PRECRIME

. i European Research Council

Established by the European Commission

Self-assessment Oracles for Anticipatory Testing

TECHNICAL REPORT: TR-Precrime-2021-07

Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella
DEEPMETIS: Augmenting a Deep Learning Test Set to Increase its Mu-
tation Score

Project no.: 787703
Funding scheme: ERC-2017-ADG
Start date of the project: January 1, 2019
Duration: 60 months

Technical report num.: TR-Precrime-2021-07

Date: July, 2021

Organization: Universita della Svizzera italiana

Authors: Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, Paolo
Tonella

Dissemination level: Public

Revision: 1.0

Disclaimer:

This Technical Report is a pre-print of the following publication:

Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella: DEEPMETIS: Augmenting a Deep
Learning Test Set to Increase its Mutation Score. Proceedings of the 36th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), Australia, November 15-19, 2021

Please, refer to the published version when citing this work.

TR-Precrime-2021-07 — DeepMetis

PRECRIME

’ Universita della Svizzera Italiana (USI) ‘

Principal investigator: Prof. Paolo Tonella

E-mail: paolo.tonella@usi.ch

Address: Via Buffi, 13 — 6900 Lugano — Switzerland
Tel: +41 58 666 4848

Project website: https:/ /www.pre-crime.eu/

TECHNICAL REPORT

ii

mailto:paolo.tonella@usi.ch
https://www.pre-crime.eu/

TR-Precrime-2021-07 — DeepMetis

Abstract

Deep Learning (DL) components are routinely integrated into software systems that need to perform com-
plex tasks such as image or natural language processing. The adequacy of the test data used to test such
systems can be assessed by their ability to expose artificially injected faults (mutations) that simulate real
DL faults.

In this paper, we describe an approach to automatically generate new test inputs that can be used to aug-
ment the existing test set so that its capability to detect DL mutations increases. Our tool DEEPMETIS
implements a search based input generation strategy. To account for the non-determinism of the training
and the mutation processes, our fitness function involves multiple instances of the DL model under test.
Experimental results show that DEEPMETIS is effective at augmenting the given test set, increasing its ca-
pability to detect mutants by 63% on average. A leave-one-out experiment shows that the augmented test
set is capable of exposing unseen mutants, which simulate the occurrence of yet undetected faults.

TECHNICAL REPORT iii

TR-Precrime-2021-07 — DeepMetis

PRECRIME

Contents

1 Intr 1

2 Background|
2.1 Mutation Testing of DL Systems|
2.2 DeepCrime|.

|3 The DEEPMETIS Technique|

3.1 Model-Based Input Representation| L L L o L

3.2_Hitness Functions|
3.3 Initial Population|

3.4 Archive of Solutions
[3.50 Genetic Operators|.

|4 Experimental Evaluation|

4.1 Subject Systems|
4.2 Research Questions|
43 Results
4.3.1 RQI1: Effectiveness| . . .
[.32 RQ2: Fitness Guidance] .

4.3.3 RQ3: Comparison with other Tools|.

4.3.4 RQ4: Fault Detection| . .
FL.4 Threats to Valiait}_ll

5 Related Workl
5.1 Test Generation for DL Systems|

5.2 Test Adequacy for DL Systems|
i6__Conclusions and Future Workl

PRECRIME

TECHNICAL REPORT

NN

o]

11
11
12
12
13
14

14
14
14

15

iv

TR-Precrime-2021-07 — DeepMetis

1 Introduction

Deep Learning (DL) based software is widespread and has been successfully applied to complex tasks such
as image processing and speech recognition. Systems including DL components are also employed in safety
and business-critical domains, e.g. autonomous driving and financial trading. DL systems possess the
human-like ability to learn how to perform a task from experience, i.e., the inputs seen during training [27],
but such ability comes with the possibility to make errors when presented with new inputs. Therefore, it is
crucial for DL software developers and manufacturers to assess to what extent these systems can be trusted
in response to real-world inputs, as they could face scenarios that might be not sufficiently represented in
the data from which they have learned.

Traditional test adequacy criteria, like code coverage, fail to determine whether DL systems are adequately
exercised by a test set since most of the DL systems’ behaviour depends on their training data, not the code.
Recent research defined ad-hoc white-box adequacy metrics, based on DL software’s internal architecture,
e.g., neuron [11,32,140,145] or surprise coverage [19]. A limitation of these approaches is that their output
cannot be directly associated with a root cause of a DL system’s failure, i.e., a DL fault [12].

On the other hand, mutation testing approaches evaluate a test set against faults that are artificially injected
into the system under test. So, the inability of a test set to expose injected faults (kill mutants in the mutation
testing jargon) can be interpreted as its inability to properly exercise the mutated code [18]. The tool Deep-
Crime generates mutants of DL systems by injecting artificial faults that resemble those described in the
taxonomy of real DL faults by Humbatova et al. [14]. In this way, it addresses the challenge of simulating
real-world DL faults [48]. Hence, a DL test set that cannot kill a mutant generated by DeepCrime is also
unlikely to expose any real fault similar to the one injected by DeepCrime, in case such a fault affected the
DL system under test. In such a situation, the test set should be augmented with additional tests that target
the undetected fault.

In this paper, we introduce a novel and automated way to augment existing test sets with inputs that kill
mutants generated by DeepCrime. Our goal is to increase the mutation score of a test set by generating
new inputs that kill the mutants not killed by the original test set. To this aim, we propose DEEPMETIS, a
search-based test generator for DL systems that uses mutation adequacy as guidance. Intuitively, a mutant
is killed if the correct behaviour is observed for a DL model under test, while a misbehaviour is observed
on its mutated version. However, mutation testing approaches should take into account the stochastic
nature of DL (in particular, of its training process) and of mutation generation (some DL mutations are
non-deterministic) to properly measure the test set’s ability to discriminate the original system from the
artificially generated faulty versions [35]. In fact, observing a drop in accuracy between the original and
the mutated model is not enough to conclude that the mutant is killed since such a drop might be due to
random fluctuations of accuracy associated with the non-determinism of the training and the mutation pro-
cess. The mutation killing criterion proposed by Jahangirova and Tonella [17] addresses this DL-specific
challenge by evaluating a test set on multiple re-trained instances of the same model and applying sta-
tistical tests. DEEPMETIS adopts the same non-deterministic view on DL systems, and correspondingly,
its generation process is guided by multiple instances of the model being mutated. Recently, DL-specific
mutation operators have been used for different tasks, such as program repair [39]], adversarial inputs de-
tection [43]], generation of adversarial code snippets [33]], and calculation of optimal oracles for autonomous
vehicles [[10], but no approach leveraged them to generate new inputs which augment an inadequate test
set.

We evaluated DEEPMETIS on both a classification problem and a regression problem, using mutation oper-
ators provided by DeepCrime. Results show that DEEPMETIS is effective at generating inputs that improve a
test set in terms of its mutation killing ability. We also conducted a leave-one-out experiment to simulate a
practical usage scenario where an undetected fault affecting the DL system is unknown. In this experiment
setting, one mutant produced by DeepCrime is taken apart, while test augmentation is performed by DEEP-
METIS based only on the remaining mutants. In this way, the left-out mutants simulate a yet unknown
fault. Results show that left out mutants can be killed by the augmented test set on average 82% of the
time.

TECHNICAL REPORT 1

TR-Precrime-2021-07 — DeepMetis

2 Background

2.1 Mutation Testing of DL Systems

Mutation testing is a technique that injects artificial faults into a system under test guided by the assump-
tion that the ability to expose such artificial faults translates into the ability to expose also real faults. In
traditional software systems, the main decision logic of a program is implemented in its source code, and
synthetic faults are introduced by applying small syntactic changes to the source code. In contrast, the
behaviour of a DL system is determined not only by the source code but also by its training data, the struc-
ture of its neural networks or the tuning of various hyperparameters. As syntactic code changes are not
sufficient to achieve realistic fault injection, DL mutation operators have a different nature [17].

DeepMutation [26] and MuNN [38] were the first works to recognise the need for mutation operators tai-
lored specifically to DL systems. In DeepMutation (later extended into a tool called DeepMutation++ [13]),
the authors propose a set of operators of two distinct categories: source level and model level operators. Source
level operators apply changes to training data or model structure before training is performed, while model
level operators alter weights, biases or the structure of an already trained model. Model level mutation op-
erators tend to be less costly as, unlike source-level operators, they do not require re-training. Mutation
operators proposed in MuNN [38]] solely belong to the latter category.

