
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

2938

Retrieval Number: C5483029320/2020©BEIESP

DOI: 10.35940/ijeat.C5483.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval of Java Program Code Components using

Case Based Reasoning (CBR)

Mahadev K. Patil, Pallavi P. Jamsandekar, Shabnam S. Mahat

Abstract: Object Oriented Programming (OOP) facilitates to

create libraries of reusable software components. The reusability

approach in developing a new system can be applied to an

existing system with prior modifications. The reusability

definitely decreases the time and effort required for developing

the new system. To support reusability of program code, a proper

code retrieval process is necessary. It makes possible to search

the similar code component of java programming environment.

OOP paradigm has specific style of writing the program code.

The program code is a collection of objects, classes and methods.

It is very easy to store the cases and reuse or revise wherever

necessary. To get the similarity between the program code

components, it is necessary to have an efficient retrieval method.

The retrieval phase can retrieve the program code components as

classes, methods, and interfaces depending on components

selection by the user. A purely case-based approach is adopted

for revising or reusing the existing cases to solve the new

problems. Case Based Reasoning (CBR) is the process of solving

new problems based on the experience coming from similar past

problems.

Keywords: reusability, retrieval, similarity measure, CBR

I. INTRODUCTION

Object Oriented Programming language facilitates to

create libraries of reusable software components. One of the

challenges in software industries are the increase in demand

of software development in different functional areas. [1]

The technology advancements evolved in functionalities

will increase the complexity in reuse. The reusability

approach was proposed by software engineering discipline.

The idea behind this is to develop a new system by adopting

the existing one with prior modifications. The reusability

definitely decreases the time and effort required for

developing the new system. To support reusability of

program code, a code retrieval process that makes it possible

to search the similar code component of java programming

environment. It can be based on code component retrieval

and its reusability. It can retrieve the java classes, methods

or interfaces based on user requirement. It reduces the time

and efforts required in the development of the new system.

The retrieval is one of the phases of CBR cycle. It is very

important to retrieve the most similar cases from the stored

cases in problem solving. OOP paradigm has specific style

of writing the program code.

Revised Manuscript Received on February 18, 2020.
*Correspondence Author

Dr. Mahadev K. Patil, Department of Computer Applications,

Bharati Vidyapeeth (Deemed to be) University, Pune
Prof. Dr. Pallavi P. Jamsandekar Professor, Bharati Vidyapeeth

(Deemed to be) University, Pune

Dr. Shabnam S. Mahat, Department of Computer Applications,

Bharati Vidyapeeth (Deemed to be) University, Pune

The program code is a collection of objects, classes and

methods. It is very easy to store the cases and reuse or revise

wherever necessary. To get the similarity between the

program code segments, it is necessary to have an efficient

retrieval method. A purely case based approach is adopted

for revising or reusing the existing cases to solve the new

problems. [1] The case base is dynamic in nature which

causes slow processing in a retrieval of cases where users

are continuously adding the new cases in case base.

II. CASE BASED REASONING (CBR)

CBR can be described as the process of solving new

problems based on the experience coming from similar past

problems. In general, CBR cycle [2] can be described by the

following:

Retrieve When a new problem arrives the most similar

cases are retrieved.

Retrieve is the process of remembering a relevant

experience or set of experiences

Reuse their solutions reused to provide a proposed

solution

Revise a proposed solution which may be revised after

testing to create a final solution

Retain As a final stage the new problem and solution

can be retained as a new case in the case base, allowing the

system to learn new knowledge

Case Base stores previously solved problems with their

solutions

Case records several features and their specific values

occurred in that situation

Figure (a): CBR Cycle [2]

Retrieval of Java Program Code Components using Case Based Reasoning (CBR)

2939

Retrieval Number: C5483029320/2020©BEIESP

DOI: 10.35940/ijeat.C5483.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

To have an efficient retrieval, CBR plays vital role by

reusing the similar past experiences of problem solving.

OOP paradigm has some style of problem solving which is

generalized to store as case and reuse wherever applicable.

