PhysiCell User Guide (Version 1.6.1)

PhysiCell Project (Lead: Paul Macklin)

Revision: January 26, 2020

Contents

Introduction and citing PhysiCell
Getting started: The Quickstart and your First Simulation
Further resources for help

Preparing your development environment

4.1 Special notes for OSX users

4.2 Virtual Machine option Lo

4.3 Suggested tutorials and resourceso
4.3.1 Linux and Makefile tutorials o
4.3.2 CH+references
4.3.3 Matlab tutorials
4.3.4 VirtualBox and related information (virtual appliances)
4.3.5 Recommended additional tools.

Overall codebase structure
5.1 Time step sizes in PhysiCell

Using project templates

Using the Sample Projects
7.1 Extramakefilerules.

The BioFVM microenvironment
8.1 Notes on the microenvironment L Lo
8.2 Setting up and using the microenvironmento
8.2.1 Specifying the microenvironment via XML (PREFERRED METHOD)
8.2.2 Manual configuration via C++ function calls (LESS PREFERRED METHOD)
8.2.2.1 Setting BioFVM options
8.2.2.2 Adding new diffusing substrates to the tissue environment
8.2.2.3 Initializing the BioF'VM tissue microenvironment
8.3 Sampling the microenvironment Lo
8.4 Dirichlet conditions
8.4.1 Refined control of Dirichlet conditions

NelNoRNe N0 JBEN BEN BEN e

8.5 Setting the initial conditionso
8.5.1 Setting a non-uniform initial conditiono 0L
8.6 Automated tracking of internalized substrates
8.6.1 Automated release of internalized substrates at cell death
8.7 Other BioFVM resources
9 Cells
9.1 Other member data
9.2 Member functions e
9.3 Other key functions
9.4 Important classes (except Phenotype)
9.4.1 Custom_Cell_Data
9.4.2 Cell.Parameters e e e
9.4.3 CelllFunctions e e
9.4.4 Cell_State e e
945 Cell Definition e
10 Phenotype
10.1 Member functions L
11 Phenotype details
11.1 Cycle Models o e
11.1.1 Phase
11.1.1.1 Member functions e
11.1.2 Phase_Link e
11.1.2.1 Member functions
11.1.3 Cycle-Model
11.1.3.1 Member functions e
11.1.4 Cycle Data
11.1.4.1 Member functions e
11.1.5 Cycle . . o o e
11.1.5.1 Member functions
11.2 Death models e
11.2.1 Death_Parameters
11.2.1.1 Member functions e
11.2.2 Death e
11.2.2.1 Member functions
11.3 Volume e
11.3.1 Member functions
11.4 Geometry L e
11.4.1 Member functions
11.5 Mechanics e
11.5.1 Member functions
11.6 Motility o
11.6.1 Member functions
11.6.2 Motility definitions
11.7 Secretion
11.7.1 Member functions
11.8 Molecular e

24
27
27
30
31
31
36
38
39
41

42
43

11.8.1 Member functions 63

12 Cell Containers 64
13 PhysiCell Inputs 65
13.1 XML parsing in PhysiCell 0 0 65
13.2 Passing XML options to PhysiCello 67
13.2.1 Member data 68
13.2.2 Member functions 68
13.3 Structure of PhysiCell XML parameter files, 69
13.4 Microenvironment Setup Lo 70
13.4.1 Defining chemical microenvironmental substrates as XML 71
13.4.2 Key microenvironment parsing functions oo 73
13.5 User Parameters e 73
13.5.1 Adding User Parameters to an XML Configuration File 74
13.5.2 Accessing User Parameters in a Project 74
13.5.3 User Parameters Technical Details, 75
14 PhysiCell Outputs 77
14.1 Virtual Pathology 7
14.1.1 SVG functions 7
14.1.2 Pathology functions L 80
14.1.3 Cell coloring functions Lo 81
14.1.4 Examples of custom cell coloring functions 82
14.1.4.1 Example: Black nucleus and oxygen-based cytoplasmic coloring 82

14.1.4.2 Example: Simulated immunohistochemistry with DAB and a hematoxylin
counterstaino Lo Lo 83
14.2 MultiCellDS digital simulation snapshots 84
14.2.1 Reading PhysiCell snapshots in MATLAB 87
14.3 Other outputs L 88
15 Key initialization functions 88
16 Key global data structures 89
16.1 Global strings e 89
16.2 Default microenvironment 89
16.3 Default cell definition 90
164 Alistofallcells. e 90
16.5 MultiCellDS options 91
16.5.1 Software metadata 92
16.5.2 Citation metadata 92
16.5.3 Person metadata L 93
16.6 SVG options e 93
16.7 PhysiCell Constants 94
16.8 User Parameters L 96
17 Standard models 96
17.1 Cell Cycle Models e 96

17.1.1 Live (1live)

code: PhysiCell constants::live cells cyclemodel) 96
17.1.2 Ki-67 Basic (Ki67_basic)
(Code: PhysiCell constants::basic Ki67 cyclemodel) 97
17.1.3 Ki-67 Advanced (Ki67_advanced)
(code: PhysiCell_constants::advanced Ki67_cyclemodel) 97
17.1.4 Flow Cytometry (flow_cytometry _cycle model)
(code: PhysiCell constants::flow_cytometry cyclemodel) 98
17.1.5 Flow Cytometry Separated (flow_cytometry _separated_cycle model)
(code: PhysiCell constants::flow cytometry separated cycle model) 99
17.1.6 Cycling-Quiescent (cycling quiescent)
(Code: PhysiCell constants::cycling quiescent model) 101
17.2 Death Cycle Models o 101
17.2.1 Apoptosis (apoptosis)
(code: PhysiCell constants::apoptosis_deathmodel) 101
17.2.2 Necrosis (necrosis)
(code: PhysiCell constants: :necrosis_deathmodel) 102
17.3 Volume model (standard volume update function) 103
17.4 Cell velocity model (standard update_cell velocity) 103
17.5 Up orientation model (up_orientation) 103
17.6 Oxygen-dependent phenotype
(update_cell_and_death parameters_ 02 based) 103
18 Functions for Random Events 104
19 Examples 106
19.1 Working with Cell functions 106
19.1.1 Example: a custom volume model 106
19.1.2 Example: a custom migration biaso 106
19.1.3 Example: a custom cell rule 107
19.1.4 Example: a custom phenotype update function 109
19.1.5 Example: a custom velocity update function 110
19.1.6 Example: analytical basement membrane functions 110
19.1.7 Example: a custom cell orientation function 110
19.2 Cell cycle models e 110
19.2.1 Creating a custom cell cycle model oo 110
19.2.2 Adding an arrest functiono L 111
19.2.3 Adding a custom phase entry function 111
20 Future 112
21 Some notes on parameter values 113
21.1 Live cycle model 113
21.2 Ki67 Basic modelo 114
21.3 Ki67 Advanced model 114
21.4 Flow Cytometry model 115
21.5 Separated Flow Cytometry model 115
22 Acknowledgements 116

Bibliography 116

1 Introduction and citing PhysiCell

This user guide will teach you how to download and use PhysiCell [3], as well as document the key classes
and functions. Wherever possible, it will demonstrate with specific examples. Please note that this guide
will be periodically updated. Users should check PhysiCell. MathCancer.org for the latest version. The
PhysiCell method paper was published in PLoS Computational Biology [3].

If you use PhysiCell, please cite it as:

We implemented and solved our model using PhysiCell (Version 1.6.1) [1].

[1] A. Ghaffarizadeh, R. Heiland, S.H. Friedman, S.M. Mumenthaler, and P. Macklin.
PhysiCell: an Open Source Physics-Based Cell Simulator for 3-D Multicellular Systems,
PLoS Comput. Biol. 14(2): €1005991, 2018. DOI: 10.1371/journal.pchi.1005991.

Because PhysiCell makes extensive use of BioFVM, we suggest you also cite it:

We implemented and solved the model using PhysiCell (Version 1.6.1) [1], with BioFVM
2] to solve the transport equations.

[1] A Ghaffarizadeh, R Heiland, SH Friedman, SM Mumenthaler, and P Macklin.
PhysiCell: an Open Source Physics-Based Cell Simulator for Multicellular Systems, PLoS
Comput. Biol. 14(2): 1005991, 2018. DOI: 10.1371/journal.pcbi.1005991

[2] A Ghaffarizadeh, SH Friedman, and P Macklin. BioFVM: an efficient parallelized
diffusive transport solver for 3-D biological simulations, Bioinformatics 32(8): 1256-8, 2016.
DOI: 10.1093/bioinformatics/btv730

Please remember: if you use an additional addon, please make sure to cite it, too! This is critical for
scientific rigor (to correctly document your method), reproducibility, and good academic behavior.

We have started testing methods to auto-generate suggested citations for addons; see the auto-generated
CITATION.txt when you run your model. This will be further developed in future versions of PhysiCell.

[Return to Table of Contents.]

2 Getting started: The Quickstart and your First Simulation

As of Version 1.2.2, every download of PhysiCell includes a Quickstart.pdf guide in the root directory. If
you follow the instructions in that guide (along with instructions to set up your compiler and environment;
see Section 4), you should be able to run and visualize your first PhysiCell simulation (heterogeneous tumor
growth) in well under an hour.

You should also watch the #PhysiCell hashtag on Twitter for updates on PhysiCell and new tricks, tips, and
tutorials. Tutorials and other blog posts can be found at http://MathCancer.org/blog/physicell-tutorials/.
See Section 3 for resources for help, including support tickets and the PhysiCell blog.

http://PhysiCell.MathCancer.org
https://dx.doi.org/10.1371/journal.pcbi.1005991
https://dx.doi.org/10.1371/journal.pcbi.1005991
https://dx.doi.org/10.1093/bioinformatics/btv730
https://twitter.com/search?f=tweets&vertical=default&q=PhysiCell&src=typd
http://mathcancer.org/blog/physicell-tutorials/

[Return to Table of Contents.]

3 Further resources for help

The PhysiCell project posts tips and tutorials at its blog:
http://www.mathcancer.org/blog/physicell-tutorials/

Users are encouraged to frequently visit the blog for these tips. This user manual may be updated more
frequently than PhysiCell. Please check the PhysiCell project website for updates:

http://PhysiCell. MathCancer.org
Lastly, users can support help tickets at SourceForge:

https://sourceforge.net /p/physicell /tickets/

[Return to Table of Contents.]

4 Preparing your development environment

PhysiCell was designed to be cross-platform compatible, without need for a package manager system or any
other complex installation. In principle, any C++11 compliant compiler with OpenMP support should work.
In practice, we use g++ as our “gold standard.” You’'ll also want to ensure that your build environment
supports makefiles. Command-line zip/unzip is also helpful, but not required.

Please note that OSX (and its associated developer tools) ships with “g++” instead of g++: it uses
LLVM/Clang and an alias to pretend to be g++. Unfortunately, the version of LLVM/Clang that Ap-
ple ships does not fully support OpenMP, and so compiling can fail on those platforms without further
setup. For OSX, we recommend following our Homebrew-based tutorial to install real g++.

Full tutorials on installing a 64-bit g++/OpenMP environment (on Windows via mingw-w64 and on OSX
using Homebrew) can be found at:

http://www.MathCancer.org/blog/physicell-tutorials/

Most linux users should already have a 64-bit g++ environment installed by default.

[Return to Table of Contents.]

4.1 Special notes for OSX users

As of Version 1.2.2, OSX users no longer need to modify the CC definition in the makefiles—this represents a
significant simplification for those users. However, OSX users (including those who have already installed
g++ by Homebrew of MacPorts) need to perform a one-time setup of an environment variable. Open your
terminal, and run the following commands:

http://www.mathcancer.org/blog/physicell-tutorials/
http://PhysiCell.MathCancer.org
https://sourceforge.net/p/physicell/tickets/
http://www.mathcancer.org/blog/physicell-tutorials/

export PHYSICELL_CPP=your_compiler_name
echo export PHYSICELL_CPP=your_compiler_name >> ~/.bash_profile

your_compiler_name will be something like g++-7 for Homebrew installations, and something like g++-mp-7
for MacPorts installations.

See the tutorials at http://www.MathCancer.org/blog/physicell-tutorials/ for more details. Also, if you
have compiler crashes, see the FAQ (frequently asked questions) at:

http://www.mathcancer.org/blog/common-problems-and-solutions/

[Return to Table of Contents.]

4.2 Virtual Machine option

Starting with the 1.2.x releases, we began distributing PhysiCell as zipped source (preferred) and virtual
appliances for use in VirtualBox and other virtual machine software, allowing us to distribute a full
PhysiCell development environment (including 64-bit g++, support for makefiles, zip/unzip, ImageMagick,
mencoder, eog, a text editor, and the most up-to-date version of PhysiCell). This should make it simpler
to start learning and using PhysiCell, even in cases where developers are not free to install or modify their
own build environments, or have difficulty installing and configuring g++.

Please visit the PhysiCell blog for information on running VirtualDub and using the virtual appliance.
(Section 3).

Note that we do not update the Virtual Box distribution; you should download the latest PhysiCell version
from inside your virtual machine.

[Return to Table of Contents.]

4.3 Suggested tutorials and resources

Working in PhysiCell requires some knowledge of C++, Makefiles, and command-line routines in Unix-like
systems. If you are not familiar with these skillsets, we recommend the following resources:

4.3.1 Linux and Makefile tutorials

1. A tutorial on learning the Linux shell: http://linuxcommand.org/lc3_learning_the_shell.php
In particular, I recommend:

(a) What is “The Shell”?
(b) Navigation

(¢) Looking Around

(d) Manipulating Files

2. UNIX Tutorial for Beginners: http://www.ee.surrey.ac.uk/Teaching/Unix/
In particular, I suggest the following:

http://www.mathcancer.org/blog/physicell-tutorials/
http://www.mathcancer.org/blog/common-problems-and-solutions/
http://virtualbox.org
http:/PhysiCell.MathCancer.org/blog/physicell-tutorials
http://linuxcommand.org/lc3_learning_the_shell.php
http://linuxcommand.org/lc3_lts0010.php
http://linuxcommand.org/lc3_lts0020.php
http://linuxcommand.org/lc3_lts0030.php
http://linuxcommand.org/lc3_lts0050.php
http://www.ee.surrey.ac.uk/Teaching/Unix/

a) Tutorial 1 (navigation, creating directories, etc.)
b) Tutorial 2 (
(
(

(a)

(b)

(c¢) Tutorial 4
)
)

moving, copying files, etc.)
wildcards, filename conventions, etc.)
(d) Tutorial 7 (compiling and running software, etc.)