Jahangirova & Tonella [17] performed an extensive empirical evaluation of the mutation operators pro-
posed in DeepMutation++ and MuNN and investigated the configuration space of their parameters. For
example, for a mutation operator that imitates training with corrupted data by changing the labels of train-
ing inputs to incorrect ones, the parameter would be the percentage of mutated labels. According to their
results, the choice of the parameter values affects the impact of the mutation to a major extent.

Moreover, the authors propose a novel mutation killing criterion, which takes into account the stochastic
nature of DL systems. Their definition requires multiple re-trainings of both the original program and
the mutant to obtain n distinct model instances of each (n = 20 in their experiments). Then, they measure
whether the difference between 20 accuracies (or any other quality metrics) obtained on original vs mutated
model instances is statistically significant (p_value < 0.05) and whether the effect size is not “negligible”. If
these conditions hold, the mutation is considered killed.

2.2 DeepCrime

DeepCrime [15] is a mutation testing tool designed for automated seeding of artificial faults (mutations)
into DL systems. Its main difference from DeepMutation++ is that DeepCrime is based on a set of muta-
tion operators derived from real faults. In DeepCrime the authors propose 35 and implement 24 source level
mutation operators that target different aspects of the development and training of DL systems. This set
of operators was extracted from an existing taxonomy of real faults in deep learning systems [14] and was
complemented with the issues found in the replication packages for the studies by Islam et al. [16] and
Zhang et al. [52]. To establish whether a mutation is killed or not, DeepCrime incorporates the notion of
statistical killing proposed by Jahangirova & Tonella [17], using by default 20 re-trainings for the original
model and for each of the applied mutations.

The mutation operators in DeepCrime have two types of parameters: continuous and non-continuous. For
example, the operator that removes part of the training data has the continuous parameter percentage, which
decides what portion of inputs should be deleted. Its value varies in the range 0% to 99% (as we cannot
delete all training data). In contrast, mutation operators that operate on a per-layer basis have a non-
continuous parameter layer, which determines the specific layer of a neural network to mutate.

In case the parameter values are not specified by a user, DeepCrime automatically computes the best con-
figuration for the mutation operator. For non-continuous parameters, DeepCrime performs an exhaustive
search by iterating through all of the possible values for a parameter. In the case of continuous parameters,
the computation is based on identifying the lowest and the highest possible values and performing a binary
search in this range. The aim of the search is to discover the most challenging and yet killable configuration
of the mutation operator for a given test suite. For example, for the operator remove portion of training data
(TRD in Table [1) the binary search first checks if the most aggressive configuration (99%) is killed by the
test data. If so, DeepCrime finds the middle point in the range of possible values (49.5%) and checks it for
killability. If the middle point gets killed, the search continues on the lower part of the range (0% - 49.5%);
otherwise, on the upper half of the range (49.5% - 99%). This process is applied in a recursive manner till
the point when the size of a new range becomes smaller than or equal to the desired precision . The ob-
served value of the percentage parameter that is not killed, which is e-close to the least aggressive killable

TECHNICAL REPORT 2

PRECRIME

TR-Precrime-2021-07 — DeepMetis

Table 1: Mutation Operators provided by DeepCrime [15] and not killed by the initial test sets of our case

studies

Group

Mutation Operator

Mutation Parameters

Change labels of training data (TCL)

label to perform the mutation
on
percentage of data to mutate

Training Data

Remove portion of training data
(TRD)

percentage of data to delete

Unbalance training data (TUD)

percentage of data to remove

Add noise to training data (TAN)

percentage of data to mutate

Make output classes overlap (TCO)

percentage of data to mutate

Hyperparams

Decrease learning rate (HLR)

new learning rate value

Change number of epochs (HNE)

new number of training epochs

Change activation function (ACH)

layer w/ non-linear activ. func-
tion

new activation function

layer w/ non-linear activ. func-
tion

layer w/ linear activation func-
tion

new activation function

layer w/o weights regularisa-
tion

new weights requlariser

layer to perform the mutation

Activation

Remove activation function (ARM)

Add activation function to layer
(AAL)

Regularisation Add weights regularisation (RAW)

Weights Change weights initialisation (WCI) | on
new weights initialiser
Optimisation %ér;{g)e optimisation function new optimisation function

configuration, is the output of the binary search: this non killed mutant is the target of test generation.

The authors of DeepCrime also propose a definition of mutation score per operator. The definition is based
on the assumption that training data is a set of inputs to which a trained model is the most sensitive. Given
a test set TS, its mutation score (MS) is the proportion of configurations killed by both test and train set over
those killed by the train set. It is calculated as:

|[K(MO, TS)Nn K(MO,TRS))|
|K(MO, TRS)|

MS(MO,TS) = (1)
For example, if for the mutation operator TRD the least aggressive killed configuration found by binary
search is 10% for the training data and 25% for the test data, the mutation score will be computed as:
MS =][0.25 : 0.99]|/][0.10 : 0.99]| = 0.74 / 0.89 = 0.83. The overall mutation score of the test suite is
computed as the average of mutation scores across all operators. The fact that DeepCrime offers a wide
selection of mutation operators that are based on real DL faults and that it produces a statistically reliable
outcome was the key motivation for us to choose this tool. The list of DeepCrime’s mutation operators (with
their parameters) that produced mutants that were not killed by the test sets used in our case studies can
be found in Table|I| (killed mutants are not the target of DEEPMETIS’s input generation).

3 The DEEPMETIS Technique

DEEPMETIS aims to augment an existing test set by extending it with mutant killing inputs that increase
its mutation score. The describes the main steps implemented in DEEPMETIS to generate new
inputs that kill mutants.

PRECRIME

TECHNICAL REPORT 3

AW N =

© ® 9 o

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29

TR-Precrime-2021-07 — DeepMetis

Algorithm 1: Overall algorithm of DEEPMETIS

Input :ts,: original test set
C' original DL program code
gmaz: Max number of generations
popsize: population size
mutop: mutation operator
n: number of re-training runs
o: number of original model instances
m: number of mutant instances
Output: ts,: augmented test set
generate original and mutant instances using DeepCrire
original model instances Mo < 0;
mutant model instances M, + 0;
Mo, My, < DeepCrime (C, mutop, n, m, o);
start evolutionary search
generation g < 0;
archive A < ;
initial population Py <— INITPOPULATION(M,, popsize);
population P < Po;
EVALUATE(P, M,, Mn.);
A + UPDATEARCHIVE(P);
assign crowding distance to individuals
P <+ SELECT(P, popsize);
while g < gmas do
g—g+1
selection based on dominance/crowding distance
offspring Q < SELTOURDCD(P, popsize) ;
substitute most dominated /misbehaving on M,
P < REPOPULATION(P, Py, A);
foreach ¢ € Q do
| g+« MUTATE(q) ;
end
EVALUATE(P U Q, Mo, My,);
A < UPDATEARCHIVE(P U Q);
P + SELECT(P U Q, popsize);

end

augment the test set with the archived inputs
ts < tso, U A;
return (fs)

Starting from the original code of a DL model and an existing test set, DEEPMETIS leverages DeepCrime
to obtain the configurations for which the considered mutation operator is not killed by the original test
set (for continuous operators, this is the most aggressive non killed configuration found by binary search).
DeepCrime injects the corresponding mutation into the model’s code and produces multiple original model
and mutant instances by executing n times the training process on the original and the mutated model’s
code, respectively (line 4). DEEPMETIS uses evolutionary search to generate new test inputs that can
discriminate the original model instances from the mutated ones. The algorithm is based on NSGA-
I [7], a multi-objective evolutionary search algorithm largely used in search-based software testing re-
search [20,128,31},36,46,/47].

After initialising variables g, A, Py, P (lines 6-13), the evolutionary steps are repeated for a given number
of iterations, gmq... In each iteration, a population of individuals, i.e. test inputs, is evolved, and their
behaviour is evaluated against the original and mutant models. The result of such evaluation (lines 10
and 23) is the assignment of fitness values to individuals. Based on fitness values, the best individuals are
identified and sorted by means of crowding distance sorting [7], a technique that accounts for both dominance
between individuals according to the fitness values as well as the distance between individuals that belong
to the same dominance front (lines 13 and 25). Then, we use tournament selection to select the surviving
individuals @) (line 17), which are mutated by genetic operators (line 21). The worst individuals are replaced
by means of the repopulation operator, which re-introduces some of the initial seeds (F) into the current
population P (line 19). When mutation killing inputs are generated, they are stored in an archive (lines

TECHNICAL REPORT 4

TR-Precrime-2021-07 — DeepMetis

155

(a) (c) (d)

Figure 1: Digit input representation and mutation. (a) original input; (b) original SVG model after vector-
ization; (c) SVG model mutated by moving a control point; (d) mutated input

11 and 24). Finally, the archived solutions are used to augment the initial test suite (line 28). The test set
improvement can be assessed by re-running DeepCrime to check if the previously non-killed configuration
is now killed.

