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Abstract—High-performance materials are a key tool for several
reasons. On the one hand, their use brings obvious progress in the
performance of the pieces where they are used in fields such as
aeronautics, construction, or biotechnology. On the other hand, high-
performance materials also allow more efficient use of energy in
industrial processes where the use of such energy becomes intensive
with its consequences in terms of environmental and economic
sustainability. For these reasons, the emergence of high-performance
materials such as high entropy alloys (HEAs) has captured the atten-
tion of industry and researchers within the last years. However, the
development of these materials requires a large amount of time and
money invested in the design, synthesizability evaluation, construc-
tion, and characterization of such compounds. The use of artificial
intelligence for the design of materials, even in its current infancy
status, provides a valuable tool to accelerate the initial phases of
materials design and HEAs, where the high number of combinations
brings a perfect scenario for the deployment of Machine Learning
techniques. In this work, a Generative based approach is used, namely
Generative Adversarial Networks (GANs) to generate synthetic HEAs
for highly intensive industrial processes. The architecture model of a
GAN involves two neural networks. The first one is a generator model
for generating chemical compositions of candidate alloys to form
the HEAs. The second one is a discriminator model for classifying
the generated samples coming from the generator in real or fake
compositions. The discriminator learns from a specific data structure
that contains data from real samples to classify the generated samples.
A GAN extension that conditionally generates the synthetic outputs
by the addition of extra inputs was used. This so-called conditional
tabular generative adversarial network (CTGAN) was developed to be
used with tabular datasets as input. Such data is normally composed
of a mix of continuous and discrete columns, making some deep
neural network models fail in performing a properly modeling for
this kind of inputs. In the present approach, the generated realistic
synthetic data was based on the conventional parametric design
parameters used for HEAs, i.e., atomic size difference δ, mean
atomic radius a, average melting temperature Tm, mixing enthalpy
∆Hmix, mixing entropy ∆Smix, electronegativity χ, valence electron
concentration (V EC), mean bulk modulus K, and the standard
deviation for most of them. As conditioned input data, the chemical
composition of the alloys and their phase has been considered. The
phase was classified in four classes, namely amorphous, intermetallic,
solid solution, and solid solution + intermetallic, which can be
used as an indicator for their applicability. The CTGAN provides
as output candidates of HEAs, the expected parameters mentioned
above, and corresponding phase. The generated data is compared with
the calculated data and a verification of novel generated compositions
is done in open materials databases available in the literature. Finally,
a specific data structure for the CTGAN training and results of the
performance of this approach is provided, which was developed in
the framework of the European project ACHIEF for the discovery of
novel materials to be used in industrial processes.
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I. INTRODUCTION

TECHNOLOGICAL advances lead humans to search for
new possibilities in all fields of science. One example

was the development of high-entropy alloys (HEAs) by two
independent research groups in 2004 [1], [2], which is a class
of materials containing multiple principal chemical elements
in near-equiatomic proportions. These kinds of materials are
of interest to many fields due to their remarkable physical
properties, such as superior hardness, strength, and great
wear resistance [3]. Before the HEAs, the common alloying
approach consisted of using a primary element, e.g., iron,
followed by the addition of small amounts of secondary
elements, e.g., chromium, to increase corrosion resistance,
and carbon to increase the strength. This primary element
method makes the combination space of elements limited,
whereas, in the case of HEAs, many exploitable combinations
are still open for discovery, with improved mechanical and
thermodynamic performance.

In HEAs, the presence of multiple chemical elements in
near-equiatomic proportions (composed of five or more prin-
cipal elements, with each of them possessing between 5 and
35 atomic percentage) increases sufficiently the entropy of
mixing, overcoming the enthalpy formation of the compounds,
giving rise to stable solid solution formations, rather than
intermetallic compounds [1]. HEAs can also be defined in
terms of the calculated mixing entropy ∆Smix by the equation

∆Smix = −R
n∑

i=1

ci ln ci, (1)

where ci is the stoichiometric ratio of the i-th component in the
alloy, and R is the gas constant [4]. The mixing entropy can
be written in terms of the gas constant R, and HEAs defined
when a composition has ∆Smix ≥ 1.5R. For 1R ≤ ∆Smix ≤
1.5 R the compounds are defined as medium entropy alloys
(MEAs) and for ∆Smix < 1 R, low entropy alloys (LEAs)
[5]. From Eq. (1) it is possible to see that with the increase
of the number of elements, the entropy also increases, e.g., an
alloy containing five and six equiatomic elements has ∆Smix =
1.61R and 1.79R respectively.