(e) Tutorial 8 (UNIX and environment variables, etc.) (Note: May not work in Windows/MinGW.)
3. The GNU Bash Reference Manual: http://www.gnu.org/software/bash /manual /bash.html
4. A good makefile tutorial: http://www.cprogramming.com /tutorial /makefiles.html
5. Another good makefile tutorial: http://mrbook.org/blog/tutorials/make/
6. One more makefile tutorial: http://makefiletutorial.com/

7. The GNU Make Reference: https://www.gnu.org/software/make/manual/make.html

[Return to Table of Contents.]

4.3.2 C+H+ references

The following websites are good references for C++:

1. CPlusPlus.com: http://www.cplusplus.com/
Excellent, detailed documentation on C++, as well as tutorials.

2. C++ Reference: http://en.cppreference.com/w/
Another good reference guide to C++.

3. LearnCpp.com: http://www.learncpp.com/
A series of tutorials on C++.

4. StackOverflow (C++ tag): https://stackoverflow.com/questions/tagged/c%2b%2b
A sometimes overwhelming resource for problem solving in C++.

5. C++ section on CodeGuru: http://www.codeguru.com/cpp/cpp/

[Return to Table of Contents.]

4.3.3 Matlab tutorials

If you use Matlab for visualization and/or postprocessing, we recommend:
1. MATLAB tutorials at Mathworks:
https://www.mathworks.com /academia/student_center /tutorials/mltutorial launchpad.html
2. Introduction to MATLAB for Engineering Students: http://bit.ly/2cQBXDc

3. A Beginner’s Guide to MATLAB: http://homen.vsb.cz/ 1lud0016/NM /matlab_guide.pdf
(By Christos Xenophontos at Loyola College).

http://www.ee.surrey.ac.uk/Teaching/Unix/unix1.html
http://www.ee.surrey.ac.uk/Teaching/Unix/unix2.html
http://www.ee.surrey.ac.uk/Teaching/Unix/unix4.html
http://www.ee.surrey.ac.uk/Teaching/Unix/unix7.html
http://www.ee.surrey.ac.uk/Teaching/Unix/unix8.html
http://www.gnu.org/software/bash/manual/bash.html
http://www.cprogramming.com/tutorial/makefiles.html
http://mrbook.org/blog/tutorials/make/
http://makefiletutorial.com/
https://www.gnu.org/software/make/manual/make.html
http://www.cplusplus.com/
http://en.cppreference.com/w/
http://www.learncpp.com/
https://stackoverflow.com/questions/tagged/c%2b%2b
http://www.codeguru.com/cpp/cpp/
https://www.mathworks.com/academia/student_center/tutorials/mltutorial_launchpad.html
https://www.mccormick.northwestern.edu/documents/students/undergraduate/introduction-to-matlab.pdf
http://homen.vsb.cz/~lud0016/NM/matlab_guide.pdf

4. MATLAB Academy: https://matlabacademy.mathworks.com/7s_eid=ppc_23223967642
5. MATLAB Tutorial: https://www.tutorialspoint.com/matlab/

6. Octave: If you do not have access to MATLAB or prefer an open source alternative, have a look at
this cross-platform package:
https://www.gnu.org/software/octave/

[Return to Table of Contents.]

4.3.4 VirtualBox and related information (virtual appliances)

If you use the virtual appliance, we suggest the following tutorials and resources:

1. VirtualBox: http://virtualbox.org
This is an excellent cross-platform (Windows, Linux, OSX, etc.) virtual machine software that can
import the virtual appliance version of PhysiCell.

2. Alpine Linux: https://alpinelinux.org/
Alpine Linux is a lean and secure version of linux we installed in the PhysiCell virtual appliance.

3. Alpine Linux Wiki: https://wiki.alpinelinux.org
A helpful site for using Alpine Linux.

4. VirtualBox shared folders in Alpine:
https://wiki.alpinelinux.org/wiki/VirtualBox_shared _folders

5. Alpine Linux users forum: https://forum.alpinelinux.org/

6. XFCEA4 project: https://xfce.org/
We use the XFCE4 desktop environment in our virtual appliance, so this may be helpful.

[Return to Table of Contents.]

4.3.5 Recommended additional tools

Lastly, we find the following tools and resources very useful for postprocessing and visualization:

1. ImageMagick is a cross-platform image manipulation suite, which can (among other things) resize
and crop images, change formats, and insert text labels. In PhysiCell, ImageMagick is especially
useful for converting SVG files to PNG, JPG, or other raster-based formats for further animation.

e URL: http://imagemagick.org

e Typical use: magick mogrify -format jpg snapshot*.svg
(Converts all files of the form snapshot*.svg to the png format.)

e Typical use: magick snapshot*.jpg animation.gif
(Combines all snapshot*.jpg files into a (huge!) animated gif file.)

https://matlabacademy.mathworks.com/?s_eid=ppc_23223967642
https://www.tutorialspoint.com/matlab/
https://www.gnu.org/software/octave/
http://virtualbox.org
https://alpinelinux.org/
https://wiki.alpinelinux.org/
https://wiki.alpinelinux.org/wiki/VirtualBox_shared_folders
https://forum.alpinelinux.org/
https://xfce.org/
http://imagemagick.org

2. Mencoder is a cross-platform, open source mpeg encoder, useful for creating compressed movies.
In PhysiCell, we use mencoder to convert series of simulation snapshots to movies.

e URL (Linux): Use your package manager to install mplayer (which includes mencoder).
e URL (OSX): Use Homebrew or MacPorts to install mplayer (which includes mencoder).
e URL (Windows): http://mplayerwin.sourceforge.net/

e Typical use:
mencoder "mf://snapshot*.jpg" -ovc lavc -lavcopts
vcodec=mpegd:vbitrate=10000:mbd=2:trell -mf fps=24:type=jpg -nosound -o out.avi
(Converts all the snapshot™.jpg files into an mpeg4-encoded movie named out.avi, with a 8kbps
variable bit rate and 24 frames per second.)

[Return to Table of Contents.]

5 Overall codebase structure

PhysiCell was created by extending the Basic_Agent class in BioFVM [2] to include a fuller cell phenotype
and force-based cell motion. In the overall software philosophy, we structure PhysiCell in several critical
subdirectories:

1. BioFVM This includes a working copy of the BioF VM multi-substrate diffusion code [2]. Users should
be able to fully replace these files with any later version of BioF VM. Note that BioFVM distributions
also include pugixml (an efficient cross-platform XML parser) [6].

2. beta This directory is used for beta functionality used by our team during testing and development.
Use at your own risk!

3. config This directory is used for XML configuration files with. Any custom configuration files
should be placed in this directory.

4. core The core library files for PhysiCell are kept in this directory. Users should not modify functions
in the core library.

5. custom modules This directory is the right place to put custom user code. Moreover, users should
list their custom code files in custom_modules/PhysiCell_custom.h.

6. modules This is where we place non-core (but helpful) standard code modules for distribution with
PhysiCell. Currently, we include pathology, MultiCellDS [1], and SVG (scalable vector graphic)
functions. Future releases may include basic modules for extracellular matrix.

The following subdirectories are also included:

1. archives If you use the make zip or make archive rules, the compressed archives will be placed
here.

2. documentation This directory includes user guides (like this one!).

3. matlab This includes basic Matlab files for handling PhysiCell outputs. (This and other postpro-
cessing will be a major PhysiCell focus over the next few years.)

10

http://mplayerwin.sourceforge.net/

4. examples The examples from the PhysiCell method paper will be placed here. They may not
necessarily be updated for compatibiltiy with every PhysiCell release. (They are currently compatible
up to version 1.1.1.)

5. licenses License files for BioFVM [2], pugixml [6], PhysiCell, and any other (BSD-compatible)
dependencies are kept here.

6. output Some examples will put their outputs here.

7. povray This includes some basic utilities for visualization by povray (an open source raytracing
package) [9].

8. sample_projects This directory includes sample projects, including 2D and 3D template projects
and at least the four sample projects in [3]. A good start to a new project is to use the make template2D
or make template3D makefile rules, which will populate the main.cpp, Makefile, and ./custom_modules
with appropriate codes to get started. See Section 6 for more information on the template projects,
and Section 7 for the full list of sample projects and instructions to build them.

5.1 Time step sizes in PhysiCell

PhysiCell uses three time step sizes:

1. diffusion_dt is the step size used in the diffusion solver, including the secretion and uptake pro-
cesses. The default value is 0.01 min.

2. mechanics_dt is the step size for the cell mechanics solver, including cell motility. Each cell’s custom
function is also evaluated on this time scale. The default value is 0.1 min.

3. phenotype_dt is the step size for phenotype processes (e.g., cycle progression, volume changes). The
default value is 6 min.

As of PhysiCell 1.6.1, these values can be set in the XML configuration file. See Section 13.3.

[Return to Table of Contents.]

6 Using project templates

As of Version 1.1.0, PhysiCell includes templates for 2-D and 3-D projects. These template projects set up
all the critical BioFVM (microenvironment) and PhysiCell data structures and give examples on seeding
a few cells. When beginning a new project with PhysiCell, we strongly recommend starting with these
templates.

To start a new 2-D project (based on the template), go to the command line in the root PhysiCell directory,
and run:

make template2D

This will populate a starting project from the files in ./sample_projects/template2D/. In particular, it
will overwrite the Makefile, copy template_projects/template2D.cpp to main.cpp in the root direc-
tory, and copy the contents of . /sample_projects/template2D/custom_modules/ to ./custom_modules.
Note that the Makefile has been modified to include the custom modules:

11

put your custom objects here (they should be in the custom_modules directory)
PhysiCell_custom_module_0OBJECTS := custom.o

and later in the Makefile ...

user-defined PhysiCell modules

custom.o: ./custom_modules/custom.cpp
$ (COMPILE_COMMAND) -c ./custom_modules/custom.cpp

In general, your project should modify main.cpp, but primarily add custom codes to ./custom_modules,
just as this example. (For example, you might define your own angiogenesis functions in
./custom_modules/angiogenesis.h, implement the functions in ./custom_modules/angiogenesis.cpp,
and then modify the Makefile to include it:

put your custom objects here (they should be in the custom_modules directory)
PhysiCell_custom_module_OBJECTS := custom.o angiogenesis.o

and later in the Makefile ...

user-defined PhysiCell modules

custom.o: ./custom_modules/custom.cpp
$ (COMPILE_COMMAND) -c ./custom_modules/custom.cpp

angiogenesis.o: ./custom_modules/angiogenesis.cpp
$ (COMPILE_COMMAND) -c ./custom_modules/angiogenesis.cpp

This is the recommended structure for a project.
Once you're ready, build the project by typing
make

By default, the executable will be called project2D (project2D.exe on windows). To change the name
of the executable, modify the PROJECT_NAME variable in the Makefile.

To start a new 3-D project based on a template, type make template3D and continue as before.
Now, run the code:
./project2D

(in Windows, omit the “./”.) This will generate (among other things) a series of SVG images that visualize
the simulation once per hour.

More examples will be introduced on the PhysiCell blog. See Section 3.

[Return to Table of Contents.]

12

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

7 Using the Sample Projects

PhysiCell includes several sample projects to illustrate capabilities and suggest modeling possibilities. In
general, building and running these projects consists of the following steps:

1. Populate a project: Use the following Makefile rule (from a terminal / command project in your
PhysiCell root directory):

make [project_name]

where [project_name] is one of the sample projects listed below. For example, to populate the
“cancer biorobots” sample project:

make cancer-biorobots-sample

2. Build the project: Just run make:
make
3. Run the project: Run the executable created by the compiler. If the name of the program is
[PROGRAM_NAME], run
./ [PROGRAM_NAME]
(Windows users should omit the ./.)
One simple way to determine the name of the executable is to use grep on the Makefile:
grep PROGRAM_NAME Makefile

For example, to run the cancer biorobots example, the executable name is cancer_biorobots, so
you run:

./cancer_biorobots
The project will create a series of SVG images files, as well as MultiCellDS save files (a combination
of matlab and XML files). See 14.2.1 and the PhysiCell blog.

4. (Optional) Clear out the project / return to a clean slate: If you want to build and run
a different sample project, or clear out the sample materials to create your own, you need to “de-
populate” the sample project:

make reset

Here are the sample projects included as of Version 1.2.2:

1. biorobots-sample is a 2-D example of 3 cell types: cargo cells, worker cells (which seek out cargo
cells and haul them to a destination), and director cells (which attract worker cells).

2. cancer-biorobots-sample extends the biorobots example to (1) simulate a 2-D tumor that de-
velops a necrotic core, (2) so that cargo cells are hauled towards hypoxic tumor regions, and (3) so
that released cargo cells secrete a chemotherapeutic compounds.

3. heterogeneity-sample simulates a 2-D tumor with heterogeneous “genetics” that drive differential
proliferation.

13

. cancer-immune-sample extends the heterogeneity example to 3D, and introduces a new immune
cell type (modeling T cells) that migrate towards tumor cells, temporarily adhere, test for immuno-
genicity, and initiate apoptosis.

. virus-macrophage-sample simulates a basic virus that diffuses, is uptaken by cells, replicates, and
then is released in cell lysis. Macrophages eat and degrade infected cells. This is a test of internalized
substrate tracking first released in PhysiCell 1.5.0.

. beta-testing is a small project that can be used for beta testing new features. Don’t count on it

remaining unchanged from release to release.
7. template2D is the template for a 2-D project. See Section 6.

8. template3D is the template for a 3-D project. See Section 6.

[Return to Table of Contents.]

7.1 Extra makefile rules

To clear out the data generated in a simulation:

make data-cleanup

To clear out the compiler-generated objects (which would allow you to recompile the entire project):
make clean

To reset to a clean slate (e.g., to clear out a sample project and populate another):

make reset

To get a list of all sample projects:

make list-projects

[Return to Table of Contents.]

8 The BioFVM microenvironment

PhysiCell is built upon BioFVM [2], and so it uses the (bio)chemical microenvironment from BioFVM,
including diffusion, decay, cell-based secretions/uptake, and bulk supply/uptake functions. All PhysiCell

projects already include bioF'VM once you have included PhysiCell:
#include "./core/PhysiCell.h"

We also suggest using the BioFVM and PhysiCell namespaces:

using namespace BioFVM;
using namespace PhysiCell;

14

8.1 Notes on the microenvironment

BioFVM divides the simulation domain into a collection of non-intersecting voxels: volumetric pixels.
Each voxel has a unique integer index: this is its unique address, for quickly accessing its information. As
particularly notable information, each voxel stores its own position (center) and volume.

BioFVM adds one or more diffusible substrates to this microenvironment. Each substrate has a diffusion
coefficient and decay rate. At present, these are homogeneous throughout the microenvironment, although
improvements are planned for BioFVM to have spatially variable diffusion coefficients. In BioFVM, each
substrate diffuses and decays, and can be secreted or uptaken by individual cells (see Section 11.7) at their
individual positions. As of PhysiCell 1.5.0, each cell can track the total amount of each substrate secreted
and uptaken, and pass half of it contents to its two daughter cells at division. Users can optionally set
PhysiCell to release the cell’s internalized substrates at the end of death or lysis. You can also set bulk
uptake and secretion functions, which are applied in each voxel. These are not used in the current template
and sample PhysiCell projects. See [2] for more information.