DEEPMETIS’s evolutionary algorithm rewards individuals that behave correctly on original models and
misbehave on mutants. DEEPMETIS is hybridised with novelty search, as it also rewards individuals that
exhibit the diversity of behaviours [24}29]]. It uses an archive to store the best solutions found during the
search in order to avoid cycling. It also uses repopulation to escape the stagnation in local optima with
the high basin of attraction. Preliminary experiments supported the adoption of our newly proposed non-
standard twists in NSGA-II (such as the repopulation operator or the hybridisation with novelty search), as
they provide more diverse solutions than the standard algorithm.

3.1 Model-Based Input Representation

DEEPMETIS belongs to the family of model-based test input generators [42], i.e., tools that manipulate a
model of the input instead of directly modifying the input data (e.g., pixels). In the following, we will
refer to the model used for manipulating inputs as input generation model in order to distinguish it from the
models used in the DL training and prediction process.

Input data derived from an input generation model are more likely to be realistic and belong to the in-
put validity domain than data subjected to low-level manipulation [36}53]]. This implies that DEEPMETIS
is applicable to problems for which an input generation model is available. The development of input
generation models is the standard practice in several domains, such as cyber-physical systems, including
safety-critical ones, e.g., automotive [21]]. Below, we present input generation models for domains we con-
sidered in our experimental evaluation: a vector image format for handwritten digit classifiers and a 3D
human eye region model for eye gaze predictors.

Digit Classification. We consider handwritten digit samples in the format adopted by the MNIST database [22].
Its inputs are originally encoded as 28 x 28 images, with greyscale levels that range from 0 to 255. As shown
in we model them by adopting Scalable Vector Graphics (SVG as their representation. SVG is
an XML-based vector image format for two-dimensional graphics, which defines shapes as combinations
of cubic and quadratic Bézier curves. The control parameters determining the shape of a modelled digit
are the start point, the end point and the control points of each Bézier curve. This representation helps in
preserving the smoothness and curvature of handwritten shapes after minor manipulations of the curve
parameters [36|53]. We use the Potrace algorithm [37] to transform an MNIST input into its SVG model
representation. This algorithm performs a sequence of operations to obtain a smooth vector image starting
from a bitmap. To transform an SVG model back into a 28 x 28 grayscale image, we perform rasterisation
by using two popular open-source libraries (LibRstﬂ and Cair({%

Gaze Prediction. We focus on the input format for the gaze estimator model proposed by Zhang et al. [51],
which takes as an input an eye image and a 2D head rotation angle (pitch and yaw) and predicts the eye gaze
angle. The eye images are generated by exploiting UnityEyes, a freely available rendering framework [44].
Our eye model consists of all the independent parameters used by UnityEyes to generate an eye image.
They can be divided into two groups: those that cover various aspects related to an eye appearance (head
angle, eye angle, pupil size, iris size, iris texture, skin texture) and others that describe the lighting (texture,
rotation, ambient intensity, exposure for image-based lighting, and rotation and intensity for directional

Thttps://www.w3.org/Graphics/SVG/
?https://wiki.gnome.org/Projects/LibRsvg
3https://www.cairographics.org

TECHNICAL REPORT 5

https://www.w3.org/Graphics/SVG/
https://wiki.gnome.org/Projects/LibRsvg
https://www.cairographics.org

TR-Precrime-2021-07 — DeepMetis

lighting). Only some of these parameters are directly controllable when asking UnityEyes to generate new
images, namely head rotation angles and eye rotation angles (the latter providing us with the ground-
truth for the gaze prediction), while the others are decided internally by UnityEyes. All parameters are
recorded by UnityEyes in a JSON file that accompanies a generated image. For each pair of head and
eye angles (controllable parameters), it is possible to request UnityEyes to generate an arbitrary number
of eye images, differing among each other by the remaining, not directly controllable, parameters. When
manipulating UnityEyes’ parameters for the purpose of test generation, we need to know the range in
which each parameter falls in order to ensure the validity of the manipulated values. Thus, for head and eye
angles, we use the ranges suggested in the UnityEyes interface. To learn the valid ranges for the remaining
parameters, we generated a dataset of more than 1 million images and analysed the generated JSON files.
The identified ranges and the script used for such analysis are available in our replication package [34].

3.2 Fitness Functions

DEEPMETIS optimises two fitness functions, which measure the ability of an individual to kill mutants and
its diversity from the solutions already encountered during the search.

Mutation Killing. The fitness function f; measures how close an individual is to misbehave on mutants.
In particular, for a given mutant instance mut, its value is negative in the presence of a misbehaviour, while
its value is positive and indicates the distance from a misbehaviour when the system behaves correctly. We
estimate the distance from a misbehaviour as the model’s confidence in the predicted class for classifiers or
the difference between the tolerable error and the actual prediction error for regressors. Hence, the lower
the value assumed by such distance to misbehaviour, the higher the mutant’s likelihood of misbehaving. To
take into account the non-determinism of mutation and training, we generate and train m mutant instances.
Correspondingly, the fitness value of an individual is computed as the sum of our misbehaviour closeness
metric over m mutant instances. The fitness function f; has to be minimised:

min fj(z) = min ZmuteMm eval . (z) (2)

To compute f; for an individual x, DEEPMETIS executes the m instances of the considered mutant with =
as an input. The definition of function eval is clearly problem specific.

Digit Classification. The eval function exploits the classifier’s output softmax layer, which can be interpreted
as the confidence level assigned to each possible class. The predicted class corresponds to the highest
confidence level, and there is a misbehaviour when the expected class has a confidence level lower than
another class. In particular, eval is calculated as the difference between the confidence associated with the
expected class and the maximum confidence associated with any other class when the prediction is correct;
it is -1 otherwise.

Gaze Prediction. A misbehaviour is detected when the prediction error exceeds the maximum tolerated error.
The prediction error is the difference between the model prediction and the expected prediction (provided
as ground-truth by UnityEyes). Since predictions consist of a pair of eye rotation angles in radians (pitch
and yaw), the error is calculated as the angle between the expected vector and the predicted one. The
maximum tolerated error can be set according to problem-specific requirements. In our study, we set it to
5 degrees, as this is an acceptable error in other gaze prediction applications [15,51]. The value of f; is the
difference between such an acceptable threshold and the actual gaze prediction error.

Diversity. The fitness function f; represents an individual’s sparseness with respect to individuals in the
archive, and we want to maximise it:

max fo(z) = maxspars(z, A) 3)

where A is the archive of solutions and z is the individual being evaluated. Function spars measures the
minimum distance of an individual = from the solutions in the archive A: minye 4 4, dist(z,y). The dis-
tance function (dist) is computed on pairs of inputs and is domain-specific. For Digit Classification, it is
computed as the Euclidean distance between pixel vectors. In the Gaze Prediction problem, we use the
genotypic distance, i.e., the distance between the chromosomes of two individuals, whose genes are the
eye parameters used by UnityEyes. Because in the chromosome there are float, vectorial and categorical
gene values, to obtain an overall distance between chromosomes, we compute the distances between genes
of the same type, normalise them separately and return the weighted sum of gene distances. In particular:
for float genes, we compute the difference d and normalise it as d/(d + 1); for the pitch and yaw angles’
pairs, we calculate the angle between two vectors in radians (given the natural limits for eye rotation, the

TECHNICAL REPORT 6

TR-Precrime-2021-07 — DeepMetis

Figure 2: Eye input mutation

difference never exceeds 1 radian); for categorical genes, we assign 0 to the distance if the genes contain the
same category, 1 otherwise.

3.3 Initial Population

To obtain the initial population, we first gather a set of seeds, i.e., inputs on which the original models
behave correctly. Then, we select the most diverse seeds by computing pairwise distances and greedily
constructing the set of most diverse seeds, starting from a randomly selected first seed up to the desired
population size. Then, initial individuals are obtained by applying a mutation genetic operator to each
selected seed. We considered as seeds the samples in the training set on which the models behave correctly.

3.4 Archive of Solutions

The best individuals encountered during the search are kept in the archive of solutions [6]. This prevents the
search for novelty from cycling, a phenomenon where the population moves from one area of the solution
space to another and back again, without memory of the areas it has already explored [30]. At the end of
the last iteration, the archive will contain the final solutions.

