
Summer Student Programme Report
Evaluation of HPC simulation tools for

efficient and cost-effective resource
provisioning

MIGUEL PÉREZ DE LA RUBIA

migperezdlrubia@gmail.com

SUPERVISOR:
PABLO LLOPIS SANMILLAN

COLLABORATOR:
ALBERTO NÚÑEZ COVARRUBIAS

Start: 21-06-2021, End: 20-08-2021

Table of context

Introduction

Development

Future Work

Special Thanks

1

1. Introduction

At the beginning of my internship, I was introduced to a few tools used at CERN. These tools

include the HPCBatch cluster, where I was going to develop the project.

The objective of the project is to study a new methodology of evaluating HPC clusters

through simulations tools. Using simulation tools enable the possibility of knowing the

cost-effectiveness and efficiency with precise results in advance. This methodology has the

workflow shown below:

1. Obtain HPC application traces: by instrumenting applications using standard

tools such as Score-P or Tau, we can generate detailed traces for each application.

This way we can create a repository of HPC application traces. These can be

generated by experts in the field.

2. Create simulation scenarios: by changing the component parameters, one can

model faster CPUs or faster memory or storage according to the characteristics

offered by vendors.

3. Explore cost-effective configurations: leveraging the application traces, we can

use them as inputs for the simulator to evaluate different hypothetical scenarios. For

instance, one where we invest more in a better network or a situation where we invest

more in faster memory, or CPUs. Since the simulator has a graphical interface, this

step (and the previous step) can be carried out by service managers, but also anybody

in charge of resource procurement.

Due to their expensiveness, knowing where the bottlenecks can be will save a lot of effort

trying to optimize applications. Also, it can be useful by testing which applications are better

for the existing HPC clusters, with the advantage of not having to saturate the cluster,

delaying other possible results executing at that moment. This is applied either way to cloud

environments and bare-metal.

2

2. Development

For the development of the project we have followed the next goals:

● Evaluate simulation tools: we evaluate simulation tools that could fit this project's

requirements. We found different simulators each of them with its own

specifications:

● COTSon
1
, a simulator framework jointly developed by HP Labs and AMD that

provides accurate evaluations of current and future computing.

● M5
2
, which supports the execution of the entire system, including operating

system code and models of network and disk devices.

● Simics
3
, another full-system simulator that was one of the first academic

projects in this area and the first commercial full-system simulator.

● SIMCAN
4

is a simulation platform for modeling and simulating both

distributed systems and applications.

We agreed to use SIMCAN, as it provides high level of flexibility and scalability. This

is given by the simulation core of SIMCAN relies on its repository, which contains a

compilation of models that represents the most relevant components of a distributed

system, such as CPUs, disks and communication networks. Thanks to this collection

of models the same component can be represented by different models, e.g. a CPU

processor can be modeled as a Single-Core CPU model and as a Quad-Core CPU

model. In addition of this, we also had the opportunity to collaborate with Alberto

Nuñez, developer of the simulator, who will help with the installation in the cluster.

● Choose target HPC applications: we choose a sample of HPC applications that we

want to target for our evaluation and methodology. We chose applications from the

Accelerator and Technology Sector and Lattice QCD. These applications are run on

CERN's HPC infrastructure.

● Setup simulation environment at CERN's infrastructure: this phase includes

building the simulation tools, and testing to find a version that works and is suitable

for the project. This is a time consuming step due to the complexity of the software

stack.

● Tracing: Instrument HPC applications: this step involved researching tools such as

P-Score, OTF2 and Tau to obtain detailed traces from running HPC applications.

● Develop trace reader support: we have to develop code that adds support for using

our traces as inputs for the simulator. Our chosen simulator had limited support for

these application traces. This is also a time-consuming process due to the

complexities of the trace file formats.

Due to external circumstances, the project's time was cut in half, and we could not finish the

goal: "Develop trace reader support". Therefore this project is still a work in progress, and we

have not arrived at a final conclusion yet.

4 https://www.sciencedirect.com/science/article/pii/S1569190X11001432?pes=vor

3 https://www.windriver.com/products/simics

2 https://ieeexplore.ieee.org/document/1677503

1 http://cotson.sourceforge.net/

3

https://www.sciencedirect.com/science/article/pii/S1569190X11001432?pes=vor
https://www.windriver.com/products/simics
https://ieeexplore.ieee.org/document/1677503
http://cotson.sourceforge.net/

2.1. Installing simulation tools

For the installation of SIMCAN, a step-by-step guide has been developed. SIMCAN is based

on OMNeT++
5
, an extensible, modular, component-based C++ simulation library and

framework, primarily for building network simulators. There is also another dependence

with INET++
6
, an open-source OMNeT++ model suite for wired, wireless and mobile

networks. INET evolves via feedback and contributions from the user community.