For each voxel, we store a vector of chemical substrates (densities), and a vector of gradients (one gradient
vector for each substrate). Moreover, users can use “Dirichlet nodes” to overwrite the substrate values at
any voxel within the simulation domain. This is useful for modeling biotransport in irregular domains,
setting substrate values along blood vessels, or applying classical Dirichlet conditions along the outer edges
of the simulation domain. Note that without specifying Dirichlet conditions, BioF'VM applies Neumann
(no flux) conditions at the outer simulation boundaries.

[Return to Table of Contents.]

8.2 Setting up and using the microenvironment
8.2.1 Specifying the microenvironment via XML (PREFERRED METHOD)

As of PhysiCell version 1.6.0, the chemical microenvironment can be completely set up via the XML
configuration file. (See also Section 13.3 to learn about the XML structure.) This is now the preferred
method of setting up the chemical microenvironment, as it can be done without recompiling a PhysiCell
application and it provides easy access to modify the physical parameters (diffusion and decay rates),
boundary conditions, and initial conditions.

See Section 13.4 for full documentation, including examples.

All these properties can also be manually edited within a PhysiCell project via the C++ commands in
Section 8.2.2.

[Return to Table of Contents.]

8.2.2 Manual configuration via C+4++ function calls (LESS PREFERRED METHOD)

Within your main program loop (int main(int argc, char* argv[])), you need to declare and set up
a Microenvironment. (Here, we also include some useful tips for setting space and time units.) We make
use of BioFVM 1.1.5 improvements that include simplified setup functions.

15

8.2.2.1 Setting BioFVM options BioFVM 1.1.5 and later versions includes a data structure
(default_microenvironment_options, of type Microenvironment_Options) for setup options. This data
type is defined in BioFVM_microenvironment.h as:

class Microenvironment_Options

{

private:

public:
Microenvironment* pMicroenvironment;
std::string name;

std::string time_units;
std::string spatial_units;
double dx;

double dy;

double dz;

bool outer_Dirichlet_conditions;
std: :vector<double> Dirichlet_condition_vector;
std: :vector<bool> Dirichlet_activation_vector;

std: :vector<double> initial_condition_vector;

bool simulate_2D;

std: :vector<double> X_range;
std::vector<double> Y_range;
std::vector<double> Z_range;

Microenvironment_Options();
bool calculate_gradients;
bool use_oxygen_as_first_field;

bool track_internalized_substrates_in_each_agent;

+;

You can set these options either towards the top of your main program source file (e.g., in main.cpp) or
in a standalone setup function. See the sample projects for examples. Here is sample use, to set the tissue
name to “liver” and set up to 3D with Dirichlet conditions of oxygen = 38 mmHg:

/* Microenvironment setup */

default_microenvironment_options.name = "liver";
default_microenvironment_options.time_units = "min";
default_microenvironment_options.spatial_units = "micron";
default_microenvironment_options.dx = 20;

16

20;
20;

default_microenvironment_options.dy
default_microenvironment_options.dz

// set a Dirichlet outer boundary condition

default_microenvironment_options.outer_Dirichlet_conditions = true;
std: :vector<double> bc_vector(1 , 38.0); // 5% o2
default_microenvironment_options.Dirichlet_condition_vector = bc_vector;

// set the initial oxygen concentration (uniform in the domain) at 42 mmHg:
default_microenvironment_options.initial_condition_vector = {42.0 };

// stick with a 3-D simulation
default_microenvironment_options.simulate_2D = false;

// set the domain size

default_microenvironment_options.X_range = {-500, 500};
default_microenvironment_options.Y_range = {-400, 400};
default_microenvironment_options.Z_range = {-100, 100};

// turn off gradient calculations
default_microenvironment_options.bool calculate_gradients = false;

// track internalized oxygen
default_microenvironment_options.track_internalized_substrates_in_each_agent = true;

[Return to Table of Contents.]

8.2.2.2 Adding new diffusing substrates to the tissue environment By default, the BioFVM
microenvironment has a single substrate (with index 0). To add (append) a new substrate to the microen-
vironment, use one of these functions:

1. void Microenvironment::add density(void) Use this to add a new diffusing substrate (den-
sity), without setting any of its properties.

2. void Microenvironment::add density(std::string name , std::string units) Use this
to add a new substrate called name with units units. (e.g., crayons with units Megacrayolas).

3. void Microenvironment: :add density(std::string name , std::string units, double
diffusion constant, double decay rate) acts similarly as above, but also sets the diffusion
coefficient and decay rate. Generally, these should be in the same units as the simulation: by default,
pm?/min for diffusion and 1/min for decay.

You can also change the name, units, and properties for an existing substrate:

1. void Microenvironment::set_density(int index , std::string name , std::string
units) This function renames the substrate with index index to name, and sets its units to units.

17

2. void Microenvironment: :set _density(int index , std::string name , std::string
units , double diffusion constant , double decay rate) works as above, but also sets
the diffusion coefficient and decay rate.

For example,

// add a chemoattractant

microenvironment.add_density("chemoattractant", "dimensionless");
microenvironment.diffusion_coefficients[1] = 1e3;
microenvironment.decay_rates[1] = .1;

// add a therapeutic compound

microenvironment.add_density("drug", "dimensionless");
microenvironment.diffusion_coefficients[2] = 1le3;
microenvironment.decay_rates[2] = 0.15625;

// rename the first density to be glucose, and change parameters
microenvironment.set_density (0, "glucose", "dimensionless");
microenvironment.diffusion_coefficients[0] = 1e3;

microenvironment.decay_rates[0] = 0.05625;

You should always add or modify your substrates prior to initializing the microenvironment. See Section
8.2.2.3

[Return to Table of Contents.]

8.2.2.3 Initializing the BioFVM tissue microenvironment

// initialize BioFVM with these options
initialize_microenvironment();

BioFVM defaults to a 1 mm?® domain centered at (0,0,0) with Az = Ay = Az = 20 ym, simulating 3D
with no Dirichlet conditions and no gradient calculations, and minutes time units and micron space units.
If you call initialize_microenvironment() without setting units (see Section 8.2.2.1), these defaults
will be used.

The code also automatically chooses the correct 2D /3D diffusion solver, and sets the single diffusing field to
oxygen with diffusion coefficient 10°m?/min and decay coefficient 0.1 1/min (for a 1 mm diffusion length
scale in the absence of cells).

By the end of these commands, the default Microenvironment is set to microenvironment. You can get
this address at any time using the BioFVM command:

Microenvironment* get_default_microenvironment(void)

You'll also need to set up PhysiCell’s mechanics data structures (for cell-cell interaction testing) and match
them to BioF'VM:

18

/* PhysiCell setup */
// prepare PhysiCell mechanics data structures

// mechanics voxel size

double mechanics_voxel_size = 30;

Cell_Container* cell_container = create_cell_container_for_microenvironment (
microenvironment, mechanics_voxel_size);

Within your main program loop, you’ll want to make sure that BioFVM is being called to update the
biochemical environment:

while(t < t_max)
{

// main loop contents ...
// update the microenvironment

microenvironment.simulate_diffusion_decay(diffusion_dt);

// No longer needed as of BioFVM 1.3.1. Gradients

// are automaticaly calculated in the update_all_cells()

// function, as needed.

// if(default_microenvironment_options.calculate_gradients)
// { microenvironment.compute_all_gradient_vectors(); }

// physicell functions

t += diffusion_dt;

As of Version 1.2.0, PhysiCell has automated cell secretions/uptake as part of its phenotype updates.
There is no need to explicitly call the BioFVM cell-based functions in the main program loop.

As of Version 1.3.1, PhysiCell has automated calculation of gradients once per Afechanics Within the
update_all cells() functions. Users no longer need to explicitly calculate gradients. Just make sure you
enable them in your setup, via:

default_microenvironment_options.calculate_gradients = true;

Note that the PhysiCell template projects and sample projects already include these critical setup com-
mands. See Section 6.

[Return to Table of Contents.]

8.3 Sampling the microenvironment

To make it easier to write functions involving microenvironment substrates at any cell’s location, BioFVM
1.1.5 added the following function:

19

int Microenvironment::find density_index(std::string name) This allows you to find the
index of the substrate named name. Note that this function is case sensitive.

The following functions can access the substrates and their gradients in space:

int nearest _voxel _index(std::vector<double>& position) This returns the integer that iden-
tifies the microenvironment voxel containing the point at position.

std: :vector<double>& nearest density vector(std::vector<double>& position) This func-
tion returns the vector of substrates located nearest to position.

std: :vector<double>& nearest density vector(int voxel index) This function returns the
vector of substrates stored in the voxel with index voxel_index. See the nearest_voxel_index

std: :vector<double>& operator () (int n) This function can directly access the density vector
stored at voxel index n.

std::vector<gradient>& gradient vector(int n) This function accesses the vector of gradient
vectors at voxel index n.

std: :vector<gradient>& gradient vector(std::vector<double>& position) This function ac-
cesses the vector of gradient vectors at position.

Here’s an example of these functions in action:

bool bad_conditions(Microenvironment& M , int voxel_index)

{
// find the correct indices the first time you run this function
static int oxygen_index = M.find_density_index("oxygen");
static int glucose_index = M.find_density_index("glucose");
// find the oxygen gradient
std: :vector<double> gradient = M.gradient_vector(voxel_index) [oxygen_index];
static double oxygen_threshold = 2.5; // mmHg
static double glucose_threshold = 0.05; // dimensionless
if (M(voxel_index) [oxygen_index] < oxygen_threshold &&
M(voxel_index) [glucose_index] < glucose_threshold)
{ return true; }
return false;
}

There are several functions to help sample the microenvironment at a cell’s position. See Section 9.

[Return to Table of Contents.]

20

8.4 Dirichlet conditions

BioFVM also allows you to set constant conditions at any voxel. (These are called Dirichlet nodes.) The
relevant functions are:

1. void Microenvironment::add dirichlet node(int voxel_index,
std::vector<double>& value) adds a Dirichlet node at voxel voxel_index, so that (for
some Microenvironment M):

M(voxel_index) = value.
2. void Microenvironment: :update dirichlet node(int voxel index ,

std: :vector<double>& new_value) overwrites the (vector) value of the Dirichlet node at
voxel_index, so that

M(voxel_index) = new_value.
If the voxel was not previously a Dirichlet node, it is automatically changed to a Dirichlet node.
3. void Microenvironment::update dirichlet node(int voxel index ,

int substrate_index , double new_value) can be used to update a single substrate’s
dirichlet condition at specific voxel, rather than all of them.

4. void Microenvironment: :remove dirichlet node(int voxel_index) removes the Dirich-
let node at voxel voxel_index.

5. void Microenvironment: :apply dirichlet conditions(void) applies the previously set
Dirichlet conditions at all Dirichlet nodes.

6. bool& Microenvironment::is_dirichlet node(int voxel_index) returns true if there is
a Dirichlet node at voxel voxel_index.

BioFVM applies these Dirichlet conditions every time it evaluates the diffusion solver.

[Return to Table of Contents.]

8.4.1 Refined control of Dirichlet conditions

As of Version 1.2.1, you can now now control Dirichlet conditions on a substrate-by-substrate basis. That is,
you can apply the Dirichlet condition to just one or two substrates (e.g., oxygen in index 0 and doxorubicin
in index 12), while not applying them to the remaining substrates. For a microenvironment M, you can
set these options in the default_microenvironment_options (see Section 8.2.2.1) prior to initializing the
microenvironment, or at later times using the function

void Microenvironment: :set_substrate_dirichlet _activation(int substrate_index , bool
new_value) This function sets the substrate at index substrate_index to have/not have a Dirichlet
condition based on the true/false value of new_value.

For example:

21

\\ set options for the substrate with index 2 to false
default_microenvironment_options.Dirichlet_activation_vector[2] = false;
\\ initialize the microenvironment with the currently set options
initialize_microenvironment();

\\ set the Dirichlet conditions in substrate 1 to true.

get_default_microenvironment ()->set_substrate_dirichlet_activation(l,true);

Note that turning on or off a Dirichlet condition for a substrate applies it at all Dirichlet nodes for which
is_dirichlet_node(int voxel_index) is true.

[Return to Table of Contents.]

8.5 Setting the initial conditions

As of PhysiCell Version 1.5.0, users can use default_microenvironment_options.initial_condition_vector
to set the initial conditions for all substrates (uniformly) across the mesh. For example, suppose we have
substrates oxygen (units: mmHg) and glucose (dimensionless), and we want to use the initial conditions

(38, 0.83). We would insert this code within the setup_microenvironment () function, and prior to calling
initialize_microenvironment():

void setup_microenvironment(void)

{
// no gradients need for this example
default_microenvironment_options.calculate_gradients = false;
// set Dirichlet conditions
default_microenvironment_options.outer_Dirichlet_conditions = true;
// if there are more substrates, resize accordingly
std: :vector<double> bc_vector.Dirichlet_condition_vector = { 40.0, 1.0 };
// set initial conditions
default_microenvironment_options.initial_condition_vector = { 38.0 , 0.83 };
// initialize BioFVM
initialize_microenvironment();
return;

+

Note that users have not set default_microenvironment_options.initial_condition_vector prior
to calling initialize_microenvironment (), then BioFVM / PhysiCell reverts to its prior behavior: it

22

uses default_microenvironment_options.Dirichlet_condition_vector as a sensible default for initial
conditions.

[Return to Table of Contents.]

8.5.1 Setting a non-uniform initial condition

Users may want a non-uniform initial condition. This can be accopmlished by cycling through all voxels
and setting the substrate values. This must be performed after initialize_microenvironment () to avoid
being overwritten by the built-in behavior. For example, to set the initial oxygen to e~ 10, use code like
this:

void setup_microenvironment(void)

{
// no gradients need for this example
default_microenvironment_options.calculate_gradients = false;

// set Dirichlet conditions
default_microenvironment_options.outer_Dirichlet_conditions = true;

// if there are more substrates, resize accordingly
std: :vector<double> bc_vector.Dirichlet_condition_vector = { 40.0, 1.0 };

// set initial conditions
default_microenvironment_options.initial_condition_vector = { 38.0 , 0.83 };

// initialize BioFVM
initialize_microenvironment();

// set a new initial condition for oxygen

int k = microenvironment.find_density_index("oxygen"); // find its index
for(int n=0; n < microenvironment.number_of_voxels(); n++)

{

// x coordinate of the nth voxel’s center

X = microenvironment.mesh.voxels[n].center[0];

// access kth substrate of the nth voxel

microenvironment(n) [k] = exp(-x / 100.0);

b

return;

[Return to Table of Contents.]