To retrieve the most appropriate experience (stored case)

one need to have efficient retrieval method. A purely case-

based reasoning approach is adopted for OOP class library

reuse.

III. HASHING TECHNIQUE

The programmer can use case indexing approach for

case storage and case retrieval. The hash indexing technique

can be applied for faster retrieval. The hashing indexing

searches a case by determining the index value using a key

value without scanning entire case base. It took lesser

retrieval time, small storage and easier to implement. The

case retrieval is the process of finding possible cases from

case base that is very similar to the inputted case. For a

given new case C’ = {x1, x2, x3…xn, θ}, where θ is the

decision to be determined. The case retrieval is the process

of finding old cases C those are close to C’. The mapping of

C and C’ is represented as (C, C’) where cases C = {C1, C2,

C3…Cm}, and C’ is a query case. The similarity between

both cases (C’ € C) will be determined based on the

similarity, Sim (C’, C). [3]

The case indexing technique played a very important

role to control over the searching process. It scans entire

case base or portion of it. It improves quality of retrieval by

applying the concept of buckets – group of records as a

cluster. The programmer can design a different bucket for

program code components classes, methods or interfaces. To

overcome the problems in sequencing searching, hashing

indexing method with search key improves the searching

process and retrieval speed with growing cases in the

database.

IV. RESEARCH METHODOLOGY

The authors followed Design and Creation Research

strategy. It focuses on developing new IT product, also

called artifacts. The IT artifacts include construct, model,

method, instantiation.

The work is divided into four steps:

1. Learning via creation process is dealing with case

structure design.

2. System development methodology covers case retrieval

algorithm implementation aspect.

3. The data generation technique is used to gather the

outcome of students while executing the program code.

4. The evaluation viz, the different test cases inputted to

the program code and find out the results, the entire

execution of program code is evaluated by the student

who are currently learning java programs.

The above four steps are explained in following section

(V) working model. Its sub section explains the case

structure design, system development – program code

execution, and the evaluation, results/outcome by operating

the entire program code execution through different

students. The working model is designed based on above

four steps including CBR’s four phases.

V. WORKING MODEL

The working model focuses on CBR cycle. The model is

suitable for retrieval of cases in java program code. The

theory behind the phases of CBR has been explained.

A. User Input (Source Code)

The user can input or upload a new case to the system.

It is a simple <java> file. A user can upload the <java> file

to the system. It can be stored in a case folder for further

reuse.

With the help of java reflection method, the uploaded

<java> file can be extracted into the different program code

components such as class, package, interface or methods etc.

Reflection is commonly used by programs which require the

ability to examine or modify the runtime behavior of

applications running in the Java virtual machine.

The data preprocessing technique can be applied on

case base for the correctness of user case. This is one of the

steps used in data uploading to a system. This will check

whether a user has correctly uploaded the <java> file or not.

If a user uploads a wrong program file to a system, it will

generate an error message to the user. Its not mandatory that

use need to upload a program file which is compiled one.

The user can upload any java program file. The system can

provide automatic compilation facility. The duplicate files

can be controlled automatically by the system.

B. Case Base

The case base is the case repository. The reflection

technique is applied in each case. It extracts the components

of the uploaded java file. The extracted components viz,

class, methods, interfaces are stored in the database. It’s a

better option to apply hash indexing to technique. The

extracted components are treated as experiences and

maintained as cases. The cases are organized to facilitate the

search operations. The refracted components of program

code are stored in the case base. All the attributes should be

maintained properly with its corresponding values. The

programmer may use any database packages for storing

cases. It may have filename, classes, packages, interfaces

and the relevant fields. The most probable java program

code components.

The program code or its components are defined as case

or case base.

Files (fileID, filename)

Package (packageID, packageName, importedPackage,

codeContent, fileID)

Classes (classID, className, inheritedClass, inheritedFrom,

implementedFrom, implementedTo, codeContent, fileID)

Interface (interfaceID, interfaceName, inheritedClass,

codeContent, fileID)

Methods (methodID, methodName, argumentType,

argumentName, returnValue, codeContent, fileID)

1. Hash Key Computation in Case Store

The hash key computation before storing cases in the case

base is represented in the flowchart (a).