2.1.1. OMNeT++ installation

1. Download omnet and untar

wget
https://github.com/omnetpp/omnetpp/releases/download/omnetpp-6.0p
re11/omnetpp-6.0pre11-src-linux.tgz
$ tar xvfz omnetpp-6.0pre11-src-linux.tgz

2. Install python dependencies

python3 -m pip install --user --upgrade numpy pandas matplotlib
scipy seaborn posix_ipc

3. Add omnet to the PATH

3.1. Either permanently:

$ nano ~/.bashrc
$ export PATH=$HOME/omnetpp-6.0pre11/bin:$PATH

3.2. Or just with

$ source setenv

4. Omnet6 needs to be able to compile c++ >= 14, which means gcc >= 9

scl --list # show available "software collections"
scl enable devtoolset-9 bash

5. Load MPI module

module load mpi/openmpi/3.0.0

6. Set configure flags WITH_QTENV, WITH_OSG, and WITH_OSGEARTH by editing the

file ‘configure.user’ in the omnet directory.

For the cluster, use these settings:

WITH_QTENV=no
WITH_OSG=no

6 https://inet.omnetpp.org/
5 https://omnetpp.org/

4

https://inet.omnetpp.org/
https://omnetpp.org/

WITH_OSGEARTH=no

For building with a graphical interface (Eclipse), use:

WITH_QTENV=yes
WITH_OSG=no
WITH_OSGEARTH=no

7. Now just run configure

./configure
make

2.1.2. Inet installation

Download version 4.3.2:

wget
https://github.com/inet-framework/inet/releases/download/v4.3.2/i
net-4.3.2-src.tgz
tar xf inet-4.3.2-src.tgz
cd inet4.3

Build Inet:

which omnetpp || echo "Setup Omnet++ environment first" # make
sure omnetpp is in the path
source setenv
make makefiles
make -j $(nproc) MODE=debug

2.1.3. Simcan installation

SIMCAN is easily installed in two steps: first, through a graphical environment; second, in

the cluster.

Installing through the graphical OMNeT++ Eclipse interface makes sure that the makefiles

are automatically generated. Otherwise, the makefiles would have to be built manually

(involves setting lots of flags and arguments).

Then, the project can be copied over into the cluster, where a simple `make clean &&
make` will recompile it using the already generated makefiles.

2.1.3.1. Graphical installation

With the OMNeT environment loaded (source setenv), load OMNeT++(run omnetpp).

Make sure to import INET (File | Import | Existing Projects)

5

Repeat the same process for the SIMCAN directory.

Now make sure that INET is referenced from the SIMCAN project: From the Project

Explorer window, right-click on SIMCAN: Properties | Project References and

make sure that INET is checked.

6

Use Project | Build Project to build Simcan.

2.1.3.2. Cluster installation

After building SIMCAN, copy the SIMCAN directory over to the cluster, then run:

make cleanall

Add the path to the INET in the variable INET_PROJ in the Makefile:

nano Makefile
INET_PROJ=~/inet4.3/
make -j $(nproc) MODE=debug

If something fails, check:

which inet
which omnetpp
scl enable devtools-9 bash

2.1.4. Running Simcan

Add to .bashrc the variable INET_HOME with the INET path.

$nano ~/.bashrc
$export INET_HOME=~/inet4.3/

7

Run the scenario from its folder with:

./run_debug -u Cmdenv

2.2. Installing OTF2

For the tracing tools, the HPC batch cluster had also installed TAU so we decided to install

OTF2 and decide which one would work better. For the OTF2 installation the following guid

has been created:

● First of all download the tar.gz file from the website

wget https://zenodo.org/record/4682684/files/otf2-2.3.tar.gz

● The next step will be untar the downloaded file

tar -xvfz otf2-2.3.tar.gz

● When the file is untar, access the directory created as otf2-2.3

cd otf2-2.3

● From the directory we have to configure the system, so we will execute the next

commands:

./configure --prefix=$HOME/otf2-2.3/
export PATH=$PATH:$HOME/otf2-2.3/
make
make install

● For check the configuration, from $HOME/otf2-2.3/:

cd doc/examples/
module load <mpi_module>
make

8

3. Future Work

Due to the external circumstances mentioned above, this project is on its halfway to be

finished. The next step will be to continue with the trace reader support, to study the most

accurate trace reader that will work in common with SIMCAN. After this, the next step will

be put under test all the tools installed, looking for bottlenecks, inconsistencies and potential

problems when executing simulations in the cluster.

Once this work is done, the methodology will be finished and ready for being used at CERN

to explore the efficiency of actual and future HPC clusters.

4. Special Thanks

I want to thank this opportunity of working at CERN to Pablo and Alberto, for guiding me

through this experience, showing a little part of the research world.

Also, I want to say special thanks to CERN representatives, for helping all the Summer

Students making the “COVID experience” as if we were working side by side with our

partners and making this internship so enjoyable.

9