8.6 Automated tracking of internalized substrates

As of PhysiCell 1.5.0, each individual Basic_Agent can track the net total amount of substrates uptaken
and secreted over its lifetime, conserving mass with the uptake/secretion terms in the governing PDEs in

23

[2]. By matching to system of PDEs in BioFVM (with the Dirac delta function approximation used in the
code), in any time step At, the total amount of net mass transferred from the i cell (sitting in voxel €2,)
into the microenvironment is given by:

At/ pdV = At/ W&(x—xi)<S,~o(p;‘—p)—UiOp>dV

= AtV (Sio (p} — p(x,) — Uso plx,)) 1

After comparing against the numerical implementation in BioFVM to calculate Ap, and multiplying this
by the volume of the voxel, we get that the net total change in external substrates between t and t + At is

Any = W ((1 — CQ)CO Pt Cl) ; (2)
2

where W), is the volume of the voxel, ¢; are internal constants already calculated for the BioFVM secre-
tion/uptake functions, and division of vectors is element-wise. For conservation of mass, the net change in
the cell’s internalized substrates is

_Wk((l—cz)opk—i-q)? (3)

Co

If default_microenvironment_options.track_internalized_substrates_in_each_agent = true, then
PhysiCell will automatically perform these calculations in every cell at every diffusion time step.

Note that users should access these internalized substrates via the molecular part of the cell’s phenotype.
See Section 11.8.

[Return to Table of Contents.]

8.6.1 Automated release of internalized substrates at cell death

Users can optionally set PhysiCell to release some or all of its internalized substrates at the end of cell
death or at lysis. This functionality is accessed through the Molecular portion of the Phenotype. See
Section 11.8.

[Return to Table of Contents.]

8.7 Other BioFVM resources

To learn more about using BioF'VM, take a look at the tutorials at:

http://mathcancer.org/blog/biofvm-tutorials/

[Return to Table of Contents.]

9 Cells

Each Cell is an extension of BioF'VM’s Basic_Agent class. As such, it has access to all the parent class’s
member data and functions. In PhysiCell, Cells have the following major parts:

24

http://mathcancer.org/blog/biofvm-tutorials/

1. std::string type_name: The name of the type of cell.

2. Custom Cell Data custom data: Custom data attached the cell, which may differ from other
cells. See Section 9.4.1.

3. Cell Parameters parameters: A set of standardized parameters (which may eventually be moved
into the cell’s phenotype). See Section 9.4.2.

4. Cell Functions functions: A collection of functions used for updating the cell phenotype, in-
cluding custom functions. See Section 9.4.3.

5. Cell State cell state: A small set of standard state variables, chiefly (basal-to-apical) orienta-
tion. See Section 9.4.4.

6. Phenotype phenotype: A hierarchical organization of the cell’s properties. This data element is
discussed in great depth in Section 10.

The following inherited member data and functions (from Basic_Agent) are especially helpful:

1. int ID is a unique integer identifier for the cell. No other cell now or in the future will have the
same ID.

2. int index is the cell’s current index in std: :vector<Basic_Agent*> all_basic_agents, the list
of all current Basic_Agents in the simulation.

3. int type is a user-specified (default 0) integer code to classify the cell’s type. Use these to quickly
compare if two cells are of the same or different types, or to perform type-specific operations on
them.

4. int get_current voxel index(void) returns the cell’s positional index in the BioFVM Mi-
croenvironment.

5. std::vector<double>& nearest _density vector(void) allows the user to directly access
(i.e., sample or modify) the vector of substrates at the cell’s position. This is useful building functions
that alter cell phenotype based on the microenvironment.

6. std::vector<double>& nearest gradient(int substrate _index) returns (by reference)
the gradient of the substrate with index substrate_index, at the cell’s current position. This is
useful for things like chemotaxis.

7. std::vector<gradient>& nearest gradient vector(void) returns a vector of all the sub-
strate gradients at the cell’s position. Each gradient is a std: :vector<double> of size 3.

8. void release_internalized substrates(void) immediately releases none / some / all in-
ternalized substrates to the cell’s position in extracellular space, according to the release fraction
specified in the phenotype. It sets all internalized substrate levels to zero thereafter. This function is
automatically called when a cell is about to be removed from the simulation, as long as internalized
substrate tracking is enabled. See Sections 8.6, 8.6.1, and 11.8. (Introduced in 1.5.2.)

Here is how the Cell class is defined in PhysiCell_cell.h:

25

class Cell : public Basic_Agent
{
private:
Cell_Container * container;
int current_mechanics_voxel_index;
int updated_current_mechanics_voxel_index;
public:
std::string type_name,

Custom_Cell_Data custom_data;
Cell_Parameters parameters;
Cell_Functions functions;

Cell_State state;
Phenotype phenotype;

void update_motility_vector(double dt_);
void advance_bundled_phenotype_functions(double dt_);

void add_potentials(Cellx);

void set_previous_velocity(double xV, double yV, double zV);
int get_current_mechanics_voxel_index();

void turn_off_reactions(double);

bool is_out_of_domain;
bool is_movable;

void flag for_division(void);
void flag_for_removal(void);

void start_death(int death_model_index);
void lyse_cell(void);

Cell* divide(void);
void die(void);
void step(double dt);
Cell();

bool assign_position(std::vector<double> new_position);
bool assign_position(double, double, double);

void set_total_volume(double);

double& get_total_volume(void);

// mechanics

void update_position(double dt);
std::vector<double> displacement;

26

void assign_orientation();

void copy_function_pointers(Cellx);

void update_voxel_in_container(void);
void copy_data(Cell x);

void ingest_cell(Cell* pCell_to_eat);

void set_phenotype(Phenotype& phenotype);
void update_radius();
Cell_Container * get_container();

std:

:vector<Cell*>& cells_in_my_container(void);

void Cell::convert_to_cell_definition(Cell_Definition& cd)

[Return to Table of Contents.]

9.1 Other member data

. bool is_out_of _domain is true if the cell is out of the simulation domain boundaries.

. bool is_movable indicates whether the cell is in a static position. Set this to true if you would

like PhysiCell to leave its position fixed and not evaluate the mechanics models for this cell. Note
that it can still exert adhesive and repulsive forces on other cells.

[Return to Table of Contents.]

9.2

Member functions

. void update motility vector(double dt_) updates the cell’s motility vector, based on the

following model:

First, check if the cell should change its direction of motility v,,,; within the next At time:

If is_motile == false set vt = 0 and exit.
Let s € U(0,1) be a random number from the uniform distribution on [0, 1].

If s < At/Tper or if At < Tper (Where T, is the cell’s mean persistence time), then continue.
Otherwise, leave v, unchanged and exit.

Choose a random direction & in 3-D:

i. Choose 6 € U(0,27) to be a random angle in [0, 27].

ii. Choose ¢ € U(0,7) to be a random angle in [0, 7]. If restrict_to_2D == true, set ¢ = 7.
iii. Set & = [sin(¢) cos(0), sin(¢) sin(#), cos(¢)].
Update the motility bias vector b and the bias b by calling
functions.update_migration_bias.

27

(f)

Set vt according to biased random motion:

B (1-0)&+0bb
Vot = SmotH<1 _ b)€ + be (4)

Here 0 < b < 1 is the motility bias (phenotype.motility.migration_bias), b is the migration
bias direction (phenotype.motility.migration_bias_direction), and spe is the migration
speed (phenotype.motility.migration_speed). See Section 11.6.

See Section 9.4.3 for more information on cell functions, and Section 11.6 for further details on cell
motility.

2. void advance bundled phenotype functions(double dt_) automatically runs the follow-
ing cell functions once every phenotype time step (by default, once per 6 simulated minutes):

(a)

(e)
(f)

Evaluate functions.update_phenotype to update the phenotype based upon the current sam-
pling of the microenvironment and any other parameters (e.g., cell-cell interactions). If
update_phenotype == NULL, this is skipped. See Section 10 for more information on the cell
phenotype class.

Advance the cell volume model by dt_ time by calling functions.volume_update_function.
Skip this step if functions.volume_update_function == NULL. See Section 11.3 for more
information on cell volume.

Update the cell geometry (radius, nuclear radius, surface area, etc.) by calling
phenotype.geometry.update. See Section 11.4 for more information on the cell geometry.

Check for death events in the next dt_ time (such as apoptosis and necrosis) by calling
phenotype.death.check_for_death. If the function returns true, set the cell’s current cycle
model to the appropriate death model, evaluate any death entry functions, and set motility to
zero. Cell secretions are set to zero, and cell uptake is cut by a factor of 10. (Users can make
further changes to secretion and uptake using entry_functions that are called at the start of
a death model phase. See Section 11.1.1.) See Section 11.2 for more information on cell death,
and see Section 11.1 on the general cycle class.

Advance the current cycle model, whether it is a (live) cell cycle model or a death cycle model,
by calling phenotype.cycle.advance_cycle. See Section 11.1 for more details.

If phenotype.flagged_for_removal == true, call flag_for_removal().
If phenotype.flagged_for_division == true, call flag_for_division().

See Section 9.4.3 for more details on these cell functions, and Section 19 for examples.

3. void add_potentials(Cell*) is used in the mechanics functions. Users should almost never call
this function.

4. void set_previous velocity(double xV, double yV, double zV) sets the cell’s previous
velocity (for use in Adams-Bashforth evolution of the cell position) to [xV,yV,zV]. Users are not
expected to ever need to call this function.

5. int

get_current mechanics voxel index() returns the index of the Container currently con-

taining the cell.

6. void turn off reactions(double) turns off all secretions and uptake by the cell.

28

10.

11.

12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. void flag for division(void) adds the cell to the list of cells that should divide at the next

opportunity.

. void flag for removal(void) adds the cell to the list of cells that should be removed from

the simulation at the next opportunity.

. void start death(int death model index) immediately kills the cell (with the death model

indicated by death_model_index), sets cell.phenotype.death.dead = true, sets motility to zero,
sets secretion to zero, cuts all uptake by a factor of ten, and executes any “entry” functions for the
associated death model. Note that this function does not by default set all the cell’s custom functions
to NULL.

This is the preffered method to trigger death in a cell.

void lyse cell(void) triggers immediate degradation and removal of the cell. If already en-
abled, none, some, or all of the cell’s internalized substrates will be released to the microenvironment,
as set in phenotype.molecular.fraction_released_at_death. See Section 11.8.

Cell* divide(void) performs cell division, and returns the memory address of the newly-
created cell.

void die(void) removes the cell from the simulation.
void step(double dt) is neither used nor implemented. It will be deprecated.

Cell () is the default constructor. Users should use the create_cell functions rather than this
constructor. See Section 9.3.

bool assign position(std::vector<double> new position) safely sets the cell’s position to
new_position. Always use this rather than directly editing position (inherited from Basic_Agent).

bool assign position(double, double, double) performs the same function as above, but
supplying the x, y, and z coordinates separately.

void set_total volume(double) safely sets the cell’s total volume. It also sets the cell’s sub-
volumes proportionally.

double& get_total volume(void) returns the cell’s current total volume, stored in
cell.phenotype.volume.total. It is not the preferred way to access this data, but it is provided
to overwrite the base Basic_Agent::get_total_volume function.

void update position(double dt) uses the cell’s current and previous velocities to safely
update the cell’s position, using the second-order Adams-Bashforth algorithm.

void assign orientation() sets the cell’s state.orientation according to its current model (if
any). See Section 9.4.3.

void copy _function pointers(Cell#*) overwrites the functions in functions with those from
the supplied Cell.

void update_voxel_in container(void) updates the cell’s position within the interaction test-
ing data structure.

void copy._data(Cell *) copies the member data (including custom_data, parameters, but not
phenotype from the Cell at Cellx.

29

24. void ingest_cell(Cell* pCell to_eat) allows a cell to ingest (e.g., phagocytose) a cell.
When this happens, the cell gains:

(a) all of the cell’s fluid volume;

(b) all of the cell’s nuclear solid and cytoplasmic solid volume (which are added to the nuclear
cytoplasmic solid volume);

(c) none, some, or all of the cell’s internalized substrates, as set in
pCell_to_eat->phenotype.molecular.fraction_transferred_when_ingested. See Section
11.8.

25. void set_phenotype(Phenotype& phenotype) is no longer used and will be deprecated. Users
can now safely overwrite the cell’s phenotype at any time.

26. void update_radius() is neither implemented nor used. It will be deprecated.

27. Cell Container* get_container() returns the memory address of the Cell_Container contain-
ing the cell.

28. std::vector<Cell*>& cells_in my container(void) returns (by reference) a vector of point-
ers to the cells in the current mechanics voxel. For performance reasons, we are giving users
direct access to the underlying data structures, rather than copies. It is critical that
users do not alter the underlying array of Cell*. Future releases of PhysiCell will provide
more refined access functions, including better lists of neighbors and lists of nearby mechanics voxels.

29. void convert_to_cell definition(Cell Definition& cd) converts the cell to match the
name, type, custom data, parameters, function, and phenotype stored in the Cell Definition in cd.
(See Section 9.4.5 for more information on cell definitions.) As of Version 1.2.2, this function does
not overwrite the is_movable, is_out_of_domain, and displacement data of the cell.

This function is particularly useful if you want to do thinks like stem cell hierarchies, where you
might “convert” a stem cell to a differentiated cell, each of which has been defined separately.

[Return to Table of Contents.]

9.3 Other key functions
The following are functions in the PhysiCell namespace (and are not members of the Cell class).

1. Cell* create cell(void) creates a new cell (with default Cell_Definition; see Section 9.4.5)
at (0,0,0) and registers it in all the relevant data structures. This is the safe way to create a new cell
in the simulation.

Example: Let’s create a cell (with the default Cell_Definition) at (15,27,-32):

Cell* pC = create_cell();
pC->assign_position(15,27,-32);

2. Cell* create cell(Cell Definition& cd) creates anew cell at (0,0,0) with parameters, phe-
notype, functions, and other properties specified in cd (See Section 9.4.5), and registers it in all the
relevant data structures. This is the safe way to create a new cell in the simulation.

Example: Let’s define a new type of cell (stem_cell), then create a new cell of this type at (15,27,-32):

30

// create a new cell definition
Cell_Definition stem_cell;

// Operations to set the properties and models
// of the stem_cell type go here.

// create a new stem_cell, and move it.
Cellx pC = create_cell(stem_cell);
pC->assign_position(15,27,-32);

. void delete cell(int) deletes the cell located at all_cells(int) and removes it from all
relevant data structures. This is the safe way to directly remove a cell from a simulation.

Example: Let’s check the 13th cell and delete it if a custom variable “infected” (See Section 9.4.1)
indicates that it is infected. (See Section 16.4 for more on the vector all_cells that lists the memory
addresses of all cells.)