An individual of the population is a solution candidate to be included in the archive if it behaves correctly
on at least one of the o original model instances and it triggers a misbehaviour on at least one mutant model
instance. When a new candidate solution is found, it competes locally with similar solutions already in the
archive so that only the best ones are kept, i.e., those with the lowest value of fitness function f;.

In the archive used for Digit Classification, a solution competes with the archived inputs that are generated
from the same MNIST seed. In the archive used for Gaze Prediction, we do not rely on the starting seeds, as
UnityEyes generates valid eye images from any random vector of controllable parameters within the valid-
ity range without requiring to evolve them from an initially valid seed solution. Hence, we had to define
a similarity criterion for the archive used for Gaze Prediction: if the distance from the nearest neighbour in
the archive is higher than a threshold ¢,, the new individual is kept in the archive. Otherwise, the new can-
didate competes locally with its nearest neighbour in the archive. The threshold ¢, is a parameter that can
be adjusted by a tester to obtain a proper trade-off between the number of solutions that enter the archive
and the diversity of the archive. To empirically choose the value of ¢,, we recommend to (1) compute the
minimum distance among a randomly selected set of diverse inputs; (2) choose a value greater than this
number; (3) iteratively adjust this value based on the corresponding archive size and similarity.

3.5 Genetic Operators

In multi-objective evolutionary algorithms, there are multiple dimensions (in our case, f; and f;) on which
to compare the individuals. We use the SELECTION operator from NSGA-II [7], which applies Pareto
front analysis and promotes individuals that are not dominated by any other individual. This operator
favours individuals with smaller non-domination rank and, when the rank is equal (i.e., they belong to the
same Pareto front), it encourages diversity by favouring the one in a less dense region. The offspring of
the current population is obtained through tournament selection with the tournament size equal to 2, by
choosing the best between each pair of individuals being compared.

TECHNICAL REPORT 7

TR-Precrime-2021-07 — DeepMetis

Each offspring individual is mutated by the MUTATION genetic operator, which is domain specific. For
Digit Classification, the mutation genetic operator randomly chooses an SVG model’s point and applies a
displacement to it in one of the four directions in the 2D space. Then, the rasterisation operation is applied
to obtain the new digit image. For Gaze Prediction, the mutation genetic operator randomly chooses a gene
from the individual’s chromosome and applies a displacement to its value. Then, an input image that
corresponds to the new values of the eye model’s parameters is supposed to be generated. However, since
only a small subset of parameters can be controlled in UnityEyes, DEEPMETIS generates a high number of
images and JSON file pairs (~200) under the desired controllable parameters. From these pairs, it selects
the one that is closest to the desired mutant chromosome, checking that it has never been used before
during the search. [Figure 2shows an original eye image (left) and the corresponding mutated image (right)
obtained by maintaining the controllable parameters unchanged.

During the search, exploration could get stuck in the local optima, despite the use of fitness function f,
to promote diversity. To mitigate this situation and further vary the population, DEEPMETIS uses the RE-
POPULATION genetic operator, which replaces at each iteration the individuals in the population that are
behaving incorrectly on all the considered original DL model’s instances. The repopulation operator also
replaces a fraction of the most dominated individuals in the current population, i.e., the individuals at the
bottom of the Pareto front ranking. The aggressiveness of this operator can be tuned by setting the range
from which such fraction is uniformly sampled, i.e., the repopulation upper bound. As an example, if the
repopulation upper bound is set to 10, at each iteration, a number r is uniformly sampled between 1 and 10,
and then the r most dominated individuals are replaced. The new individuals are generated starting from
a randomly chosen seed. Repopulation is applied when the archive is not empty.

4 Experimental Evaluation

4.1 Subject Systems

We ran our experiments on two subject systems for which a model of the input is available and can be
manipulated via our genetic operators: MNIST and UnityEyes.

MNIST is a publicly available dataset consisting of 70,000 images of hand-written digits. Typically, 60,000
images are used for training and the remaining 10,000 for testing. The DL system consists of a DNN model
that predicts which digit is represented by an input image. We considered the deep convolutional neural
network (CNN) provided by Kerasﬁ because of its popularity, simplicity and effectiveness (99.15% test
accuracy).

For the gaze prediction case study based on UnityEyes, we use a multimodal CNN [1], which provides
an implementation based on the LeNet network architecture [22] following the approach described in the
work by Zhang et al. [51]. The CNN learns the mapping from an eye image and a 2D head angle (pitch
and yaw) to a 2D eye gaze angle. The dataset that we used for training and testing is supplied along with
the model and consists of 129,285 eye region images (with 103,428 images used for training and 25,857 for
testing) synthesised with UnityEyes [44]. Each image generated by UnityEyes is accompanied by a JSON file
describing 2D head angle, eye gaze vector, as well as other parameters used to generate the image, such
as skin texture and various lighting features. When presented to a model for training and prediction, the
images are converted to grayscale and cropped to 60 x 36 pixels. The head angle and eye angle, which
represent the second input to the model and the ground truth, respectively, are converted into radians.

4.2 Research Questions

We have performed a set of experiments to answer the following research questions:

RO1 (Effectiveness): Can DEEPMETIS generate inputs that improve a given test set in terms of mutation killing
capability?

To answer this research question, for each of our subject systems, we need an initial test set that we will
then improve with the help of DEEPMETIS. The original test sets available for these subjects are very large
in size and successful in terms of mutation score (100% for MNIST and 92.5% for UnityEyes). We, therefore,
had to artificially construct a weaker test set for our case studies. For MNIST, we did so by removing the
test inputs that are predicted with low confidence (i.e., confidence less than 1) from the original test set. The
elimination of such inputs leads to a test set with smaller discriminative power, as low confidence inputs

4nttps://keras.io/examples/vision/mnist_convnet/

TECHNICAL REPORT 8

https://keras.io/examples/vision/mnist_convnet/

TR-Precrime-2021-07 — DeepMetis

Table 2: DEEPMETIS Configurations

Parameter MNIST UnityEyes
population size 100 12
generations 1000 100
archive threshold ¢, - 0.55
repopulation upper bound 10 2

typically represent difficult, corner cases that are effective at discriminating a mutant from the original
model. For UnityEyes, which solves a regression, not a classification problem, we instead removed inputs
with the smallest standard deviation of loss measured across 20 instances of the original model. Such
inputs are very discriminative, as mutants typically amplify the standard deviation of the error observed
for the original model, so the effect is more visible when we start from a small standard deviation. A
similar approach to construct weak test sets for both classification and regression systems was adopted
in Humbatova et al. [15]. The approach we used for classification systems has also been previously used
in the work by Jahangirova and Tonella [17] for weak test set construction and by Byun et al. [5] for test
input prioritisation. The size of the weak test set for MNIST is 4,813 elements, and for UnityEyes, it is 4,000
elements.

We then performed mutation testing of our subject systems considering the constructed weak test sets and
using DeepCrime. Out of the 24 mutation operators implemented in DeepCrime, 18 were applicable to MNIST
and 17 to UnityEyes. For operators with non-continuous parameters, we applied every value from the list
exhaustively. For operators with continuous parameters, we performed the binary search on the full range
of the parameter value space. We adopted the statistical notion of mutation killing [17], using the Wilcoxon
test to calculate the p-value and Cohen’s d to measure the effect size. According to our procedure, statistical
significance is reached when p_value < 0.05 and the effect size is greater than “small”, i.e., Cohen’s d > 0.5.
Overall, we got 71 not killed mutants (i.e., mutated versions produced by DeepCrime’s mutation operators)
for MNIST and 38 for UnityEyes.

As mutation testing suffers from the problem of equivalent mutants, it is possible that some of the mutants
not killed by our weak test set are not killable by any set of inputs, and therefore our attempts for generating
inputs that kill these mutants are vain. To avoid this situation, we use the definition of “likely equivalent”
mutants proposed by Humbatova et al. [15]. According to this definition, if a mutant is not killed by the
training data (i.e. the data the mutant should be most sensitive to, as the mutant was trained on such
data), then this mutant is deemed likely equivalent. After filtering out the likely equivalent mutants, we
were left with 19 mutants for MNIST and 10 for UnityEyes. The 19 MNIST mutants belong to 12 different
mutation operators, while for UnityEyes 10 mutants are produced by 9 mutation operators. To make our
experiments feasible, we further reduced the set of MNIST mutants by picking only one mutant for each
mutation operator.

We applied DEEPMETIS to each of the 22 mutants. We first ran the initial population generation process
10 times to obtain 10 different populations for each subject study. We then invoked the input generation
process for each pair of the mutant and initial population, getting as a result 10 runs of DEEPMETIS on
each mutant to account for the non-deterministic search-based nature of our tool. In these experiments,
DEEPMETIS is run in the 1vs5 (1 original vs 5 mutant instances) configuration.