The high entropy effect in HEAs is important because it
can enhance the formation of phases. Among the phases in
which HEAs can be found, the alloys can be classified as
solid-solution (SS), intermetallic (IM), amorphous (AM), or
a mixture of them. The SS phase means a significant or



complete mixing of all constituent elements in the structures
of body-centered cubic (BCC), face-centered cubic (FCC), or
hexagonal close-packed (HCP). IM phases mean stoichiomet-
ric compounds with specific Strukturbericht designation, such
as B2 (for example NiAl) and L12 (for example Ni3Al) [3],
[5]. The phase is an important parameter for HEAs since it
determines the physical properties. For example, to achieve
high hardness, the SS is indicated, for better elasticity, the
AM, and for great wear resistance, IM [6], [7].

With the graphic processor unit (GPU) developments us-
ing parallel processing for imaging, e.g., in video games,
video processing, and simulations, in 2009, a window was
opened to make use of GPUs in neural networks [8]. Since
then, artificial intelligence applications have had significant
growth in applications in all fields, such as in medicine,
identifying metastatic breast cancer tumors, or in transport,
with autonomous cars. Furthermore, artificial intelligence and
machine learning methods can also be used in the field of
materials science to speed up discoveries, saving time and
money when compared to traditional methods [9], [10], [11].

In this work, artificial intelligence is used to generate
synthetic data based on real HEAs found in the literature, and
calculated parameters data, providing as output candidates of
possible new alloys and corresponding parameters. For that,
a dataset containing a large amount of HEAs and specific
calculated design parameters [12] was used in a generative
model, called conditional tabular generative adversarial net-
work (CTGAN) [13].

II. METHODOLOGY

In this section, the methodology used will be discussed, i.e.,
how the generation of the dataset used in this work was done,
as well as the explanation about the Deep Learning methods
addressed. Fig. 1 shows a sketch of the workflow, where
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Fig. 1. The approach followed in this work to obtain synthetic HEAs
compositions. A specific dataset has been developed and made accessible
for this purpose, containing a large amount of HEAs data. The data feeds the
CTGAN network architecture, where the Discriminator is used to classify
the Generator outcomes until the synthetic compounds become realistic
considering real data. Candidate materials that come out from the CTGAN
are evaluated via DFT calculations to consider its synthesizability for a real
case.

TABLE I
DESIGN PARAMETERS.

Parameter Equation

Mixing entropy ∆Smix = −R
n∑

i=0

ci ln ci

Mixing enthalpy ∆Hmix = 4
∑
i 6=j

cicjHij

Standard deviation of
mixing enthalpy

σ∆H =
√∑

i 6=j

cicj (Hij −∆Hmix)2

Mean atomic radius a =
n∑

i=0

ciri

Atomic size difference δ =

√√√√ n∑
i=0

ci

(
1− ri

a

)2

Electronegativity χ =
n∑

i=0

ciχi

Electronegativity stan-
dard deviation

∆χ =

√√√√ n∑
i=0

ci (χi − χ)2

Valence electron con-
centration (VEC)

V EC =
n∑
i

ciV ECi

Standard deviation of
VEC

σV EC =

√√√√ n∑
i=0

ci (V ECi − V EC)2

Mean bulk modulus K =
n∑

i=0

ciKi

Standard deviation of
bulk modulus

σK =

√√√√ n∑
i=0

ci (Ki −K)2

Averege melting tem-
perature

Tm =
n∑

i=0

ciTmi

Standard deviation of
melting temperature

σTm =

√√√√ n∑
i=0

ci

(
1− Tmi

Tm

)2

the dataset containing the phases feeds the generative model,
creating new candidates o HEAs, and finally verified in density
functional theory (DFT) based open materials databases.

A. Data Collection

For this work, a dataset containing several HEAs was pre-
pared. The HEAs were collected from works available in the
literature and merged [7], [11], [14], [15], [16]. After filtering
and removing duplicated compounds, the given dataset ended
with 1117 entries [12]. The phases were used as conditional
training parameters, and because this information for some



compounds was unknown, they were also removed, and the
dataset used to train the CTGAN model had at the end 1103
entries, composed of 195 AM, 362 IM, 350 SS, and 196
SS+IM.

Previous studies on predicting HEAs phases have used para-
metric approaches, based on the Hume-Rothery rules, which
concern the mutual solubility at high temperatures [3], [11],
[17], [18], [19]. Based on these works, 13 design parameters
were chosen, calculated, and included in the dataset, i.e., the
mixing entropy ∆Smix, where R = 8.314 J·K−1·mol−1 is
the gas constant, and ci is the stoichiometric ratio of the i-
th component in the alloy, the mixing enthalpy ∆Hmix, its
standard deviation σ∆H , where Hij is the binary mixing
enthalpy in the liquid phase, the mean atomic radius a, where
ri is the atomic radius of the i-th component in the alloy,
the atomic size difference δ, the Pauling electronegativity χ,
its standard deviation ∆χ, the valence electron concentration
V EC, its standard deviation σV EC , the mean bulk modulus
K, its standard deviation σK , the average melting tempera-
ture Tm, and its standard deviation σTm

, listed in Table I.
Finally, columns containing the chemical elements and their
corresponding fraction in the alloy were included and used as
conditional training parameters.