Cellx pCell = (*all_cells)[13];

if (pCell->custom_datal["infected"] == true)
{
delete_cell(13);

. void delete cell(Cellx*) deletes the cell with located at Cell* and removes it from all relevant
data structures. This is the safe way to directly remove a cell from a simulation.

Example: Let’s check the 13th cell and delete it if a custom variable “infected” (See Section 9.4.1)
indicates that it is infected. (See Section 16.4 for more on the vector all_cells that lists the memory
addresses of all cells.)

Cellx pCell = (*all_cells)[13];

if(pCell->custom_datal["infected"] == true)
{
delete_cell(pCell);

[Return to Table of Contents.]

9.4 Important classes (except Phenotype)

9.4.1 Custom_Cell Data

This class allows users to dynamically add new custom data to individual cells, or to a Cell_Definition.
(See Section 9.4.5.) Here is the full class definition:

31

class Custom_Cell_Data
{
private:
std: :unordered_map<std::string,int> name_to_index_map;
friend std::ostream& operator<<(std::ostream& os, const Custom_Cell_Data& ccd);
public:
std: :vector<Variable> variables;
std: :vector<Vector_Variable> vector_variables;

int add_variable(Variable& v);
int add_variable(std::string name , std::string units , double value);
int add_variable(std::string name , double value);

int add_vector_variable(Vector_Variable& v);
int add_vector_variable(std::string name ,
std::string units , std::vector<double>& value);
int add_vector_variable(std::string name , std::vector<double>& value);

int find_variable_index(std::string name);

double& operator[](int i);
double& operator[](std::string name);

Custom_Cell_Data();
Custom_Cell_Data(const Custom_Cell_Data& ccd);

+;
Here are the main data elements and member functions, in greater detail:

1. std::vector<Variable> variables is a vector of variables (initially empty). A Variable has
the following form:

class Variable
{
private:
friend std::ostream& operator<<(std::ostream& os, const Variable& v);
public:
std::string name;
double value;
std::string units;

Variable();
};

2. std::vector<Vector Variable> vector_variables is a vector of vector variables (initially
empty). A Vector_Variable has the following form:

32

class Vector_Variable

{
private:
friend std::ostream& operator<<(std::ostream& os, const Vector_Variable& v);
public:
std::string name;
std: :vector<double> value;
std::string units;
Vector_Variable();
};

. int add_variable(Variable& v) adds the new variable v to the custom data, and returns the
index of the newly added variable.

Example:

Custom_Cell_Data ccd;
Variable v;

v.name = "sensitivity";
v.value = 0.3;
v.units = "dimensionless";

ccc.add_variable(v);

. int add variable(std::string name , std::string units , double value) addsanew
variable with name name, units units, and value value. It returns the index of the newly added
variable.

Example:

Custom_Cell_Data ccd;
ccd.add_variable("sensitivity", "dimensionless", 0.3);

. int add_variable(std::string name , double value) adds a new variable with name
name, unspecified units, and value value. It returns the index of the newly added variable.

Example:

Custom_Cell_Data ccd;
ccd.add_variable("sensitivity", 0.3);

. int add_vector _variable(Vector Variable& v) adds the new vector variable v to the cus-
tom data, and returns the index of the newly added variable.

Example:

33

10.

Custom_Cell_Data ccd;
Vector_Variable v;

v.name = "home";
v.value = {0,1,2};
v.units = "micron";

ccc.add_vector_variable(v);
int add _vector_variable(std::string name, std::string units,

std: :vector<double>& value) adds a new vector variable with name name, units units,
and (vector) value value. It returns the index of the newly added variable.

Example:

Custom_Cell_Data ccd;

std: :vector<double> myvec = {0,1,2};

ccc.add_vector_variable("home", "micron", myvec);

int add _vector_variable(std::string name , std::vector<double>& value) adds a

new vector variable with name name, unspecified units, and (vector) value value. It returns the
index of the newly added variable.

Example:

Custom_Cell_Data ccd;

std: :vector<double> myvec = {0,1,2};
ccc.add_vector_variable("home", myvec);

int find variable_index(std::string name) returns the index of the variable with name
name, if it exists. Note that this function is case sensitive.

Example:

Custom_Cell_Data ccd;

ccd.add_variable("oxygen" , "mmHg", 38.0);
ccd.add_variable("maple syrup" , "megayums", 1.2);

ccd.add_variable("VEGF", "dimensionless", 0.01);

int syrup_index = ccd.find_variable_index("maple syrup");
std::cout << ccd.variables[syrup_index].value << std::endl;

double& operator[](int i) access the ith scalar variable.

Example:

34

Custom_Cell_Data ccd;

ccd.add_variable("oxygen" , "mmHg", 38.0);
ccd.add_variable("maple syrup" , "megayums", 1.2);
ccd.add_variable("VEGF", "dimensionless", 0.01);

int syrup_index = ccd.find_variable_index("maple syrup");
std::cout << ccd.variables[syrup_index].value << std::endl;
std::cout << ccd[syrup_index] << std::endl;

. double& operator[](std::string name) access the scalar variable with name name. Note
that this function is case sensitive.

Example:
Custom_Cell_Data ccd;

ccd.add_variable("oxygen" , "mmHg", 38.0);
ccd.add_variable("maple syrup" , "megayums", 1.2);
ccd.add_variable("VEGF", "dimensionless", 0.01);

int syrup_index = ccd.find_variable_index("maple syrup");
std::cout << ccd.variables[syrup_index].value << std::endl;
std::cout << ccd[syrup_index] << std::endl;

std::cout << ccd["maple syrup"] << std::endl;

. Custom_Cell Data() is the default constructor. It creates a custom cell data structure with no
variables and no vector variables.

. Custom Cell Data(const Custom Cell Data& ccd) is the copy constructor, where the new
Custom_Cell_Data is initialized with all contents equal to ccd.
. Streaming: You can display a custom variable to any C++ streaming operator.

Example: We'll create a custom cell data structure called my_custom_data, add some scalar and
vector variables, and display it.

my_custom_data.add_variable("spring constant", "1/min" , 0.01);
my_custom_data.add_variable("relaxation rate", "1/min" , 7e-5);
my_custom_data.add_variable("strain", "micron" , 0.0);
my_custom_data.add_variable("integrated strain", "micron*min" , 0.0);
my_custom_data.add_variable("max strain", "micron" , 10.0);
my_custom_data.add_variable("max integrated strain", "micron*min" , 600.0);
my_custom_data.add_vector_variable("home" , "micron" , {0,0,0});

std::cout << my_custom_data << std::endl;
The output should look like this:

35

Custom data (scalar):

0: spring constant: 0.01 1/min

1: relaxation rate: 7.0e-005 1/min

2: strain: O micron

3: integrated strain: O micron*min

4: max strain: 10 micron

5: max integrated strain: 600 micron*min
Custom data (vector):

0: home: [0,0,0] micron

[Return to Table of Contents.]

9.4.2 Cell Parameters

This class stores standardized parameters for a Cell (or a Cell_Definition; see Section 9.4.5). In future
editions of PhysiCell, some of these may be moved into the phenotype. (See Section 10.) Here is the full
class definition:

class Cell_Parameters

{

private:

public:
double o02_hypoxic_threshold;
double o2_hypoxic_response;

double o02_hypoxic_saturation;

double o2_proliferation_saturation;
double o2_proliferation_threshold;

double o02_reference;

double 02_necrosis_threshold;
double 02_necrosis_max;

Phenotype* pReference_live_phenotype;

double max_necrosis_rate;
int necrosis_type;

Cell_Parameters();

Here are the main data elements and member functions, in greater detail:

1. double 02 hypoxic threshold is the oxygen value (in mmHg) below which hypoxic signaling
starts. (default: 15 mmHg, or about 2% oxygen).

02_hypoxic_saturation < 02_hypoxic_response < 02_hypoxic_threshold

36

10.

11.

12.

. double 02 hypoxic_response is the oxygen value (in mmHg) below which hypoxic responses are

observed (e.g., omics changes). (default: 8 mmHg)

02_hypoxic_saturation < o2_hypoxic_response < 02_hypoxic_threshold

. double 02 hypoxic saturation is the oxygen value (in mmHg) below which hypoxic responses

are at a maximum. (default: 4 mmHg)

02_hypoxic_saturation < o2_hypoxic_response < o2_hypoxic_threshold

. double 02 proliferation saturation is the oxygen value (in mmHg) above which the prolif-

eration rate is maximmized. No further oxygenation benefits the cell. (default: 160 mmHg, or 21%
standard culture conditions)

o2_proliferation_threshold < o2_reference < 02_proliferation_saturation

. double o2 proliferation threshold is the oxygen value (in mmHg) below which the prolifera-

tion ceases. (default: 5 mmHg)

o2_proliferation_threshold < o2_reference < 02_proliferation_saturation

. double 02 reference is the oxygen value that corresponds to the reference phenotype (see below).

(default: 160 mmHg)

o2_proliferation_threshold < o02_reference < 02_proliferation_saturation

. double o2 necrosis_threshold is the oxygen value at which necrosis starts. (default: 5 mmHg)

02_necrosis_max < o02_necrosis_threshold

. double 02 necrosis max is the oxygen value at which necrosis reaches its maximum rate. (default:

2.5 mmHg)

02_necrosis_max < o2_necrosis_threshold

. Phenotype* pReference live phenotype is a pointer to a Phenotype (See Section 10) which

will serve as reference values when oxygen is equal to 02_reference.

double max necrosis rate is the necrosis rate (in units 1/min) when the oxygen value dips below
02_necrosis_max.

int necrosis_type is used to decide between deterministic and stochastic necrosis.
(Use PhysiCell_constants: :deterministic_necrosis or
PhysiCell_constants::stochastic_necrosis.)

Cell Parameters() is the default constructor.

[Return to Table of Contents.]

37

9.4.3 Cell_Functions

This data structure attaches user-specified functions for key cell behaviors. Note that in PhysiCell, almost
all functions that act on cells take the form

void function(Cell* pCell, Phenotype& phenotype, double dt).

Ordinarily, phenotype = pCell->phenotype, but we allow these to be specified separately for cases where
pCell = NULL.

Here is the full class definition:

class Cell_Functions
{
private:
public:
Cycle_Model cycle_model;

void (*volume_update_function) (Cell* pCell, Phenotype& phenotype , double dt);
void (*update_migration_bias) (Cell* pCell,
Phenotype& phenotype, double dt);

void (*custom_cell_rule) (Cell* pCell, Phenotype& phenotype, double dt);
void (*update_phenotype) (Cell* pCell, Phenotype& phenotype, double dt);

void (*update_velocity) (Cell* pCell, Phenotype& phenotype, double dt);

void (*add_cell_basement_membrane_interactions) (Cellx pCell,
Phenotype& phenotype, double dt);

double (*calculate_distance_to_membrane) (Cell* pCell,
Phenotype& phenotype, double dt);

void (*set_orientation) (Cell* pCell, Phenotype& phenotype, double dt);

Cell_Functions();
}s

Here are the member data and functions in greater detail:

1. Cycle Model cycle model is the cell cycle model to be used for this cell (or Cell_Definition-—see
Section 9.4.5). The Cycle_Model class is discussed in greater detail in Section 11.1.3.

2. void (*volume update _function) (Cell* pCell, Phenotype& phenotype, double dt) is
a function pointer to a user-specified model of cell volume regulation, based upon the parameters
stored in phenotype.volume. See Section 11.3 for more detail. We recommend the reference model
in [3]: standard_volume_update_function.

3. void (*update migration bias)(Cell* pCell, Phenotype& phenotype,
double dt) is a function pointer to a user-specified model to set the migration bias direction,

38

e.g., towards a chemical gradient. See Section 11.6 for more detail. We give an example in Section
19.1.2.

4. void (*custom_cell rule)(Cell* pCell, Phenotype& phenotype, double dt) isacus-
tom function that is executed every time the cell updates its mechanics. We give an example in Section
19.1.3

5. void (*update_phenotype) (Cell* pCell, Phenotype& phenotype, double dt) is where
users should alter the cell’s phenotype based upon microenvironmental conditions. We give an ex-
ample in Section 19.1.4. We recommend the reference model
update_cell_and_death_parameters_02_based found in [3].

6. void (*update velocity)(Cell* pCell, Phenotype& phenotype, double dt) isa pointer
to a user-specified model to set the cell’s velocity, based upon the mechanics model. We recommend
standard_update_cell_velocity from [3].

7. void (*add_cell basement membrane_interactions) (Cell* pCell,
Phenotype& phenotype, double dt) modifies the cell’s velocity based upon interactions
with basement membrane given in this function. This function may change in future releases.

8. double (*calculate distance_to _membrane)(Cell* pCell,
Phenotype& phenotype, double dt); calculates the (signed) distance to the base-
ment membrane (e.g., by an analytic solution, via a level set function, or by other discrete means).

9. void (*set_orientation) (Cell* pCell, Phenotype& phenotype, double dt) is a user-
supplied function to update the cell’s orientation, based upon interactions wiht other neighbors or
other factors.

10. Cell Functions() is the default constructor.

[Return to Table of Contents.]

9.4.4 Cell_State

The Cell_State is a small collection of cell descriptors that do not neatly belong in the cell Phenotype.
Here is the full class definition:

class Cell_State

{

public:
std: :vector<Cell*> neighbors;
std: :vector<double> orientation;
double simple_pressure;
Cell_State();

}s;

And here are further details on the member data and functions:

39

1. std::vector<Cell*> neighbors is the memory addresses of all cells that are currently neighbors
of the cell (as determined by the adhesion interaction potential). This variable is not currently
updated in PhysiCell, but it will be in a future release.

2. std::vector<double> orientation is the cell’s current basal-to-apical orientation, as a unit
vector. Please note that if the cell’s phenotype.geometry.polarity = 0, then this state variable
has no meaning. Also note that in 2-D simulations, one should set orientation = {0,0,1}.

3. double simple pressure is a simple analog for mechanical pressure, nondimensionalized by a
scale. We define the dimensional pressure p; by

=g 2 I 5)

L JEN;

where N is the set of the neighbor cells of the cell, Fi" is the cell-cell “repulsive” imparted on cell ¢

by its neighbor j, and S; is the cell surface area. In [3, 7], we approximated Fi" by

d.: 2d..
Feer — o [— v) 6
il = (Ri—l—Rj) d;;’ (6)

where dij =X; =X and dij = |dzj’

To define a scale, suppose the cell is in close packing in 3D by equally-sized cells with total volume
V', mean radius R, maximal cross-sectional area A, and equal coefficient ¢, = .. for each neighbor

j. In 3D, the cell has 12 neighbors in a tight sphere packing. By [4], the equilibrium cell-cell distance
s in a 3-D confluent cell packing is

1 [24 o7 R2
S L \/ T[T 0052, (7)

2R R\ V3~ \4r2v3 V23

This defines a pressure scale:

i 2 i
c ™ C
D =12 (1~ [|— ~ (0.02729=<L,
Pi Si < \ 2\/§) 0.02729 Si (8>

Thus, we define a dimensionless analog of pressure by:

; 2
. Di 1 Cgcr dij
simple_pressure = — = E — 11— ——
Tpe-p ! Z_jz T ? GEN; C’écr (Rl + Rj
1=\/2v3 1

Cer (1 is ’
Ci Rl + Rj

~ 439.74 Z

]E./\/; CCr
439.74 . dii \?
Ceer Jen, i T A

4. Cell_State() is the default constructor.

40

9.4.5 Cell Definition

The Cell_Definition class allows users to define a cell type, including its default phenotype, and all its
custom functions. Users can then work on defining multiple cell types at the start of a simulation and
using these to initialize many cells at the start of a simulation (or during a simulation).

