Stan  2.10.0
probability, sampling & optimization
adapt_unit_e_nuts.hpp
Go to the documentation of this file.
1 #ifndef STAN_MCMC_HMC_NUTS_ADAPT_UNIT_E_NUTS_HPP
2 #define STAN_MCMC_HMC_NUTS_ADAPT_UNIT_E_NUTS_HPP
3 
7 
8 namespace stan {
9  namespace mcmc {
15  template <class Model, class BaseRNG>
16  class adapt_unit_e_nuts: public unit_e_nuts<Model, BaseRNG>,
17  public stepsize_adapter {
18  public:
19  adapt_unit_e_nuts(const Model& model, BaseRNG& rng)
20  : unit_e_nuts<Model, BaseRNG>(model, rng) {}
21 
23 
24  sample
25  transition(sample& init_sample,
29  info_writer,
30  error_writer);
31 
32  if (this->adapt_flag_)
34  s.accept_stat());
35 
36  return s;
37  }
38 
42  }
43  };
44 
45  } // mcmc
46 } // stan
47 #endif
void complete_adaptation(double &epsilon)
double accept_stat() const
Definition: sample.hpp:41
Probability, optimization and sampling library.
sample transition(sample &init_sample, interface_callbacks::writer::base_writer &info_writer, interface_callbacks::writer::base_writer &error_writer)
void learn_stepsize(double &epsilon, double adapt_stat)
sample transition(sample &init_sample, interface_callbacks::writer::base_writer &info_writer, interface_callbacks::writer::base_writer &error_writer)
Definition: base_nuts.hpp:45
The No-U-Turn sampler (NUTS) with multinomial sampling with a Gaussian-Euclidean disintegration and u...
Definition: unit_e_nuts.hpp:16
base_writer is an abstract base class defining the interface for Stan writer callbacks.
Definition: base_writer.hpp:20
virtual void disengage_adaptation()
stepsize_adaptation stepsize_adaptation_
adapt_unit_e_nuts(const Model &model, BaseRNG &rng)
The No-U-Turn sampler (NUTS) with multinomial sampling with a Gaussian-Euclidean disintegration and u...

     [ Stan Home Page ] © 2011–2016, Stan Development Team.