This means that the number of mutant instances used by the fitness function f; (see[Equation 2) is 5.
The next research question investigates other alternative configurations of our tool.

RQ2 (Fitness Guidance): How does the fitness function based on a single mutant instance compare to the fitness
function based on multiple mutant instances in guiding DEEPMETIS towards the generation of mutation killing
inputs?

The aim of this research question is to identify whether providing more instances of the same mutant to
DEEPMETIS increases its success in generating mutation-killing inputs. For this purpose, we ran DEEP-
METIS in 4 different modes by providing it with either 1, 5, 10 or 20 instances of the same mutation (i.e., we
configure it as 1vs1, 1vs5, 1vs10 and 1vs20).

Similarly to RQ1, we perform 10 runs using 10 different initial populations. We do not evaluate extensively
the effect of increasing the number of instances of the original model (e.g., 5vs5 or 10vs10), as preliminary
experiments showed that the effect of such alternative choices is negligible on the effectiveness of the fitness
function, while at the same time is substantially increasing the overall computation time.

RQ3 (Comparison with other Tools): Can we use existing DL input generators to achieve comparable improve-

TECHNICAL REPORT 9

TR-Precrime-2021-07 — DeepMetis

ment in the mutation killing capability of a test set?

To answer this research question, we compare DEEPMETIS to two state of the art test input generators for
DL systems: DeepJanus [36] and DLFuzz [11]. DeepJanus is a model-based tool that uses a multi-objective
evolutionary algorithm to generate frontier inputs for DL systems. The frontier inputs are defined as pairs
of inputs that are similar to each other but trigger different behaviours of a DL system. The idea is that
for a low-quality DL system, such a frontier will include pairs that intersect the validity domain, while for
a high-quality one, it will have a small or no intersection at all. In our experiments, we passed DeepJanus
one instance of the original model, and from the generated set of pairs of inputs, we use only those inputs
that do not trigger any misbehaviour in the original model, as our goal is to obtain inputs that behave
correctly on the original models but misbehave on the mutated ones. Another option could be passing
Deepjanus the mutated model and then using the misbehaving set of inputs. However, some preliminary
runs showed that the misbehaving inputs for the mutant almost never behave correctly on the original
model. Therefore, we excluded this setup from our comparison study. DeepJanus can be applied to both
UnityEyes and MNIST. Moreover, it shares with DEEPMETIS the same input representation and mutation
genetic operator, which guarantees a fair comparison of the approaches.

DLFuzz is representative of search-based fuzzing testing tools that generate test inputs by applying per-
turbations to the raw input (i.e., pixels) [8]. It aims to generate adversarial inputs that maximise neuron
coverage for a DL system under test. For this purpose, DLFuzz iteratively selects neurons, the activation of
which would lead to increased neuron coverage, and applies perturbations to test inputs in order to activate
those neurons, so guiding DL systems towards exposing misbehaviours. The publicly available version of
DLFuzzE] does not support regression systems. Therefore we could not apply it to UnityEyes. Moreover,
this implementation does not work with Python versions higher than 2.7.1, so we had to update the code
to make it compatible with Python 3.8.

Similarly to DEEPMETIS, both DeepJanus and DLFuzz are affected by randomness, so we performed 10 runs
of each tool, each run using a different initial population. However, we fixed the same population across
runs of different tools to ensure that the differences in their performance are not due to the different starting
points of the algorithms. As explained before, DeepJanus uses the original model in its generation process,
not requiring a re-run for each mutant. In contrast, as DLFuzz generates only inputs that get misclassified
by the given DL model, we used the mutants. As a result, DLFuzz had to be re-run for each considered
mutant.

Overall, we performed 20 runs of DeepJanus (10 populations for the original model of both MNIST and
UnityEyes), 120 runs of DLFuzz (10 populations for 12 MNIST mutants) and 220 runs of DEEPMETIS (10
populations for 22 MNIST and UnityEyes mutants).

For both tools, we used the configuration reported as the one achieving the best performance by their
authors.

ROQ4 (Fault Detection): Can the test set augmented by DeepMetis expose more faults than the original test set?

This research question analyses whether DEEPMETIS delivers its promise of improving the test set so that
it detects more faults. Since, to the best of our knowledge, there is no publicly available dataset of repro-
ducible real faults for DL systems, we use DeepCrime mutants as a replacement for real faults in a cross-
validation setup.

Specifically, we perform cross-validation by leaving one of the mutants out and augmenting the test set with
all the inputs generated by DEEPMETIS for the remaining mutants. We ensure that none of the remaining
mutants is generated by the same mutation operator as the cross-validation mutant, assuming that mutants
produced by the same operator may have similar properties. We then check if the augmented test set is able
to kill the cross-validation mutant. This process is repeated separately for the inputs generated in each of the
10 runs of DEEPMETIS. We added the previously excluded 7 MNIST mutants to this analysis, as, although
there are no inputs generated specifically for them, they can still serve as cross-validation mutants. Before
proceeding with the experiment, we performed a redundancy analysis [15] among the mutants of each
subject to ensure that inputs generated for one mutant do not kill another mutant just because the latter
is redundant with respect to the former. Redundancy analysis showed that all 10 UnityEyes mutants are
non-redundant, while for MNIST, 6 out of 19 mutants are redundant. We excluded redundant mutants
from further analysis, i.e., we did not use them as cross-validation mutants.

Shttps://github.com/turned2670/DLFuzz

TECHNICAL REPORT 10

https://github.com/turned2670/DLFuzz

TR-Precrime-2021-07 — DeepMetis

Table 3: Results: column K (killing probability) reports mutation score, for continuous operators, and
binary killed /non-killed outcome, for discrete operators, both averaged across 10 runs. Top table = MNIST;
bottom table = UnityEyes

Weak TS DEEPMETIS DEEPMETIS DEEPMETIS DEEPMETIS DeepJanus DLFuzz
MO (1vsl) (1vs5) (1vs10) (1vs20)

K Inputs K Inputs K Inputs K Inputs K Inputs K Inputs K
TCL (84.38%) 13% 21 92% 16 87% 18 90% 20 86% 8 62% 61 91%
TRD (89.72%) 6% 48 82% 40 89% 45 88% 18 78% 8 60% 119 85%
TUD (90.62%) 6% 23 78% 17 77% 20 73% 22 73% 8 18% 61 68%
TAN (100%) 0% 19 63% 19 81% 21 74% 22 79% 8 37% 67 43%
TCO (96.88%) 0% 14 49% 14 59% 17 69% 50 60% 8 29% 39 48%
HLR (0.064) 0% 42 85% 26 86% 27 86% 30 86% 8 70% 110 86%
HNE (1) 0% 47 87% 30 89% 35 90% 40 90% 8 64% 110 96%
ACH (16; 'sigmoid”) 0% 20 100% 18 100% 23 100% 27 100% 8 100% 136 100%
ARM (15) 0% 12 90% 11 100% 12 100% 14 90% 8 10% 91 100%
RAW (10; '1112") 0% 15 100% 11 100% 15 100% 16 100% 8 100% 52 100%
WCI (10; “ones’) 0% 21 100% 14 90% 24 100% 28 100% 8 80% 170 100%
OCH (‘rmsprop’) 0% 15 100% 13 100% 18 100% 23 100% 8 100% 80 100%
Average 2% 25 86% 19 89% 23 89% 26 87% 8 61% 91 85%
TCL (21.88%) 86% 477 86% 536 88% 562 86% 604 86% 76 86% - -
TRD (41.66%) 67% 335 79% 515 87% 70 67% 74 67% 76 67% - -
TUD (100%) 0% 496 100% 587 100% 595 100% 662 100% 76 40% - -
TAN (84.38%) 25% 379 15% 546 40% 669 38% 611 63% 76 25% - -
HLR (0.0037) 39% 480 54% 557 61% 563 65% 597 72% 76 41% - -
HNE (32) 70% 318 70% 454 72% 514 69% 528 70% 76 70% - -
AAL (19; "signsoft’) 0% 40 0% 392 90% 402 60% 533 60% 76 0% - -
RAW (11; '12%) 0% 48 0% 480 60% 517 70% 557 60% 76 0% - -
RAW (13; '12) 0% 40 0% 494 40% 549 60% 568 50% 76 0% - -
WCI (11; “ones’) 0% 444 0% 611 40% 613 60% 123 0% 76 0% - -
Average 29% 306 40% 517 68% 505 68% 486 63% 76 33% - -

4.3 Results

Columns Subject and MO in Table [3| indicate the DL system and the mutation operator that provided the
mutants used by DEEPMETIS for test input generation. For each operator, we report in brackets the param-
eter values which were found by the binary/exhaustive search and were used to generate the non killed
mutant. For mutation operators that manipulate the training data, this value indicates the ratio of the
affected data. For example, MNIST/TRD removes 89.72% of the training data. For the other operators, pa-
rameter values with the prefix ‘I’ followed by a number indicate the layer to which a mutation operator was
applied. All the other parameters specify the exact value used to inject the fault. For example, MNIST/ACH
(I6; 'sigmoid’) means that the activation function of layer number 6 was changed from the original to the
‘sigmoid’ one.