Here is the full class definition:

class Cell_Definition

{

private:

public:
int type;
std::string name;

Microenvironment* pMicroenvironment;

Cell_Parameters parameters;
Custom_Cell_Data custom_data;
Cell_Functions functions;
Phenotype phenotype;

Cell_Definition();
};

Here are the member data and functions in greater detail:

1. int type is a unique identifier for the cell type. It will be copied to the cell’s type.
2. std::string name is the “plain English” name of the cell type. It is copied to the cell’s type_name.

3. pMicroenvironment is a pointer to the simulation’s BioF'VM microenvironment, which is always
µenvironment.

4. parameters is defined in Section 9.4.2. It is copied to the cell’s parameters.
5. custom_data is defined in Section 9.4.1. It is copied to the cell’s custom_data.
6. functions is defined in Section 9.4.3. It is copied to the cell’s functions.

7. phenotype is defined in Section 10. It is copied to the cell’s phenotype.

8. Cell Definition() is the default constructor.

[Return to Table of Contents.]

41

10 Phenotype

The Phenotype is one of the most important components of a cell in PhysiCell, allowing us to specify the
current state and properties of a cell. Most functions in PhysiCell are based upon either updating the
phenotype or advancing the simulation based upon each cell’s current phenotype.

The Phenotype is divided into multiple functional groups:

. Cycle gives cell cycle information, including the graph structure of the cycle model, associated

parameter values (transition rates), and information on the current cycle phase. See Section 11.1.
Note that for a dead cell, the “cycle model” is set to a death model.

. Death gives current cell death rates for one or more death models. See Section 11.2.

. Volume gives the cell’s current total volume, as well as nuclear, cytoplasmic, fluid, and other sub-

volumes. See Section 11.3.

. Geometry records the cell’s radius, nuclear radius, and surface area (using spherical approxima-

tions). See Section 11.4.

. Mechanics records the cell’s adhesion and repulsion strength parameters for interactions with cells

and the basement membrane, as well as the maximum adhesive interaction distance (a multiple of
the cell’s equivalent radius). Future releases of PhysiCell will likely expand this aspect of the cell
phenotype. See Section 11.5.

. Motility records phenotype information on motility, currently including persistence, a direction for

biased random walks (e.g., chemotaxis), and a scalar bias parameter that can vary motility between
purely Brownian and completely deterministic along the current bias direction. See Section 11.6.

. Secretion records cell secretion and uptake rates, as well as a saturation density (at which secretion

ends). See Section 11.7.

. Molecular is used to model molecular-scale details, particularly tracking internalized substrates. In

future versions of PhysiCell, molecular-scale models (e.g., SBML models) will likely be attached here.
See Section 11.8.

Here is how the Phenotype class is defined in PhysiCell_phenotype.h:

class Phenotype

{

private:
public:

bool flagged_for_division;
bool flagged_for_removal;

Cycle cycle;

Death death;

Volume volume;
Geometry geometry;
Mechanics mechanics;

42

Motility motility;

Secretion secretion;

Molecular molecular;

Phenotype() ;

void sync_to_functions(Cell_Functions& functions);

void sync_to_microenvironment(Microenvironment* pMicroenvironment);

void sync_to_default_functions(void);

};

In the Section 11, we give further details on the data elements within the Phenotype class.

[Return to Table of Contents.]

10.1 Member functions

1. Phenotype () is the default constructor.

2. void sync_to_functions(Cell Functions& functions) makes sure that phenotype.cycle
is matched to the cycle model and parameters in functions.cycle_model. See Section 11.1 for more
details on the cycle model.

3. void sync_to_microenvironment(Microenvironment* pMicroenvironment) bundles all func-
tions (currently in Secretion and Molecular) that need to sync the phenotype with the microenvi-
ronment. This function is not yet needed, as syncing is performed automatically in the appropriate
constructors.

4. void sync_to default functions(void) is neither implemented nor used, because default
constructors take care of this. The function will be deprecated.

[Return to Table of Contents.]

11 Phenotype details

11.1 Cycle Models

Cycle stores the graph structure and parameters of the current cycle model, which can either be a cell
cycle model or a death cycle model. It also includes member functions to progress through the cycle,
and call appropriate cell division or removal functions. Before introducing Cycle (Section 11.1.5), we will
detail the sub-classes necessary to work with a cycle model. All these data structures have been introduced
with the goal of separating the graph structure of a cycle model (Cycle_Model: Section 11.1.3) from its
parameter values (Cycle_Data: section 11.1.4), while still bundling them in a simple structure (Cycle:
Section 11.1.5) for use in a Phenotype.

A Cycle_Model is constructed of one or more Phases (Section 11.1.1) that are connected into a directed
graph by Phase_Links (Section 11.1.2).

43

[Return to Table of Contents.]

11.1.1 Phase

The Phase class defines the phase in a cycle model, including the following data elements:

1. int index is an internal unique index within a cycle model.

2. int code is a unique global identifier for the phase, using constants defined in
PhysiCell_constants.h using PhysiCell_constants. See Section 16.7.

3. std::string name is the “plain English” name of the phase (e.g., GO/G1).

4. bool division_ at_phase_exit is a Boolean variable that indicates whether the cell should divide
at the end of this phase (e.g., at the end of M phase).

5. bool removal_at_phase_exit is a Boolean variable that indicates whether the cell should be re-
moved at the end of this phase (e.g., at the end of apoptosis).

6. void (*entry function)(Cell* pCell, Phenotype& phenotype, double dt) is a pointer
to a function that is executed at the start of the phase. This would be a good place to write a
function to perform mutations (e.g., at the start of GO/G1, randomly choose selected phenotype
parameters according to a distribution).

Here is the formal class declaration:

class Phase

{
public:
int index;
int code;
std::string name;
bool division_at_phase_exit;
bool removal_at_phase_exit;
void (*entry_function)(Cell* pCell, Phenotype& phenotype, double dt);
Phase();
I

11.1.1.1 Member functions

1. Phase() is the default constructor. It sets index = 0, code = 0, name = "unnamed", all flags to
false, and the entry function to NULL.

[Return to Table of Contents.]

44

11.1.2 Phase_Link

The Phase_Link class is a link between one Phase and another (e.g., progression from G0/G1 to S phase).
It includes the following data elements:

1. int start_phase_index is the unique index of the starting phase in the phase transition (a link
from phase start_phase_index to phase end_phase_index).

2. int end phase_index is the unique index of the ending phase in the phase transition (a link from
phase start_phase_index to phase end_phase_index).

3. bool fixed duration isa Boolean variable that indicates whether the cell spends a fixed amount of
time before transitioning from phase start_phase_index to phase end_phase_index. Note that this
variable only makes sense if there is a single, unique phase transition starting from start_phase_index.

4. void (*arrest _function)(Cell* pCell, Phenotype& phenotype, double dt) isa function
pointer that allows you to set an arrest condition for the phase transition (e.g., only progress from M
to GO/G1 if the cell is of sufficient volume). Its return value is true if the transition is arrested, and
false if the transition is allowed to proceed. Set this pointer to NULL to bypass checking for arrest
in this phase link.

5. void (*exit function) (Cell* pCell, Phenotype& phenotype, double dt) is a function
pointer to a function that is executed at the end of the phase transition. This would be a good place
to write a function to perform mutations (e.g., at the transition from M to G0/G1, randomly choose
selected phenotype parameters according to a distribution).

Here is the formal class declaration:

class Phase_Link

{

public:
int start_phase_index;
int end_phase_index;

bool fixed_duration;

bool (*arrest_function)(Cell* pCell, Phenotype& phenotype, double dt);
void (*exit_function)(Cellx* pCell, Phenotype& phenotype, double dt);

Phase_Link();
};

11.1.2.1 Member functions

1. Phase_Link () is the default constructor. It sets all indices to 0, all flags to false, and it sets
arrest_function = NULL.

[Return to Table of Contents.]

45

11.1.3 Cycle_Model

The Cycle_Model connects one or more Phases through Phase_Links, and stores this entire graph structure
along with parameter values. (See Cycle_Data in Section 11.1.4.) It also contains member functions to
assist with constructing and executing a cycle model, as well as to readily access transition rates. Here are
the key data elements:

1. std::vector< std::unordered map<int,int> > inverse_index maps is an internal (private)
data structure for easily accessing specific phase transitions. For reference,
index_inverse_map[i] [j] = k helps us find the Phase_Link from Phase i to Phase j, which is
stored in phase_links[i] [k], and whose transition rate is stored in
data.transition_rates[i] [k].

2. std::string name is the “plain English” name of the cycle model (e.g., Ki67 (Basic)).

3. int code is a unique global (integer) identifier for the cycle model, using constants defined in
PhysiCell_constants.h using PhysiCell_constants. (See Section 16.7.)

4. std::vector<Phases> phases is a vector of Phases.

5. std::vector< std::vector<Phase Link> > phase links is a vector of vectors of Phase_Links.
Note that phase_links[i] is the vector of all phase links starting at phase i. (This is why we need
the inverse map above.)

6. int default phase_index is the index of the default phase in the cycle model (usually 0). If a
new Phenotype instance is created and assigned this cycle model, it should start out in this phase.

7. Cycle Data data (of type Cycle_Data) contains a template of the key parameter values for this
cycle model. Place default values for your cycle model here, as a copy of data is passed to any new
Phenotype instance containing the cycle model. See Section 11.1.4.

Here is the formal class declaration:

class Cycle_Model

{
private:

std::vector< std::unordered_map<int,int> > inverse_index_maps;
public:

std::string name;

int code;

std: :vector<Phase> phases;
std::vector< std::vector<Phase_Link> > phase_links;

int default_phase_index;

Cycle_Data data;

46

Cycle_Model();
void advance_model(Cell* pCell, Phenotype& phenotype, double dt);
int add_phase(int code, std::string name);

int add_phase_link(int start_index, int end_index ,

bool (*arrest_function)(Cell* pCell, Phenotype& phenotype, double dt));
int add_phase_link(int start_index, int end_index , double rate ,

bool (*arrest_function)(Cell* pCell, Phenotype& phenotype, double dt));

int find_phase_index(int code);
int find_phase_index(std::string);

double& transition_rate(int start_index , int end_index);
Phase_Link& phase_link(int i,int j);

std::ostream& display(std::ostream& os);

+;

11.1.3.1 Member functions

1. Cycle Model() is the default constructor. It sets name = "unnamed", sets
code = PhysiCell_constants::custom_cycle_model, sets the model to an empty one with no
phases, and the links data.pCycle_Model to this (the Cycle_Model under construction). See
Section 11.1.4.

2. int add phase(int code, std::string name) adds a new Phase to the cycle model, with the
supplied code and name. It returns the index (new_index) of the new phase, so that you can
subsequently access it with phases[new_index].

3. int add phase link(int start _index, int end index,
bool (*arrest function)(Cell* pCell, Phenotype& phenotype, double dt))
adds a new Phase_Link to phase_links[start_index] joining phase start_index to phase end_index,
with the arrest function arrest_function. It resizes internal data structures including data (and
its transition_rates) automatically, and sets the transition rate to 0.0. It returns the index
(new_index) so that the phase link can be directly accessed as phase_links[start_index] [new_index].

4. int add phase link(int start_index, int end index, double rate
bool (*arrest function)(Cell* pCell, Phenotype& phenotype, double dt))
adds a new Phase_Link to phase_links[start_index] joining phase start_index to phase end_index,
with the arrest function arrest_function. It resizes internal data structures including data (and
its transition_rates) automatically, and sets the transition rate to rate. It returns the index
(new_index) so that the phase link can be directly accessed as phase_links [start_index] [new_index].

5. int find phase_index(int code) findstheindex i such that phases[i].code = code. Please
note that this returns 0 if there is no exact match!

6. int find phase_index(std::string name) finds the index i such that phases[i] .name = name.
Please note that this returns 0 if there is no exact match! Note that this function is case sensitive.

47

10.

. double& transition rate(int start_index , int end index) is a user-friendly interface

function to access (by reference) the transition rate from phase start_index to phase end_index.

. Phase Link& phase_link(int start_index , int end_index) is a user-friendly interface func-

tion to access (by reference) the Phase_Link from phase start_index to phase end_index.

. void advance model(Cell* pCell, Phenotype& phenotype, double dt) advances the the

cycle model by dt time (assumed minutes in current PhysiCell versions). For the current phase

in phenotype.cycle.data.current_phase(), it evaluates the probability of advancing to all linked
phases within dt time (see [3]) and changes the model (and the state of phenotype.cycle.data)
accordingly. It will call cell division and removal functions as needed.

std::ostream& display(std::ostream& os) allows streaming of a basic visual output of the
cycle model. I recommend calling display(std::cout).

[Return to Table of Contents.]

11.1.4 Cycle_Data

The Cycle_Data class contains key parameters and state variables for a cell cycle model (see Section 11.1.3),
as well as member functions to easily access transition rates and the current cycle phase. It includes the
following data elements:

d.
6.

. std::vector< std::unordered map<int,int> > inverse_index maps is an internal (private)

data structure for easily accessing specific phase transitions. For reference,

index_inverse_map[i] [j] = k helps us find the Phase_Link from Phase i to Phase j in the
pCycle_Model, which is stored in pCycle_Model->phase_links[i] [k], and whose transition rate
is stored in transition_rates[i] [k].

. Cycle_Model* pCycle _Model is a pointer to the appropriate Cycle_Model.

std::string time units is the units of time for the cycle model. (PhysiCell currently assumes
all time units are in minutes.)

std: :vector< std::vector<double> > transition_rates is a vector of vectors of cell phase
transition rates. For each i, transition_rates[i] is the vector of transition rates from Phase i to
any other linked phases. For safety, we might make this data element private in the future, as it can
be more intuitively accessed via double& transition_rate(int,int) (below).

int current _phase_index indicates the current phase in the Cycle_Model.

double elapsed_time_in phase records how long the cell has been in the current phase.