B. CTGAN

A neural network (NN) can be fed with a dataset, so that
it will learn the relationship between the features present in
that dataset, i.e., what characterizes an output and classify
it accordingly. But would a NN be able to create synthetic
data that is very close to the real data? That’s exactly what
the generative adversarial networks (GANs) do, turning the
world’s attention to them in the last years due to their ability
to generate realistic fake content. A GAN is a generative model
first used to create images [20], but now the scope is extended
to create other contents, e.g., furniture designs for 3D printing
[21].

The GANs work with two NN models, one competing
against the other. One of the models is called generator (G),
responsible for generating synthetic data from a noisy entry
z (a bunch of random values, e.g., randomized values from a
normal distribution between 0 and 1), which tries to generate
a synthetic sample as close as possible to a real one. The
other model is called discriminator (D), which is trained with
both real and fake data, learning the difference between them
and classifying the data from the generator as real or fake.
The results from the discriminator’s classification are used as
input for the Generator, which learns from these results and
calibrates its weights to generate samples that look closer to
the real samples. After the generator improves its generated
data, the discriminator is also improved, being updated by the
new bunch of samples coming from the generator, calibrating
its weights, working as a loop, where the discriminator tries
to become better at differentiating the generated from the real
data.

In this work, the conditional tabular generative adversarial
network (CTGAN) [13] was used, one member of the large
family of GANs (DCGAN, WGAN, etc.). This specific kind
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Fig. 2. The main structure of a CTGAN. Random vector and conditions feed
the Generator Network, whose outcome feeds the discriminator to classify
using also real data to distinguish between real and fake compounds. The
architecture of the Networks is described in the main text. The conditions are
based on the phases of the compounds and their stoichiometry.

of GAN gives solutions to data problems such as mixed data
types, non-Gaussian distributions, multi-modal distributions,
learning from sparse one-hot-encoded vectors, and highly
imbalanced categorical columns, which normal GANs don’t
address. Since our HEAs dataset comprises mixed types of
data, containing discrete and continuous values, the CTGAN
addresses the needs imposed by the dataset, and it can be used
to generate new synthetic tabular data.

The CTGAN can be conditioned on some extra information
y, which can be any kind of auxiliary information, feeding the
network with an additional input layer, e.g., class labels or data
from other modalities. In a conditional GAN, the networks G
and D are trained and optimized in an adversarial learning
framework, called objective function, as follows [22]

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]

+ Ezpz(z)[log(1−D(G(z|y)))],
(2)

where x represents the real data. In the conditional training,
the CTGAN encodes the conditioned tabular data columns and
categorical variables in condition vectors, using these vectors
as generator inputs. This architecture uses recent GAN ap-
proaches where the quality and stability of the generated data
are improved, e.g., it uses the discriminator of the PacGAN
[23], and the loss function of the WGAN-GP [24], defined as

L = EG(z∼Pg
[D(G(z))]− Ex∼Pr

[D(x)]

+ λEx̂∼Px̂
[(‖∇x̂D(x̂)‖ − 1)2],

(3)



where the two first terms are the original loss of the WGAN
[25] and the last term the gradient penalty loss, implemented
to control the discriminator’s gradient for random samples x̂ ∼
Px̂. x̂ represents samples that are interpolated by the real data,
λ is the gradient coefficient penalty, and the distribution of the
real and generated data are represented by Pr and Pg .

Fig. 2 shows the CTGAN’s architecture sketch, comprised
of the generator and discriminator models with the conditional
entries used in this work, i.e., the phases and stoichiometry to
obtain the desired modes from the trained model. Table II
summarizes the used architecture. The following parameters
were used in both G and D neural networks models: Adam
optimizer with a learning rate of 2× 10−4, and weight decay
of 1×10−6. For G, the ReLU activation was used in the input
and hidden layers, and a tanh activation function in the output.
For D, the LeakyReLU activation was used in the input and
hidden layers and the sigmoid activation function in the output.

TABLE II
CTGAN STRUCTURE USED IN THIS STUDY.

Generator Discriminator
Layer Type Dimension Type Dimension
Input Latent + Cond. 90 Features + Cond. 71

Hidden 1 Dense layer 256 Dense layer 256
Hidden 2 Dense layer 128 Dense layer 128

Output Dense layer 71 Dense layer 1

III. DISCUSSION

In this section, the obtained results using the structure shown
in Table II and details mentioned in the previous section are
discussed.