In Table (3} the sub-columns K indicate the killing probability, computed as the mutation score (see Equa-
tion (T)) for continuous operators or as the binary killed /non-killed outcome for discrete operator (since
we did not apply DEEPMETIS to all the possible mutants produced by discrete operators, Equation (1) can-
not be used for them). Column Weak TS shows the killing probability K of the initial, weak test set. In the
following columns, the sub-column Inputs shows the average number of inputs generated across 10 runs
by each tool/tool configuration, while the sub-column K shows the average killing probability of the test
set augmented with the generated inputs, computed across 10 runs.

4.3.1 RQI1: Effectiveness

The results for DEEPMETIS in its best configuration (1vs5) show that for both subjects, the augmentation
of the initial test set with the DEEPMETIS-generated inputs leads to a substantial increase of the mutation
score. For MNIST, the improvement across the operators varies between 59% and 100%, with the average K
jumping from 2% to 89%. For UnityEyes, the improvement ranges from 2% to 100% on a per operator basis
and the average K rises from 29% to 68%. The number of generated inputs, which would require manual
labelling, is 19 on average for MNIST and 517 for UnityEyes. As these numbers constitute only 0.0003% of
the training data set size for MNIST and 0.005% for UnityEyes, we consider the labelling effort associated
with DEEPMETIS to be low.

RQ1: DEEPMETIS is able to achieve a substantial improvement in killing probability on each of the
provided mutants. The magnitude of this improvement is 87% for MNIST and 39% for UnityEyes.
The manual labelling effort for the newly generated inputs can be deemed acceptable.

TECHNICAL REPORT 11

TR-Precrime-2021-07 — DeepMetis

4.3.2 RQ2: Fitness Guidance

Columns DEEPMETIS (1vsl), DEEPMETIS (1vs5), DEEPMETIS (1vs10), DEEPMETIS (1vs20) report the results
obtained when the fitness function uses 1, 5, 10 and all 20 instances of a mutant during the input generation
process, respectively. In the case of MNIST, for 3 mutants out of 12, 1vs1 and 1vs5 provide the same results.
For 6 operators, 1vs5 performs better; however, for 2 out of those, the improvement is marginal (1-3%). For
the remaining 3 operators, 1vsl outperforms 1vs5, with the difference for one of the operators being only
2%. When we further compare 1vs5 to 1vs10, the latter exhibits an improvement for 4, equal performance
for 5 and deterioration for 3 operators while being substantially more expensive computationally. Overall,
as also reflected in the average K across operators, for MNIST, the optimal performance is obtained with
1vs5 and 1vs10 settings, which provide slightly better results than 1vs1 and 1vs20.

The results for UnityEyes show that 1vs5 and 1vs10 produce the same average K (68%), which is slightly
better than 1vs20 (63%), but is definitely superior when compared to 1vsl (40%). On a closer inspection,
1vs5 outperforms 1vs10 and 1vs20 on 5 mutants out of 10, with the majority of them being continuous
operators, while 1vs10 is the best in 3 cases and 1vs20 in 2. As was noted, 1vs20 on average performs
similarly to 1vs5 and 1vs10; however, in one case (WCI (I1; ‘ones’)), it fails to produce any improvement at
all.

The reason behind the comparative weakness of 1vsl w.r.t. the other settings is that its fitness function
has a very limited range because it aggregates the eval value of a single mutant instance, which provides
restricted guidance to the test generation process.

The input generation for our experiments was performed on various machines. It complicates the compar-
ison of the execution time between different configurations of DEEPMETIS. However, for each subject, we
ensured to run all 4 configurations on the TUD operator (selected randomly) using the same machine. For
MNIST, we used a MacBook Pro laptop (2.2 GHz Intel Core i7, 6 cores, 16GB RAM), while for UnityEyes,
we used Alienware Aurora R8 (3.60 GHz Intel Core i9-9900K, 8 cores, 32GB RAM, NVIDIA GeForce RTX
2080 Ti 11 GB). For MNIST, this operator took 6, 22, 47 and 57 minutes on average across 10 runs for 1vsl,
1vs5, 1vs10 and 1vs20, respectively. For UnityEyes, the generation of inputs for one run on average lasted
53 (1vsl), 66 (1vs5), 65 (1vs10), and 69 (1vs20) minutes. These results show that 1vs5 is the optimal setting
for balancing the improvement in mutation score and the time required to generate the inputs.

=

RQ2: The 1vs5 configuration of DEEPMETIS proved to be the optimal one. It outperforms 1vsl by a
substantial margin, as a single mutant instance (1vs1) cannot provide enough guidance to generate
effective inputs. The settings with a higher number of mutant instances are sometimes comparable
in terms of mutation score improvement, but they might require significantly more computation
time.

4.3.3 RQ3: Comparison with other Tools

Columns DLFuzz and DeepJanus in Table B report the results for each of the tools being compared to DEEP-
METIS. In the case of MNIST, for 9 out of 12 mutants, DEEPMETIS (1vs5) performs better than DeepJanus,
while for the remaining mutants, they have similar performance. The average K across all mutants for
DEEPMETIS (1vs5) is higher by 28% than for DeepJanus. When it comes to the comparison between DEEP-
METIS and DLFuzz, DEEPMETIS provides better results for 4 mutants, DLFuzz for 3 mutants, and the out-
come is equal for the remaining 5. The average K across all mutants is 89% for DEEPMETIS (1vs5) and 85%
for DLFuzz. However, DLFuzz generates 4.8 more inputs than DEEPMETIS (1vs5) and therefore requires
much more manual labelling effort.

As DLFuzz is not applicable to regression problems, the comparison for the UnityEyes subject was only
possible between DEEPMETIS and DeepJanus. Results show that Deepjanus is not able to produce any im-
provement in the majority of the cases. The only exceptions are TUD and HLR operators, where for the
former, the average improvement is 40% compared to 100% of DEEPMETIS (1vs5), and for the latter, the
improvement of DeepJanus is limited to 2% vs 22% of DEEPMETIS.

We performed statistical analysis on the comparison of the results by each tool. For mutants with contin-
uous parameters, we used the Wilcoxon statistical test to obtain the p-value and the Vargha-Delaney A,
to quantify the effect size. For mutants with non-continuous parameters, we calculate confidence intervals
using Wilson’s method. When comparing DEEPMETIS and DeepJanus for MNIST, the difference is statisti-
cally significant (p-value < 0.05 or confidence intervals do not intersect) for 7 mutants out of 12. For 5 out
of 7 mutants with continuous parameters, the effect size is large; for 1 mutant, it is medium, and for the

TECHNICAL REPORT 12

TR-Precrime-2021-07 — DeepMetis

remaining one, it is small. In case of DEEPMETIS and DLFuzz, there is a statistically significant difference for
2 mutants. The effect size is negligible for 1, small for 3, medium for 2 and large for 1 mutant. The results of
the comparison of DEEPMETIS (1vs5) and Deepjanus on the UnityEyes subject are statistically significant for
5 out of 10 applied mutants. For the 6 mutants with continuous parameters, the effects size ranges between
large (3), small (2), and negligible (1).

When it comes to execution time comparison (conducted in the same conditions as described for RQ2),
for MNIST DEEPMETIS took on average 22 minutes, DeepJanus 9 minutes and DLFuzz 24 minutes. For
UnityEyes, DEEPMETIS took about 66 minutes on average and DeepJanus about 86 minutes.

RQ3: DEEPMETIS outperforms DLFuzz and DeepJanus in the task of augmenting a test set to improve
its mutation score.

4.3.4 RQ4: Fault Detection

Results are presented in Table 4] where column MO specifies the cross-validation mutant, used to check
the hypothesis that DEEPMETIS generated inputs are also able to kill other, previously unseen mutants.
Column Inputs indicates the average number of inputs that were generated by DEEPMETIS and added to
the originally weak test set across 10 runs. Finally, column Killed reports the proportion of runs (out of 10)
in which the augmented test set was able to kill the validation mutant.