Here is the formal class declaration:

class Cycle_Data

{

private:

std::vector< std::unordered_map<int,int> > inverse_index_maps;

48

public:

};

Cycle_Model* pCycle_Model,;
std::string time_units;
std: :vector< std::vector<double> > transition_rates;

int current_phase_index;
double elapsed_time_in_phase;

Cycle_Data();
Phase& current_phase(void);
void sync_to_cycle_model(void);

double& transition_rate(int start_phase_index, int end_phase_index);
double& exit_rate(int phase_index);

11.1.4.1 Member functions

. Cycle Data() is the default constructor. It resizes transition_rates to zero, sets

pCycle_Model = NULL, and defaults time_units = "min".

. Phase& current phase(void) is a user-friendly interface function to access (by reference) the

current Phase in the cycle. Use this to get the name and other structural information.

. void sync_to_cycle model(void) resizes the internal data structures for consistency with the

pCycle_Model, if it is non-NULL.

. double& transition rate(int start _phase_index , int end phase_index) is a user-

friendly interface function to access (by reference) the transition rate from phase start_phase_index
to phase end_phase_index.

. double& exit rate(int phase _index) is a user-friendly interface function to access (by ref-

erence) the rate of exiting the phase_index phase, in the case where there is only one Phase_Link
from that phase to another. (e.g., for a cycle model where the S phase only links to the G2 phase.)
In this case, the cell spends (in the mean)

1
exit_rate(phase_index)

(10)

time in phase phase_index.

[Return to Table of Contents.]

49

11.1.5 Cycle

The Cycle bundles a Cycle_Model with Cycle_Data for simpler inclusion in a Phenotype. Its main data
elements are:

1. Cycle_Model* pCycle_Model is a pointer to a Cycle_Model.

2. Cycle Data datais Cycle_Data associated with the Cycle_Model. Note that this is an independent

copy of the pCycle_Model->data, so that a single cell’s phenotype can be updated without modifying
the defaults for the underlying cycle model.

Here is the formal class declaration:

class Cycle

{
private:
public:
Cycle_Model* pCycle_Model;
Cycle_Data data;
Cycle(Q);
void advance_cycle(Cellx pCell, Phenotype& phenotype, double dt);
Cycle_Model& model(void);
Phase& current_phase(void);
int& current_phase_index(void);
void sync_to_cycle_model(Cycle_Model& cm);
I

11.1.5.1 Member functions

. Cycle() is the default constructor. It sets pCycle_Model = NULL and uses the default constructor

for the Cycle_Data.

. void advance cycle(Cell* pCell, Phenotype& phenotype, double dt advances the cy-

cle model by dt time, executing any arrest, entry, or other functions according to the supplied
phenotype. (It is implemented by calling pCycle_Model->advance_model (pCell,phenotype,dt).

. Cycle Model& model(void) returns (by reference) the cycle model pointed to by

pCycle_Model.

. Phase& current _phase(void) returns (by reference) the current phase (as given in data) in the

cycle model.

. int& current phase_index(void) returns (by reference) the current phase index (as given in

data) in the cycle model.

50

6. void s

ync_to_cycle model(Cycle Model& cm) sets pCycle_Model = &cm and then overwrites

data with cm.data.

[Return to Table of Contents.]

11.2 Death models

A death model is a Cycle_Model (Section 11.1.3), where one of the phases is marked to trigger cell removal.

We define De

ath_Parameters (Section 11.2.1) to include key parameters needed in most death models,

and bundle these as Death (Section 11.2.2) within the phenotype, similarly to Cycle (Section 11.1.5).

[Return to Table of Contents.]

11.2.1 Death_Parameters

Death_Param

eters bundles key parameters needed to initialize a cell death model, particularly changes in

a cell’s volume model. The key data elements include:

1. std::s
2. double
3. double

4. double
min~!).

5. double
6. double

7. double

tring time units gives the time units (by default minutes throughout PhysiCell).
unlysed fluid change rate is the rate of fluid change (in min~!) prior to cell lysis.
lysed fluid change rate is the rate of fluid change (in min™') after cell lysis.

cytoplasmic biomass change rate is the degradation rate for cytoplasmic solids (in

nuclear biomass_change rate is the degradation rate for nuclear solids (in min™1).
calcification rate is the rate of cell calcification (in min™1).

relative rupture volume is the relative amount by which the cell must swell (compared

to the volume at the onset of cell death) before it bursts or lyses.

Here is the formal class declaration:

class Death

{
public:
std::st

double
double

double
double

double

_Parameters

ring time_units;

unlysed_fluid_change_rate;
lysed_fluid_change_rate;

cytoplasmic_biomass_change_rate;
nuclear_biomass_change_rate;

calcification_rate;

51

double relative_rupture_volume;

Death_Parameters() ;

};

11.2.1.1 Member functions

1. Death Parameters() is the default constructor. It sets all parameter values to the reference apop-
tosis values for a generic breast epithelium line (calibrated to MCF-10A measurements), as in [3].

[Return to Table of Contents.]

11.2.2 Death

In PhysiCell, we allow the cells to evaluate multiple death models (e.g., apoptosis and necrosis). Death
stores the cell’s death rates, the corresponding death models, and associated parameters. Here are the
data elements:

1. std::vector<double> rates is a vector of death rates, one per death model.

2. std::vector<Cycle Model*> models is a vector of pointers to death models, which are of type
Cycle_Model.

3. std::vector<Death Parameters> parameters is a vector of Death_Parameterss, one for each
Cycle_Model.

4. bool dead is a Boolean variable that is true if the cell is dead.

5. int current death model index is the index of the current death model, when dead == true.

Here is the formal class declaration:

class Death

{

private:

public:
std: :vector<double> rates;
std::vector<Cycle_Model*> models;
std: :vector<Death_Parameters> parameters;

bool dead;
int current_death_model_index;

Death();

int add_death_model(double rate, Cycle_Model* pModel);

92

};

int add_death_model(double rate, Cycle_Model* pModel,
Death_Parameters& death_parameters) ;

int find_death_model_index(int code);
int find_death_model_index(std::string name);

bool check_for_death(double dt);
void trigger_death(int death_model_index);

Cycle_Model& current_model(void);
Death_Parameters& current_parameters(void);

11.2.2.1 Member functions

. Death() is the default construtor. It resizes all the vectors to size zero, sets dead = false, and

current_death_model_index = O.

. int add_death model(double rate , Cycle Model* pModel) adds the cycle model at

pModel and sets its corresponding death rate to rate. It also resizes the parameters with values in
the default constructor. It returns the index of the newly added death model.

. int add_death model(double rate, Cycle Model* pModel,

Death Parameters& death parameters) adds the cycle model at pModel and sets its cor-
responding death rate to rate. It also increases the size of parameters by one by appending
death_parameters. It returns the index of the newly added death model.

. int find death model index(int code) returns an integer i such that

models[i]->code == code. Note that if no exact match is found, this returns 0.

. int find death model_index(std::string name) returns an integer i such that

models[i]->name == name. Note that if no exact match is found, this returns 0. Note that this
function is case sensitive.

. bool check _for_death(double dt) checks for each type of cell death in the next dt time. If

the cell dies by any of the models between now and dt time in the future, this code sets dead = true,
sets current_death_model_index to the index of the corresponding death model, and returns true.

. void trigger death(int death model_index) immediately sets the cell to dead = true and

current_death_model_index = death_model_index.

Note: this function is used internally by PhysiCell, but will not fully start cell death. Users should
use Cell::start_death(int) instead. See Section 9.2.

. Cycle_Model& current model(void) returns (by reference) the current cell death model (if

dead == true).

. Death Parameters& current parameters(void) returns (by reference) the

Death_Parameters for the current death model (if dead == true).

[Return to Table of Contents.]

53

11.3 Volume

Volume stores the cell’s total volume, its various sub-volume elements, and critical parameters. (PhysiCell
supplies reasonable defaults.) Here are the main elements (all volume units in PhysiCell are currently
assumed to be um?3.)

1.

2.

10.

11.

12.

double total is the cell’s total volume.

double solid is the solid component of the cell’s total volume. It is in dimensional units of volume—
not a fraction or ratio. Note that volume.total = volume.solid + volume.fluid.

. double fluid is the fluid component of the cell’s total volume. It is in dimensional units of volume—

not a fraction or ratio. Note that volume.total = volume.solid + volume.fluid.

. double fluid fraction is the fraction of the cell that is fluid, defined as:

volume.fluid_fraction = volume.fluid / volume.total.

Note that 0 < fluid_fraction < 1.

. double nuclear is the total nuclear volume. Note that:

volume.total = volume.nuclear + volume.cytoplasmic.

. double nuclear solid is the solid component of the cell’s nuclear volume. It is in dimensional

units of volumenot a fraction or ratio. Note that:

volume.nuclear = volume.nuclear_solid + volume.nuclear_fluid.

. double nuclear fluid is the fluid component of the cell’s nuclear volume. It is in dimensional

units of volume-not a fraction or ratio. Note that:

volume.nuclear = volume.nuclear_solid + volume.nuclear_fluid.

. double cytoplasmic is the total cytoplasmic volume. Note that:

volume.total = volume.nuclear + volume.cytoplasmic.

. double cytoplasmic_solid is the solid component of the cell’s cytoplasmic volume. It is in

dimensional units of volume-not a fraction or ratio. Note that:

volume.cytoplasmic = volume.cytoplasmic_solid + volume.cytoplasmic_fluid.

double cytoplasmic _fluid is the fluid component of the cell’s cytoplasmic volume. It is in
dimensional units of volume-not a fraction or ratio. Note that:

volume.cytoplasmic = volume.cytoplasmic_solid + volume.cytoplasmic_fluid.

double calcified fraction is the fraction of the cell that is calcified. (This is particularly useful
to simulations of ductal carcinoma in situ of the breast.) Note that

0 < calcified fraction < 1. (11)

double cytoplasmic_to nuclear ratiois volume.cytoplasmic / volume.nuclear. Note that
0 < cytoplasmic_to_nuclear ratio < 1. (12)

o4

13.

14.

15.

16.

17.

18.

19.
20.

21.

double rupture_volume is the (dimensional) volume at which a cell will burst or lyse.

double cytoplasmic_biomass_change rate is the rate that cytoplasmic solid material can be

synthesized to reach the target cytoplasmic solid volume. It is assumed to be written in units of
o1

min~ .

double nuclear biomass_change rate is the rate that nuclear solid material can be synthesized

to reach the target nuclear solid volume. It is assumed to be written in units of min™!.

double fluid change rate is the rate that fluid can enter or leave the cell to reach the target

fluid fraction. It is assumed to be written in units of min—"'.

double calcification_rate is the rate that the cell calcifies. It is assumed to be written in units

of min—!.

double target solid cytoplasmic is the cell’s target (“desired” or “goal”) solid cytoplasmic
volume.

double target _solid nuclear is the cell’s target (“desired” or “goal”) solid nuclear volume.
double target fluid fraction is the cell’s target (“desired” or “goal”) fluid fraction.

double relative rupture volume is the relative volume at which a cell, written as a multiple of
the cell’s total volume at the onset of a swelling process. (For example, at the start of necrosis.)

Note that
0 < relative_rupture_volume < 1. (13)

Here is the class declaration:

class Volume

{

public:

double total;
double solid;
double fluid;
double fluid_fraction;

double nuclear;

double nuclear_fluid;
double nuclear_solid;
double cytoplasmic;

double cytoplasmic_fluid;
double cytoplasmic_solid;
double calcified_fraction;

double cytoplasmic_to_nuclear_ratio;

double rupture_volume;

95

double cytoplasmic_biomass_change_rate;
double nuclear_biomass_change_rate;

double fluid_change_rate;

double calcification_rate;

double target_solid_cytoplasmic;

double target_solid_nuclear;

double target_fluid_fraction;

double target_cytoplasmic_to_nuclear_ratio;
double relative_rupture_volume;

Volume();

void divide(void);
void multiply_by_ratio(double);

void update(Cellx pCell, Phenotype& phenotype, double dt);

[Return to Table of Contents.]

11.3.1 Member functions

1. Volume () is the default constructor. It sets the variables to the reference values of a generic breast
epithelium line (calibrated to MCF-10A).

2. void divide(void) cuts the volume, all sub-volumes, and the target volumes by one half. (It is
used during cell division.)

3. void multiply by ratio(double ratio) multiplies the volume, all sub-volumes, and the target
volumes by ratio.

void update(Cell* pCell, Phenotype& phenotype, double dt) is neither used nor im-
plemented. It will be deprecated.

[Return to Table of Contents.]

11.4 Geometry

Geometry stores critical aspects of cell geometry other than volume. In the current implementation, we use
spherical approximations for the cell geometry, since PhysiCell tracks cell volume but not cell morphology.
The main data elements are:

1. double radius is the cell’s equivalent radius, based upon the spherical approximation

4
volume.total = 37 radius®. (14)

56

In the current version of PhysiCell, spatial units are assumed to be pm.

. double nuclear _radius is the nucleus’ equivalent radius, based upon the spherical approximation

4
volume.nuclear = 3" nuclear_radius®. (15)

Its units are assumed pm.

. double surface_area is the cell’s equivalent surface area, based upon the spherical approximation

surface area = 471 radius’. (16)

. double polarity is a dimensionless number between 0 and 1 to indicate how polarized the cell is

along its basal-to-apical axis. If the polarity is zero, the cell has no discernible polarity. Note that
polarity should be set to one for 2-D simulations.

Its units are assumed pm?.

Here is the class definition in PhysiCell_phenotype.h:

class Geometry

{

public:

double radius;

double nuclear_radius;

double surface_area;

double polarity;

Geometry();

void update_radius(Cellx* pCell, Phenotype& phenotype, double dt);

void update_nuclear_radius(Cell* pCell, Phenotype& phenotype, double dt);
void update_surface_area(Cellx pCell, Phenotype& phenotype, double dt);

void update(Cell* pCell, Phenotype& phenotype, double dt);

[Return to Table of Contents.]

11.4.1 Member functions

. Geometry() is the default constructor. It sets the variables to the reference values of a generic

breast epithelium line (calibrated to MCF-10A).

. void update radius(Cell* pCell, Phenotype& phenotype, double dt) sets

radius according to the spherical approximation in Section 11.4, using phenotype.volume.total.

57

3. void update nuclear radius(Cell* pCell, Phenotype& phenotype, double dt) sets
nuclear_radius according to the spherical approximation in Section 11.4, using
phenotype.volume.nuclear.

4. void update surface area(Cell* pCell, Phenotype& phenotype, double dt) sets
surface_area according to the spherical approximation in Section 11.4, using
cell.phenotype.volume.total.

5. void update(Cell* pCell, Phenotype& phenotype, double dt) sets radius,
nuclear_radius, and surface_area according to phenotype.volume.

[Return to Table of Contents.]

