 Assessing the performance of quantum classifiers
The evaluation of the investigated QML classifier models in Section 3 follows the same procedure as
in [1]. The main indicator of the ”goodness” of the classifier, hence, will be taken to be its AUC score.

3 Noise effects on the models’ performance
3.1 Outline of the study
We divide our study into two interconnected parts. Firstly, we investigate the custom noise models in
which we can set the error rates values and decide which qubits might be affected by the noise persisting
in the circuit. This allows us to examine distinct types of noise in isolation with respect to one another.
We perform experiments with three different types of noise arising because of: measurement/readout
error, single qubit rotation error and two qubits C-NOT error. Secondly, to understand the joint effect of
all types of errors including the ones not studied in the first part (for example emerging from relaxation
and decoherence), we import noise models (from the IBMQ platform) that truly emulate all noise influ-
ences present in the current quantum hardware. The concise summary of how to implement all of the
mentioned noise models is presented in Figure 2. Lines 59 – 82 present the application of distinct custom
noise models: 64 –72 show how to implement measurement/readout error and 74–82 how to obtain noise
coming from gate errors (77 and 81 define the single qubit gate error and 78 and 82 define two qubit
C-NOT error). Lines 53–57 describe how to use the IMBQ noise models.

In Section 2.1 we observed that utilizing the Qiskit plug-in inside Pennylane produces a slowdown in the
timing of the learning process. To overcome this retardation of training we make use of the observation
that VQC can obtain equally good results in the metric of the AUC classification score even when it is
exposed to much smaller datasets (See Figure 3). Hence we perform all of our noise experiments with
120 signal datapoints and 120 background datapoints with batch size chosen to be equal to 24.

3.2 Deployed quantum neural network architecture
All of the noise model tests were run using the VQC architecture presented in Figure 4. We uses 8
features that we encoded in 4 qubits with the data re-uploading technique. As a variational form we
chose the 2local form with only nearest neighbours gates connections.

To further reduce the training time we used only two repetitions in each variational form which is less
than was used previously in [1]. The shrinkage of the quantum neural network size was motivated by the
fact that no changes in AUC score were observed after decreasing the quantum circuit size.

3.3 Simulation results
For each of the custom noise models presented in Section 3.1 we obtain a plot (Figures 5, 6, 7) present-
ing how the AUC score varies with respect to the noise level which is expressed in terms of the error
probabilities introduced in Figure 2.

Based on the simulations results we can presume that the studied VQC quantum classifier architecture
is resistant to each of the noise types (considered in isolation with respect to one another) up to the
following levels:

p0 = 0.35, p1 = 0.025, p2 = 0.025.

We also investigated the performance of the VQC classifier when exposed to noise models taken from
IBMQ backends. We present the results in Table 1. We consistently observe unvarying results in terms
of AUC score on the level when no noise would be present in the system.
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Figure 2: Figure presents a piece of the code responsible for creating different noise models. Qiskit operates using
the class noise which allows to create various noise models either from scratch (noise.NoiseModel() is an empty
noise model which does not affect the circuit in any way) or importing such from specified quantum hardware
backends (noise.NoiseModel.frombackend(backend)). The noise model is then passed to the qml.device()

function – e.g. dev = qml.device(′qiskit.aer′, wires = 2, noise_ model = noisemodel).

3.4 Discussion
Studying different types of noise in isolation we observed that for each of them there is a threshold
beyond which the AUC score starts to decrease. We estimated these threshold values to be:

p0 = 0.35, p1 = 0.025, p2 = 0.025.

In the Table 2 we put forward the corresponding4 error rates present in the current IBMQ hardware (as
of October 2021). We observe that the thresholds obtained for the investigated VQC architecture are
much bigger than the values encountered in the today’s state of the hardware. That remark confirms the
suitability of running QML models for HEP applications on quantum hardware.

4The exact definitions of error rates might differ from the IBM definitions.
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Figure 3: Plot shows that the AUC score of the VQC classifier is not sensitive to the size of the training set. The
AUC score stays Credit to: Samuel Gonzalez Castillo. Figure comes from Samuel’s thesis written in Spanish.
”Eventos en el conjunto de entrenamiento” translates to ”Number of datapoints in the training set”.

Figure 4: Figure presents the portion of the code in which the structure of the quantum neural network is specified.
Code also indicates which 8 features from the initial dataset were chosen (see [1]).

Table 1: Table presents obtained AUC scores for the training of VQC model with the noise models taken from the
IBMQ real hardware backends. We notice no influence of the noise on the AUC scores. The results of different
runs also provide compatible results.

IBMQ noise
model

Run 1 Run 2 Run 3 Run 4 Run 5

belem 0.6598 ± 0.0181 0.6508 ± 0.0183 0.6571 ± 0.0209 0.6582 ± 0.0186 0.6561 ± 0.0192
bogota 0.6590 ± 0.0181 0.6598 ± 0.0191 0.6608 ± 0.0205 cluster error 0.6576 ± 0.0169
lima 0.6574 ± 0.0179 0.6577 ± 0.0187 0.6582 ± 0.0194 0.6578 ± 0.0189 0.6551 ± 0.0175
manila 0.6592 ± 0.0198 0.6576 ± 0.0209 0.6515 ± 0.0188 0.6585 ± 0.0190 0.6586 ± 0.0197
quito 0.6558 ± 0.0218 0.6579 ± 0.0196 0.6567 ± 0.0178 0.6586 ± 0.0197 0.6567 ± 0.0208
santiago 0.6562 ± 0.0197 0.6580 ± 0.0188 0.6603 ± 0.0204 0.6602 ± 0.0181 0.6577 ± 0.0184

4 Conclusions
We have presented a study of quantum classifiers on the specific example of Variational Quantum Circuit.
We proposed and followed a method to study how the noise, which is inherent to current quantum hard-
ware, might affect the training of VQC architectures. We concluded, that for each type of the separately
introduced error (measurement error, arbitrary one-gate error, C-NOT error), the considered models are
resistant to noise even up to the levels that are are not encountered in the existing IBM hardware ma-
chines. To check the behaviour of the models when all of the investigated noise sources are present at the
same time we tested the VQC models with IBM noise models accurately emulating the rates of errors
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Figure 5: Figure presents how measurement/readout errors influences the AUC score of the VQC classifier. We
observe that this QML model is resistant to the studied type of noise up to the level of p0 = 0.35.

Table 2: Table shows various average (per qubit) error rates present in the IBMQ hardware machines (as of October
2021).

IBMQ
hardware

p0 p1 p2

sydney 0.04 0.0004 0.013
guadalupe 0.02 0.0003 0.012
casablanca 0.03 0.0003 0.011
manila 0.03 0.0003 0.008

present in current quantum hardware. We achieved a strong indication that QML algorithms being cap-
able of solving demanding High Enrgy Physics data analysis tasks might be successfully operated from
the level of the state of the art quantum hardware.
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Figure 6: Figure presents how single qubit gate errors influences the AUC score of the VQC classifier. We observe
that this QML model is resistant to the studied type of noise up to the level of p1 = 0.025.
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Figure 7: Figure presents how C-NOT errors influences the AUC score of the VQC classifier. We observe that this
QML model is resistant to the studied type of noise up to the level of p2 = 0.025.
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