Table 4: Fault Detection

Subject MO Inputs Killed
TCL (84.38%) 107 10/10
TUD (90.62%) 106 10/10
TCO (96.88%) 109 10/10
HLR (0.064) 98 10/10
ACH (16; "hard_sigmoid”) 123 10/10
ACH (16; "softplus’) 123 10/10

MNIST ACH (16; "softmax’) 123 10/10
ARM (I5) 112 8/10
RAW (10; '1112") 112 10/10
RAW (10; '12) 112 8/10
WCI (10; “ones’) 109 10/10
WCI (10; ‘random_uniform”) 109 1/10
OCH (‘rmsprop’) 111 10/10
TCL (21.88%) 4635 10/10
TRD (46.41%) 4655 1/10
TUD (100%) 4584 10/10
TAN (84.38%) 4625 10/10

UnityEyes | LR (0.0037) 4613 10/10
HNE (32) 4717 3/10
AAL (19; 'signsoft’) 4779 6/10
RAW (11; '12%) 4197 10/10
RAW (13; '12) 4197 5/10
WCI (11; "ones’) 4559 6/10

For MNIST, almost all validation mutants were killed in all 10 runs, with the exception of ARM (15) and
RAW (10, '12") that were killed in 8 runs and WCI (10; ‘random_uniform’) that was killed in 1 run. The
latter is an almost equivalent mutant, with a very low triviality score [15], which is very difficult to kill
for DEEPMETIS. The results for UnityEyes also indicate that DEEPMETIS is always able to kill the unseen
mutant at least once. For 5 mutants out of 10, the test set augmented with DEEPMETIS inputs killed the
mutant in 100% of the runs. In all other cases except for TRD (46.41%) and HNE (32), the augmented test
set succeeds in 5 to 6 out of 10 runs.

RQ4: The mutation killing capability of the DEEPMETIS-generated inputs holds also for previously
unseen mutants, with 82% average success rate across our two subjects.

TECHNICAL REPORT 13

TR-Precrime-2021-07 — DeepMetis

4.4 Threats to Validity

Construct Validity: The choice of the distance metrics may threaten our findings. We chose sound metrics
for the considered domains. We used Euclidean distance when comparing matrices of grayscale values (also
used in previous studies [36]). When comparing UnityEyes inputs, we used a combination of appropriate
distances for each gene type in the chromosome.

Internal Validity: The main threat affecting the internal validity of our results is the choice of mutation
operators and mutation tool. We use DeepCrime, a DL mutation tool that accounts for the stochastic nature
of DL systems and DL specific mutation operators by adopting the statistical notion of mutation killing.
Moreover, its operators are derived from real DL faults that ensure a higher degree of realism as compared
to alternatives.

External Validity: The choice of the subject DL systems is a possible threat to the external validity. To
mitigate it, we chose two diverse DL systems. One solves a classification problem, while another solves a
regression problem. The execution of multiple original and mutant models may hinder the generalisation
to more complex DL problems, e.g. self-driving cars that require simulations to be evaluated. However, our
results show that DEEPMETIS generates effective inputs with a limited number of models, i.e., 1 original
and 5 mutated. A wider set of systems (including industrial ones) should be considered in future studies
to further generalise our findings.

To ensure Reproducibility of our results, we share online the source code of DEEPMETIS, the considered
subjects, and the experimental data [34].

5 Related Work

5.1 Test Generation for DL Systems

Several works in the literature [11}2332,/40,49] propose techniques that generate test inputs for DL systems
by manipulating raw input data, i.e. they apply small perturbations to available real inputs. A limitation of
these approaches is the lack of realism of the generated inputs. While these corrupted images are useful for
security testing as adversarial attacks, they are not necessarily representative of data captured by sensors
of a real DL system.

Another family of testing techniques [2-4}/9/|36|/41}53] adopts a model-based approach that exploits model
manipulation and model-based generation. Differently from raw input manipulation approaches, these
techniques tend to generate more realistic inputs if a faithful model of the input domain is adopted since
the generated images are compliant with the constraints of such a model. In this work, we adopt a model-
based approach to improve the realism of the generated inputs.

Pei et al. propose a raw input manipulation technique aimed at generating inputs that trigger inconsisten-
cies between multiple DL systems [32]. Other techniques manipulate raw images and consider as failures
the inconsistent behaviours triggered by the original and transformed test inputs [11}23}40,49].

Model-based approaches, proposed by Abdessalem et al. [2-4] and Gambi et al. [9], aim to test advanced
driver-assistance systems by generating extreme and challenging scenarios that maximise the number of
detected system failures. Riccio and Tonella proposed a model-based approach that produces test suites
made of pairs of inputs that identify the frontier of behaviours of a DL system, i.e. the inputs at which
the DL system starts to misbehave [36]. Udeshi et al. generate inputs that highlight fairness violations by
perturbing discriminatory parameters, e.g. gender [41]. Vahdat Pour et al. [33] use DL mutation to guide
the generation of adversarial code snippets for DL models tailored to the computation of code embeddings.

DEEPMETIS differs from the existing approaches because its goal is to increase the mutation killing ability
of a test set. With the advent of DL mutation frameworks such as DeepMutation [26], MuNN [38] and
DeepCrime [[15], the problem of achieving a high mutation score is increasingly important, especially when
mutants mimic real faults, as is the case of DeepCrime [15].

DEEPMETIS is the first approach that can assist developers in the challenging task of making a DL test set
better at mutation killing.

5.2 Test Adequacy for DL Systems

Several test adequacy criteria have been proposed for DL systems. Pei et al. [32] use the number of neuron
activations of the model to measure test adequacy. In particular, a neuron is considered activated if its out-

TECHNICAL REPORT 14

TR-Precrime-2021-07 — DeepMetis

put value is higher than a predefined threshold. Ma et al. [25] propose a set of additional adequacy criteria
based on neuron activations. They use activation values obtained from the training data and divide the
range of values for each neuron into k buckets. Kim et al. [19] designed a test adequacy criterion, named
surprise adequacy, based on the degree of “surprise” of an input for the neural network. Similarly to Ma et
al.’s criteria [25], bucketing is used to make the surprise measure an adequacy criterion: all & buckets of sur-
prise ranges must be covered by the test set. X. Zhang et al. [50] observe how inputs are distributed across
different uncertainty patterns, i.e. combinations of alternative uncertainty metrics (e.g., high prediction
confidence and low variation ratio). Although they do not define a proper adequacy criterion, they recom-
mend generating additional test inputs to cover the least covered uncertainty patterns, and they show that
such inputs evade defences against adversarial attacks.

We adopt a test set’s mutation score as an adequacy criterion. Like other criteria [[19,25,32], our criterion
uses the training set as a reference since it contains the inputs to which the model is mostly sensitive: the
mutation score of a test set should be as close as possible to the training set’s one.

Jahangirova & Tonella [17] compared mutation score to other adequacy metrics such as neuron cover-
age [32] and surprise coverage [19], showing that mutation score is more effective in differentiating between
weak and strong test sets than the existing alternatives.

DEEPMETIS is the first tool that uses mutation adequacy as guidance for the generation of inputs that
increase the mutation score of an existing weak test set.

6 Conclusions and Future Work

We proposed DEEPMETIS, the first automated test generator for DL systems that can increase the mutation
score of a weak test set, guided by mutation adequacy. Our empirical evaluation shows that our tool out-
performs state-of-the-art DL test generators in this task. The test sets generated by DEEPMETIS can expose
unknown faults, simulated in our leave-one-out experiment by means of previously unseen mutants. In
our future work, we plan to generalise our results to a wider sample of DL systems, including industrial
ones.

TECHNICAL REPORT 15

TR-Precrime-2021-07 — DeepMetis

References

[1] An implementation of a multimodal cnn for appearance-based gaze estimation. https://github.
com/dlsuroviki/UnityEyesModel, 2020.

[2] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing advanced driver as-
sistance systems using multi-objective search and neural networks. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE, pages 63-74, 2016.

[3] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing vision-based control
systems using learnable evolutionary algorithms. In Proceedings of the 40th International Conference on
Software Engineering, ICSE 18, pages 1016-1026, New York, NY, USA, 2018. ACM.

[4] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing
autonomous cars for feature interaction failures using many-objective search. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, pages 143-154, New
York, NY, USA, 2018. ACM.

[5] Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, and Darren Cofer. Input
prioritization for testing neural networks. In 2019 IEEE International Conference On Artificial Intelligence
Testing (AlTest), pages 63-70. IEEE, 2019.