The basic steps are a

computation of hash key based

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

2940

Retrieval Number: C5483029320/2020©BEIESP

DOI: 10.35940/ijeat.C5483.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

on the cases and find possible bucket available, set the case

index to a case and then store the case into case base.

Flowchart (a): Hash Key Computation in Case Store

To retrieve case from the case base it is common to use

hashing indexing. This technique has been developed to

access large files residing on external storage, not just for

accessing fixed size files but files those grow over their

time.

The programmer can apply hash indexing technique

which may have following steps:

i. It will check the size of existing case or case base.

ii. The user can input the case to the system.

iii. Then, it will calculate search key from the available

buckets (a term used in indexing concept).

iv. As per the cases available in the said bucket, the

appropriate counter take place and stores further

cases using indexing technique.

C. Similarity Search

This is a part of searching. It has a responsibility for

identifying the similar code exists between the case base. It

can be designed to sort the cases in rank wise of their

similarity checking percentages. The highest similarity

showed first, then second and so on.

The similarity between two cases is computed by the

formula:

Similarity (T, S) = ∑ f (Ti, Si) x Wi for i=1 to n

where,

T= user inputted case

S= case from existing case base

n= number of attributes in each case

i= individual attribute from 1 to n

f = similarity count for the selected attributes

 from the cases T, S

W= relevance of attribute in similarity check

The similarity search can be represented as:

i. It begins with accepting user case.

ii. It checks existing case base for similarity with user

case.

iii. If the corresponding similarity has been found, then

it updates case base.

iv. The updated case can be re stored in the case base.

D. Case Retrieval

It is a step where a programmer can use similarity

checking process as well as hashing. It is responsible for

retrieving the cases as per the case inputted by the user. This

retrieval phase can retrieve the program code components as

classes, methods, and interfaces depending on components

selection by the user.

The computation of hash key in a retrieval of cases is

shown in flowchart (b).

Flowchart (b): Hash Key Computation in Retrieval

Process

It may be defined by considering following aspects:

i. Compute hash key to find buckets of any size at the

hash table

ii. Check the availability of any cases in the said bucket

iii. If Yes, then obtain its similarity and arrange

accordingly otherwise use regular search technique –

linear or binary search technique

iv. Store the resulting case in the database

The overall retrieval process is depicted in the following

flowchart (c).

i. It starts with adding new cases to case base. The case

base holds the different cases in a particular format.

ii. The similarity function will retrieve the most

promising cases from the case base.

Retrieval of Java Program Code Components using Case Based Reasoning (CBR)

2941

Retrieval Number: C5483029320/2020©BEIESP

DOI: 10.35940/ijeat.C5483.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

iii. The retrieved case can be used for further retrievals.

This case can be a new one to the existing case base.

The programmer can provide a facility to add/modify

the content of the code base.

iv. The detailed solution is displayed to the user.

Flowchart (c): Steps in retrieval

For the faster retrieval of the program code from the case

base, hash indexing can be adopted. In this case, the hashing

creates buckets for storing program code components or

code. Based on it, hash key can be computed and used as

one of the functionalities in similarity checking process.

D. Adaption/Reuse

This area focuses on reusing the retrieved program code

component/code base. The entire case can be re compiled by

JVM functionality of Java. Its program code components

can be re stored by prior data preprocessing technique. A

count can be used for checking purpose that, how many

cases can be reused by the user.

E. Revise

Sometimes, it may be a situation where we need to

revise the retrieved code / code component. The revise

function can revise the entire code by adding or modifying

the existing program code. So, the user can revise the

retrieved code as per the requirement. Then it can be stored

return to the existing code base.

F. Retain

This function can be used to store the retrieved code/code

component as retrieved by the retrieval function. The user

can directly store as it is in the existing code base.