A. Generation of Data

The CTGAN was fed with real HEAs data as input, con-
taining the stoichiometry, the phase, and 13 design parameters.
The loss function for G and D versus the training epochs is
showed in Fig. 3. The convergence of the loss function in both
G and D occur at approximately epoch 50, which means that
from this point, the model reached a limit where G and D
stopped to evolve.

Once the model was trained, synthetic data based on the
knowledge acquired during the training process was generated.
The outputs provided by the CTGAN were the same 71
parameters used as inputs, i.e., the 13 design features, the
4 phases, and the columns containing the chemical elements
fraction. Some of the generated compounds were identical to
compounds provided in the input dataset, e.g., the compounds
AlCo and TiZrNbMoV2. All generated features were compared
with the features in the initial dataset. As result, the values
were identical, indicating that the generated data respects the
knowledge acquired from the input data.

Within the generation, new compositions were also de-
livered by the CTGAN. Between the generated compounds,
an experimentally known HEA that was not included in
the initial dataset was generated, the TiZrCuNiBe, and the
correct phase AM was attributed [26], which means that
this method really opens the possibility of generating real

Fig. 3. Generator and Discriminator loss of the CTGAN training progress.
The convergence after epoch 50 means that one of the models stopped
evolving, and consequently the second model also stops to evolve, since it’s a
competition between generating fake samples that look real and discriminating
these samples as real and fake.

HEAs. Some other examples of possible HEAs candidates (ex-
perimentally not proved) are TiAl0.75CrCo7Ni, B2CoGa2VZr,
Al0.5BCoCr6.3FeMn, AlCoNdNi10Ti, and CoCuFeSn3TiZn0.5.

The evaluation metrics used to get the score of the model
were CSTest, KSTest, KSTestExtended, and ContinuousKL-
Divergence, which are statistical metrics found in the ecosys-
tem of libraries of the synthetic data vault (SDV) [27]. The
average score value obtained from all these metrics together
reached a value of 93 %.

Some of the present compounds in the initial dataset and
some generated compounds were taken for evaluation in
DFT-based open databases for materials, the Open Quantum
Materials Database (OQMD) [28], [29], and Automatic-FLOW
for Materials Discovery (AFLOW) [30]. Fig. 4 shows on the
upper part four aleatory selected compounds from the HEAs
dataset (real compounds), and at the bottom, four compounds
selected from the CTGAN generation (synthetic compounds).
They are classified according to their phase, i.e., the real phase
for the dataset compounds and the expected phase attributed
by the CTGAN for the generated compounds. The bars inside
the phase areas compare the mixing enthalpy ∆H for the real
compounds (in the case of the dataset, calculated from Table I)
and synthetic with the mixing enthalpy calculated from the
OQMD. When compared, the values are in good agreement
in both cases for the real and synthetic data. Note that for
comparison purposes, the mixing enthalpy modulus |∆H| was
used in Fig. 4. Other generated compounds were found in
the database of AFLOW, e.g., AlCuTi, Al0.5CuV, AlFeNi,
and AlCrNiTi, which once more validates the CTGAN as a
generative candidate model for the discovery of novel HEAs.

IV. CONCLUSION

With a specific database containing experimentally proved
HEAs, a study using the generative model CTGAN was
performed to generate new HEAs candidates. The CTGAN
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Fig. 4. Main results from the generative approach. Comparison of real values of ∆H for HEAs and those generated by our CTGAN. The figure shows
results for the four different phases, AM, IM, SS, and SS+IM, separated in columns. Note that absolute values are shown (all the obtained values for ∆H
are negative). The dark boxes contain compounds and ∆H values from real compounds (dark red columns), while those contained in the faded color boxes
(blue columns) have been obtained with the CTGAN. The values of ∆H from the dataset and also those generated by the CTGAN are compared with the
calculations performed using OQMD.

proved to be a tool that suits this purpose since it can generate
experimentally proved compounds. To improve the ability to
generate novel HEAs, some filters can be taken into account,
e.g., a phase-oriented training, but in that case, more data
would be necessary to train the model. Data validation was
done using DFT-based open databases, e.g., comparing the
mixing entropy calculated by the OQMD and the CTGAN
generated values, and finding out that some of the generated
compounds were also found in the AFLOW database. The use
of artificial intelligence in the materials science field has the
potential to improve the industrial sector, e.g., in the case of
intensive energy processes by providing alloys with improved
thermo-mechanical properties, such as a material with higher
strength at high temperatures, being more agile and cost-
friendly when compared with traditional methods as trial and
error.
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