[6] Edwin D. de Jong. The incremental pareto-coevolution archive. In Kalyanmoy Deb, editor, Genetic
and Evolutionary Computation — GECCO 2004, pages 525-536, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182-197, April 2002.

[8] Swaroopa Dola, Matthew B Dwyer, and Mary Lou Soffa. Distribution-aware testing of neural networks
using generative models. arXiv preprint arXiv:2102.13602, 2021.

[9] Alessio Gambi, Marc Miiller, and Gordon Fraser. Automatically testing self-driving cars with search-
based procedural content generation. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA, pages 318-328, 2019.

[10] Jahangirova Gunel, Stocco Andrea, and Tonella Paolo. Quality metrics and oracles for autonomous
vehicles testing. In 2021 IEEE 14th International Conference on Software Testing, Validation and Verification
(ICST). IEEE, 2021.

[11] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. Dlfuzz: differential fuzzing testing
of deep learning systems. In Proceedings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE, pages 739—
743, 2018.

[12] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and Miryung Kim. Is
neuron coverage a meaningful measure for testing deep neural networks? In ESEC/FSE "20: 28th ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, pages 851-862, 2020.

[13] Qiang Hu, Lei Ma, Xiaofei Xie, Bing Yu, Yang Liu, and Jianjun Zhao. Deepmutation++: A mutation
testing framework for deep learning systems. In 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 1158-1161. IEEE, 2019.

[14] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo
Tonella. Taxonomy of real faults in deep learning systems. In Proceedings of 42nd International Conference
on Software Engineering, ICSE '20, page 12 pages. ACM, 2020.

[15] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. Deepcrime: Mutation testing of deep
learning systems based on real faults. In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2021.

[16] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study on deep
learning bug characteristics. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019, pages
510-520, New York, NY, USA, 2019. ACM.

TECHNICAL REPORT 16

https://github.com/dlsuroviki/UnityEyesModel
https://github.com/dlsuroviki/UnityEyesModel

TR-Precrime-2021-07 — DeepMetis

[17] Gunel Jahangirova and Paolo Tonella. An empirical evaluation of mutation operators for deep learning
systems. In IEEE International Conference on Software Testing, Verification and Validation, ICST’20, page
12 pages. IEEE, 2020.

[18] Y. Jia and M. Harman. An analysis and survey of the development of mutation testing. IEEE Transac-
tions on Software Engineering, 37(5):649—678, 2011.

[19] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system testing using surprise ade-
quacy. In Proceedings of the 41st International Conference on Software Engineering, ICSE, pages 1039-1049,
20109.

[20] Kiran Lakhotia, Mark Harman, and Phil McMinn. A multi-objective approach to search-based test
data generation. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
GECCO 07, pages 1098-1105, New York, NY, USA, 2007. ACM.

[21] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design.
Prentice Hall, 1997.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[23] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. Effective white-box testing of deep neural
networks with adaptive neuron-selection strategy. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, page 165-176, New York, NY, USA, 2020.
Association for Computing Machinery.

[24] Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution through the search for novelty
alone. Evolutionary Computation, 19(2):189-223, 2011.

[25] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li,
Yang Liu, Jianjun Zhao, and Yadong Wang. Deepgauge: Multi-granularity testing criteria for deep
learning systems. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, pages 120-131, New York, NY, USA, 2018. ACM.

[26] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu,
Jianjun Zhao, and Yadong Wang. Deepmutation: Mutation testing of deep learning systems. In 29th
IEEE International Symposium on Software Reliability Engineering, ISSRE 2018, Memphis, TN, USA, October
15-18, 2018, pages 100-111, 2018.

[27] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA, 2008.

[28] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing for android appli-
cations. In Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016,
pages 94-105, New York, NY, USA, 2016. ACM.

[29] B. Marculescu, R. Feldt, and R. Torkar. Using exploration focused techniques to augment search-based
software testing: An experimental evaluation. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 69-79, April 2016.

[30] Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites, 2015.

[31] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test case generation
as a many-objective optimisation problem with dynamic selection of the targets. IEEE Transactions on
Software Engineering, 44(2):122-158, 2018.

[32] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox testing of
deep learning systems. In Proceedings of the 26th Symposium on Operating Systems Principles, pages 1-18.
ACM, 2017.

[33] Maryam Vahdat Pour, Zhuo Li, Lei Ma, and Hadi Hemmati. A search-based testing framework for
deep neural networks of source code embedding. In IEEE International Conference on Software Testing,
Verification and Validation, ICST’21, page 11 pages. IEEE, 2021.

[34] Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. Replication package for
deepmetis. https://github.com/testingautomated-usi/deepmetis, 2021.

TECHNICAL REPORT 17

https://github.com/testingautomated-usi/deepmetis

TR-Precrime-2021-07 — DeepMetis

[35] Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbatova, Michael Weiss, and Paolo
Tonella. Testing machine learning based systems: a systematic mapping. Empir. Softw. Eng., 25(6):5193—
5254, 2020.

[36] Vincenzo Riccio and Paolo Tonella. Model-based exploration of the frontier of behaviours for deep
learning system testing. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2020, page 876888,
New York, NY, USA, 2020. Association for Computing Machinery.

[37] P. Selinger. Potrace: a polygon-based tracing algorithm. http://potrace.sourceforge.net/
potrace.pdf, 2003.

[38] W.Shen,]J. Wan, and Z. Chen. Munn: Mutation analysis of neural networks. In 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C), pages 108-115, July 2018.

[39] Jeongju Sohn, Sungmin Kang, and Shin Yoo. Search based repair of deep neural networks. arXiv
preprint arXiv:1912.12463, 2019.

[40] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In Proceedings of the 40th International Conference on Software Engi-
neering, ICSE 18, pages 303-314, New York, NY, USA, 2018. ACM.

[41] Sakshi Udeshi, Pryanshu Arora, and Sudipta Chattopadhyay. Automated directed fairness testing. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018,
pages 98-108, New York, NY, USA, 2018. ACM.

[42] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing ap-
proaches. Software testing, verification and reliability, 22(5):297-312, 2012.

[43] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. Adversarial sample detec-
tion for deep neural network through model mutation testing. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 1245-1256. IEEE, 2019.

[44] Erroll Wood, Tadas Baltrusaitis, Louis-Philippe Morency, Peter Robinson, and Andreas Bulling. Learn-
ing an appearance-based gaze estimator from one million synthesised images. In Proceedings of the
Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, pages 131-138, 2016.

[45] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianx-
iong Yin, and Simon See. Deephunter: A coverage-guided fuzz testing framework for deep neural
networks. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, page 146157, New York, NY, USA, 2019. Association for Computing Machinery.

[46] Shin Yoo and Mark Harman. Pareto efficient multi-objective test case selection. In Proceedings of the
2007 International Symposium on Software Testing and Analysis, ISSTA '07, pages 140-150, New York, NY,
USA, 2007. ACM.

[47] Shin Yoo and Mark Harman. Using hybrid algorithm for pareto efficient multi-objective test suite
minimisation. Journal of Systems and Software, 83(4):689 — 701, 2010.

[48] J.M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning testing: Survey, landscapes and horizons.
IEEE Transactions on Software Engineering, Early Access(-):1-1, 2020.

[49] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. Deeproad: Gan-
based metamorphic testing and input validation framework for autonomous driving systems. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE, pages
132-142, 2018.

[50] Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun Zhao, and Sun Meng.
Towards characterizing adversarial defects of deep learning software from the lens of uncertainty. In
Proceedings of 42nd International Conference on Software Engineering, ICSE '20, page 12 pages. ACM, 2020.

[51] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Appearance-based gaze estimation
in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4511—
4520, 2015.

TECHNICAL REPORT 18

http://potrace.sourceforge.net/potrace.pdf
http://potrace.sourceforge.net/potrace.pdf

TR-Precrime-2021-07 — DeepMetis

[52] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. An empirical study on
tensorflow program bugs. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, pages 129-140, New York, NY, USA, 2018. ACM.

[53] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. Deephyperion: exploring
the feature space of deep learning-based systems through illumination search. In Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 79-90, 2021.

TECHNICAL REPORT 19

	Introduction
	Background
	Mutation Testing of DL Systems
	DeepCrime

	The DeepMetis Technique
	Model-Based Input Representation
	Fitness Functions
	Initial Population
	Archive of Solutions
	Genetic Operators

	Experimental Evaluation
	Subject Systems
	Research Questions
	Results
	RQ1: Effectiveness
	RQ2: Fitness Guidance
	RQ3: Comparison with other Tools
	RQ4: Fault Detection

	Threats to Validity

	Related Work
	Test Generation for DL Systems
	Test Adequacy for DL Systems

	Conclusions and Future Work