VI. SAMPLE CODE

A. CaseDescriptor (String File) – IO Process

i. Input <*.java> file located in any drive

ii. Identify the possible modifier: get_modifier()

public static String get_modifier(int M1)

{

String str=null;

if(Modifier.isAbstract(M1)){ str="Abstract ";}

else if(Modifier.isFinal(M1)){str="Final ";}

else if(Modifier.isInterface(M1)){str="Interface ";}

else if(Modifier.isNative(M1)){str="Native ";}

else if(Modifier.isPrivate(M1)){str="Private ";}

else if(Modifier.isProtected(M1)){str="Protected ";}

else if(Modifier.isPublic(M1)){str="Public ";}

else if(Modifier.isStatic(M1)){str="Static ";}

else if(Modifier.isStrict(M1)){str="Strictfp ";}

else if(Modifier.isSynchronized(M1)){str="Synchronized

";}

else if(Modifier.isTransient(M1)){str="Transient ";}

else if(Modifier.isVolatile(M1)){str="Volatile ";}

return str;

}

iii. Extract the file content into case descriptor:

 retrieval_Code()

Class c = c1.getClass();

Class sc = c.getSuperclass();

while (sc != null) {

String cn = sc.getName();

get_all_interface(c);

get_all_constructors(c);

get_class_annotation(c);

get_all_Methods(c);

get_all_Fields(c);

iv. Apply hash index on code components:

 GetHashData()

public byte[] GetHashData(byte[] bytes)

{ var code = CODE.Create();

byte[] hashData = code.ComputeHash(bytes);

foreach (byte b in hashData)

Console.WriteLine(b);

return hashData;}

v. Store in database

int l=0;

Connection con=db.setConnection(con1);

Statement stat=con.createStatement();

ResultSet rs=stat.executeQuery("Select * from

Programs ");

while(rs.next())

{jTable1.setValueAt(rs.getSt

ring(1), l, 0);

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

2942

Retrieval Number: C5483029320/2020©BEIESP

DOI: 10.35940/ijeat.C5483.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

jTable1.setValueAt(rs.getString(2), l, 1);

jTable1.setValueAt(rs.getString(3), l, 2);

l=l+1;}

B. similarityMeasures(String argument list)

i. Input parameter

ii. Apply threshold on selection

iii. Set k value

iv. Apply k – nearest neighbor for searching

v. Import java classifiers: KNN()

vi. Read file using BufferedReader technique

vii. Select the appropriate case or use default selection.

BufferedReader datafile = readDataFile("FileName");

Instances data = new Instances(datafile);

data.setClassIndex(data.numAttributes() - 1);

Instance first = data.instance(0);

Instance second = data.instance(1);

data.delete(0);

data.delete(1);

Classifier ibk = new IBk(); // imported classifier

ibk.buildClassifier(data);

double class1 = ibk.classifyInstance(first);

double class2 = ibk.classifyInstance(second)

VII. RESULTS

The code is executed successfully in java programming

environment. The execution environment is being operated

in realistic environment. The code tested by different

students who are learning java. The data collected randomly

for 100 students of Under Graduate in Solapur City.

The table (a) represents the case retrieval outcome by

successful execution of the program code. It represents

overall percentage of case components retrieved by the

different students and the percentage of similar cases found

in retrieval process. The authors do various experiments on

different aspects of program code component’s and to get

the desired result based on the inputted case.

 Components / Users Students

Percentage of

program code

Components
retrieved

Classes 15

Methods 13.5

Interfaces 3.5

Both Classes and Methods 17.5

Both Classes and Interfaces 2

Both Methods and Interfaces
0

All 48.5

Percentage of

Similarities exist

in retrieval
process

Found Cases 76.5

Revised Cases 28.5

Reused Cases 15.5

Not Found Cases 23.5

Table (a): Case retrieval outcome

From the table (a) it is clear that, in some cases around

23.5% cases are not retrieved to the students. This has

happened due to unavailability of the similar cases which

does not exist in the case base. It can be resolved by

retaining the cases in the case base. About 15% cases,

classes are retrieved by the students, 13.5% methods and

17.5% both methods and classes are retrieved based on

program case inputted. The similarity between the classes

are retrieved around 76.5%. As per the CBR’s four R’s are

considered, 28.5% cases were revised and 15.5% cases were

reused.

From the chart (a), it is clear that, most of the students

were satisfied with overall retrieval. The executed code gave

effective results in retrieving all the components.

Chart (a): Program Code Retrieval

15

13.5

3.5

17.5

2

0

48.5

76.5

28.5

15.5

23.5

0 10 20 30 40 50 60 70 80 90

Classes

Methods

Interfaces

Both Classes and Methods

Both Classes and Interfaces

Both Methods and Interfaces

All

Found Cases

Revised Cases

Reused Cases

Not Found Cases

P
er

ce
n

ta
g
e

o
f

p
ro

g
ra

m
 c

o
d

e

C
o

m
p

o
n

en
ts

re
tr

ie
v
ed

P
er

ce
n

ta
g
e

o
f

S
im

il
ar

it
ie

s

ex
is

t
in

re
tr

ie
v
al

p
ro

ce
ss

No. of Cases Selected

A
x

is
 T

it
le

Program Code Retrieved

Students

Retrieval of Java Program Code Components using Case Based Reasoning (CBR)

2943

Retrieval Number: C5483029320/2020©BEIESP

DOI: 10.35940/ijeat.C5483.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The performance of the system depends entirely upon the

nature of the case library. If the case library has a large

number of cases with representing diverse problems faced

and their solutions the chances of a good diagnosis are good.

The data loaded in the database are about 160 records (java

program files) including all the components of the program.

VIII. APPLICABILITY

The mechanism is helpful for novice programmer who

has an experience in working with an existing code

repository. It turns further development towards the projects

where effectively revised the available code repository. The

researcher wants to make it easier for users, programmers

and teachers to make use of these libraries. The major

challenge in programming is to improve learning quality and

productivity of programmer, teachers as well as students.

IX. CONCLUSION

The overall structure of the CBR 4R’s has been

explained. The working model has 4R modules. The module

explained in detail the working of 4 R’s of CBR. The

functionalities of each R of CBR cycle explained. The

retrieval process is represented in a model. The user has two

modes to carry out the work. The retrieval process is

depicted by combining case store mechanism and search

similarity functionality. The first one, handles case base.

The case base mechanism automatically performs the data

preprocessing and hash indexing technique to store cases in

the case base. The second part is user interaction in which

user case can be handled in the retrieval. The user can edit

the code and get the similarity. Based on retrieval, user has

freedom either to

revise or retain as per the requirement. The modified

hashing indexing involved has two main tasks one is to store

the new case and retrieve the case.

REFERENCES

1. D. P. P. J. M. K. Patil, "Retrieval of Similarity Measures of Code

Component," IRA-International Journal of Technology &

Engineering, vol. 6, no. 3, pp. 38-43, 2017.
2. J. L. Kolodner, "An Introduction to Case-Based Reasoning," in

Artificial Intelligence Review, Atlanta, GA, College of Computing,

Georgia Institute of Technology, 1992, pp. 3--34.
3. S. I. Morisbak, The Road to ASCRARAD: The Development of

Agent Support for a Case-based Reuse Application for RAD, June 22,

2000.

AUTHORS PROFILE

Dr. Mahadev K. Patil is an experienced Assistant
Professor at Bharati Vidyapeeth (Deemed to be)

University, Abhijit Kadam Institute of Management and

Social Sciences, Solapur with a demonstrated history of
working in the Higher Education industry.

Prof. Dr. Pallavi P. Jamsandekar is an experienced

Professor Bharati Vidyapeeth (Deemed to be)
University, Institute of Management and Rural

Development Administration, Sangli

Dr. Mrs. Shabnam S. Mahat is an experienced
Assistant Professor Bharati Vidyapeeth (Deemed to be)

University, Abhijit Kadam Institute of Management and

Social Sciences, Solapur