11.5 Mechanics

Mechanics stores the main mechanics parameters for a cell. The main data elements are:

1. double cell cell adhesion strength is the parameter C.., in the default PhysiCell mechanics
model, written as a multiple of the drag coefficient v; see [3]. It regulates the relative strength of
cell-cell adhesive forces. Future releases of PhysiCell will allow this to be defined for interactions
with multiple cell types.

2. double cell BM adhesion strength is the parameter C., in the default PhysiCell mechanics
model, written as a multiple of the drag coefficient v; see [3]. It regulates the relative strength of
adhesion of cells to the basement membrane, when present.

3. double cell cell repulsion strength is the parameter C., in the default PhysiCell mechanics
model, written as a multiple of the drag coefficient v; see [3]. It regulates the relative strength of
cell-cell “repulsive” forces (resistance to deformation and compression).

4. double cell BM repulsion strength is the parameter Cp, in the default PhysiCell mechanics
model, written as a multiple of the drag coefficient v; see [3]. It regulates the relative strength
of cell-BM “repulsive” forces (resistance of cells to deformation and compression, and resistance of
basement membranes to penetration and deformation by cells).

5. double relative maximum adhesion distance is the maximum distance of cell adhesion to
other cells or a basement membrane, given as a (dimensionless) multiple of geometry.radius.

As future releases of PhysiCell may include additional mechanics models, this class may be expanded in
the future. In particular, we anticipate models to allow varying strengths of adhesion between different
cell types, and improved adhesion models.

Here is the class definition in PhysiCell_phenotype.h:

class Mechanics

{

public:
double cell_cell_adhesion_strength;
double cell_BM_adhesion_strength;

58

double cell_cell_repulsion_strength;
double cell BM_repulsion_strength;

double relative_maximum_adhesion_distance;
double maximum_adhesion_distance;

void set_relative_maximum_adhesion_distance(double new_value);
void set_relative_equilibrium_distance(double new_value);

void set_absolute_equilibrium_distance(Phenotype& phenotype, double new_value);

Mechanics();

[Return to Table of Contents.]

11.5.1 Member functions

1. Mechanics() is the default constructor function. It sets the parameters to the reference value for a

generic breast epithelium line.

. void set_relative maximum adhesion_distance(double new_value) sets the new maxi-

mum adhesion interaction distance to new_value, as a multiple of the cell’s mean equivalent radius. It
preserves the repulsion strength and equilibrium cell-cell spacing, by adjusting the adhesion strength.

. void set relative equilibrium distance(double new value) sets the new cell-cell equi-

librium spacing or distance to new_value, as a multiple of the cell’s mean equivalent radius. It
preserves the repulsion strength and maximum mechanical interaction distance, by adjusting the
adhesion strength. Note that this function performs a “sanity check” cap new_value at 2.0.

. void set_absolute_equilibrium distance(Phenotype& phenotype, double new value)

sets the new cell-cell equilibrium spacing or distance to new_value, in absolute units (microns). It
requires the cell’s equivalent radius, as given within the supplied phenotype as a multiple of the cell’s
mean equivalent radius. It preserves the repulsion strength and maximum mechanical interaction
distance, by adjusting the adhesion strength. Note that this function performs a “sanity check” cap
new_value at 2 cell radii. Note also that internally, PhysiCell performs physical calculations based
upon the multiples of the cell’s current radius. This means that the equilibrium distance will stay
the same relative to the cell’s radius, but the absolute (dimensional) equilibrium spacing will vary in
time even after setting the value with this function.

[Return to Table of Contents.]

11.6 Motility

Motility stores motility parameters and the current speed/direction of motility. It was designed to be
sufficiently generic to allow recovery of purely Brownian motion, deterministic taxis, and combinations of

these. Here are the main data elements:

59

. bool is motile is a Boolean variable that can be used to enable/disable cell motility.

. double persistence_time is the mean time cell continues at its current speed and direction before

re-evaluating and choosing a new motility vector. It is assumed to have units minutes.

. double migration_speed is the speed of motility, in the absence of other forces (e.g., cell-cell

adhesion). It is assumed to have units of pm/min.

. std::vector<double> migration bias direction is the 3-D vector giving the cell’s preferred

direction of motility for biased Brownian motion. If the user modifies this vector, they must ensure
it is a unit vector:
||migration bias direction|| = 1. (17)

. double migration bias (with a value in [0,1]) sets the degree to which cell motility is biased

along migration_bias_direction. If 0, then motion is completely Brownian. If 1, it is completely
deterministc along the bias direction.

. bool restrict to_2D is a Boolean variable that is set to true is we are restricting cell motility to

2D.

. std::vector<double> motility vector is the velocity vector for cell motility, based upon the

all the variables and parameters defined above. See also Section 11.6.2.

Here is the class definition:

class Motility

{

public:

+;

bool is_motile;

double persistence_time;

double migration_speed;

std: :vector<double> migration_bias_direction;
double migration_bias;

bool restrict_to_2D;

std: :vector<double> motility_vector;

Motility();

The main parameters are further defined and related in Section 11.6.2

[Return to Table of Contents.]

11.6.1 Member functions

1. Motility() is the default constructor function. Note that it sets:

is_motile = false,
update_migration_bias_vector = NULL, and
restrict_to_2D = false.

[Return to Table of Contents.]

60

11.6.2 Motility definitions

The direction of (biased random) motility is given by

bdbias + (1 — b)€

dmo =
' ||bdb1as+(1_b)€||

(18)

where b (migration_bias) is the level of bias, £ is a random unit vector (length 1, uniformly random
direction), and dy;,s (migration_bias_direction) is the directional bias for motility. See Section 9.2 for
more information on how the Motility class is used when updating a cell’s velocity.

[Return to Table of Contents.]

11.7 Secretion

Secretion collects the cell’s biotransport parameters for interfacing with BioFVM [2]. Its main data
elements include:

1. Microenvironment* pMicroenvironment is a pointer to the correct microenvironment, where
substrates have already been declared.

2. std::vector<double> secretion_rates is a vector of secretion rates for the substrates in the
microenvironment.

3. std::vector<double> uptake rates is a vector of uptake rates for the substrates in the microen-
vironment.

4. std::vector<double> saturation densities is a vector of densities at which secretions satu-
rate. See [2].

Here is the full class declaration:

class Secretion

private:
public:
Microenvironment* pMicroenvironment;

std: :vector<double> secretion_rates;
std::vector<double> uptake_rates;
std: :vector<double> saturation_densities;

Secretion();

void sync_to_current_microenvironment(void);
void advance(Basic_Agent* pCell, Phenotype& phenotype , double dt);

void sync_to_microenvironment(Microenvironment* pNew_Microenvironment);

61

void set_all_secretion_to_zero(void);

void set_all_uptake_to_zero(void);

void scale_all_secretion_by_factor(double factor);
void scale_all_uptake_by_factor(double factor);

[Return to Table of Contents.]

11.7.1 Member functions

1.

Secretion() is the default constructor. If a default Microenvironment has already been set in
BioFVM, then pMicroenvironment is set to this (otherwise NULL). Thereafter, secretion_rates,
uptake_rates, and saturation_densities are resized for consistency with pMicroenvironment,
with all values set to 0.0.

void sync_to_current microenvironment (void) resizes secretion_rates, uptake_rates, and
saturation_densities consistency with pMicroenvironment and sets all vector entries to 0.0.

void sync_to microenvironment(Microenvironment* pNew Microenvironment) sets
pMicroenvironment = pNew_Microenvironment, resizes secretion_rates, uptake_rates, and
saturation_densities for consistency with pMicroenvironment, and sets all vector entries to 0.0.

void advance(Basic Agent* pCell, Phenotype& phenotype, double dt) evaluates the
BioFVM secretion and uptake functions for this individual cell. Consistency checks with BioFVM
(including those from volume changes) are fully automated.

. void set_all secretion to zero(void) sets all the secretion rates to zero. (Please note that

settings pCell->is_active = false is the most efficient way to set all secretion and uptake to zero
in a cell.)

. void set_all uptake to zero(void) sets all the uptake rates to zero. (Please note that set-

tings pCell->is_active = false is the most efficient way to set all secretion and uptake to zero in
a cell.)

void scale_all secretion by factor(double factor) multiplies all the secretion rates by
factor.

void scale all uptake by factor(double factor) multiplies all the uptake rates by factor.

[Return to Table of Contents.]

11.8 Molecular

Molecular collects molecular-scale data and models for the cell. As of Version 1.5.0, this structure tracks
internalized total substrates (See Section 8.6) in the cell after secretion and uptake. It is up to end users
to supply an internal function (e.g., as part of the phenotype function) to create internalized substrate (for
subsequent secretion) and/or consume internalized substrate (after uptake).

By default, internalized substrate tracking is turned off. See Section 8.6 to learn how to enable this feature.

The

main data elements include:

62

. Microenvironment* pMicroenvironment is a pointer to the correct microenvironment, where

substrates have already been declared.

. std::vector<double> internalized total_substrates is a vector of the total net internalized

substrates for the cell. (Note that these are totals, not concentrations or densities. To get a density,
divide by the cell’s total volume.) This vector’s size and ordering matches the diffusing substrates in
the microenvironment.

Note that at cell division, each daughter cell receives half of each internalized substrate.

. std::vector<double> fraction released at death is a vector of the total fraction (between

0 and 1) of each substrate that is released back into the microenvironment (at the cell’s location)
at the end of death. By default, this is a zero vector. This vector’s size and ordering matches the
diffusing substrates in the microenvironment.

. std::vector<double> fraction transferred when ingested is a vector of the total fraction

(between 0 and 1) of each substrate that is absorbed by any cell that consumes this cell. By default,
this is a zero vector. (Note that these are totals, not concentrations or densities. To get a density,
divide by the cell’s total volume.) This vector’s size and ordering matches the diffusing substrates in
the microenvironment.

Here is the full class definition:

class Molecular

{

private:
public:
Microenvironment* pMicroenvironment;

Molecular();

std: :vector<double> internalized_total_substrates;
std: :vector<double> fraction_released_at_death;
std: :vector<double> fraction_transferred_when_ingested;

void sync_to_current_microenvironment(void);
void sync_to_microenvironment(Microenvironment* pNew_Microenvironment);
void sync_to_cell(Basic_Agent* pCell);

[Return to Table of Contents.]

11.8.1 Member functions

. Molecular () is the default constructor. You should never need to call this function.

. void sync_to_current microenvironment(void) syncs this class’s data structures to the mi-

croenvironment in pMicroenvironment if it is non-NULL, or sets all to size zero. All values are
initially zero.

63

3. void sync_to_microenvironment(Microenvironment* pNew_Microenvironment) syncs this
class’s data structures to the microenvironment at pNew_Microenvironment. All values are initially
Zero.

4. void sync_to cell(Basic Agent* pCell) sets the cell’s internal pointers to this class’s data
structures.

[Return to Table of Contents.]

12 Cell Containers

PhysiCell uses Cell_Containers to help organize and search for cells within the simulation (spatial) do-
main, and to accelerate cell-cell mechanics. It is overloaded with much of the core functionality of PhysiCell,
so we highly recommend that you avoid direct operations on cell containers! For reference, here is
the full class definition:

class Cell_Container : public BioFVM::Agent_Container

{

private:
std: :vector<Cell*> cells_ready_to_divide;
std::vector<Cellx*> cells_ready_to_die;
int boundary_condition_for_pushed_out_agents;
bool initialzed = false;

public:

BioFVM: :Cartesian_Mesh underlying_mesh;

std: :vector<double> max_cell_interactive_distance_in_voxel;
int num_divisions_in_current_step;

int num_deaths_in_current_step;

double last_diffusion_time =0.0;

double last_cell_cycle_time = 0.0;

double last_mechanics_time = 0.0;

Cell_Container();

void initialize(double x_start, double x_end,
double y_start, double y_end, double z_start, double z_end,
double voxel_size);

void initialize(double x_start, double x_end,
double y_start, double y_end, double z_start, double z_end,
double dx, double dy, double dz);

std: :vector<std::vector<Cell*> > agent_grid;

std: :vector<std::vector<Cell*> > agents_in_outer_voxels;

void update_all_cells(double t);

void update_all_cells(double t, double dt);

void update_all_cells(double t, double phenotype_dt, double mechanics_dt);
void update_all_cells(double t, double phenotype_dt, double mechanics_dt,

64

double diffusion_dt);

void register_agent(Cell* agent);

void add_agent_to_outer_voxel(Cell* agent);

void remove_agent(Cell* agent);

void remove_agent_from_voxel(Cell* agent, int voxel_index);
void add_agent_to_voxel(Cell* agent, int voxel_index);

void flag_cell_for_division(Cell* pCell);
void flag_cell_for_removal(Cell* pCell);
bool contain_any_cell(int voxel_index);

};

Users may want to use the following function to ensure that the mechanics data structures are set up
consistently with BioF'VM microenvironment’s domain:

Cell_Container* create_cell_container_for_microenvironment(BioFVM: :Microenvironment& m,
double mechanics_voxel_size);

Here is an example use:

// Set mechanics voxel size.
double mechanics_voxel_size = 30;

// Assume microenvironment is defined above somewhere.
// Set up the PhysiCell mechanics data structure.

Cell_Container* cell_container = create_cell_container_for_microenvironment (
microenvironment, mechanics_voxel_size);

[Return to Table of Contents.]

13 PhysiCell Inputs

As of Version 1.3.0, we began introducing functions to read XML files to initialize PhysiCell options. We
will continue expanding these functions over the next few releases.

13.1 XML parsing in PhysiCell

The following functions make use of pugixml [6] to parse XML files and extract parameters. Note that in the
DOM (document object model), pugixml’s key data structure is the pugi: :xml_node, which corresponds
roughly to an XML tag. It can have attribute, a data value, parent elements, and child elements.

PhysiCell’s XML parsing is found in ./modules/PhysiCell_pugixml.*, and it all is based upon finding
XML nodes relative to a supplied parent (pugixml) XML node. Here are the main functions:

65

10.

. pugi::xml node xml find node(pugi::xml node& parent node , std::string find me) re-

turns the first XML child node named find_me under the XML parent_node. For example:

<parent_node>
<find_me />
</parent_node>

std::string xml get_string value(pugi::xml node& parent node , std::string find me)
returns a string value for the find_me tag within the parent_node parent. For example:

<parent_node>
<find_me>output32</find_me>
</parent_node>

. double xml get double value(pugi::xml node& parent node , std::string find me) re-

turns a double value for the find_me tag within the parent_node parent. For example:

<parent_node>
<find_me>3.14</find_me>
</parent_node>

. double xml get_int value(pugi::xml node& parent node , std::string find me) returns

an integer value for the find_me tag within the parent_node parent. For example:

<parent_node>
<find_me>3</find_me>
</parent_node>

. double xml _get bool_value(pugi::xml node& parent node , std::string find me) returns

an Boolean value for the find_me tag within the parent_node parent. For example:

<parent_node>
<find_me>true</find_me>
</parent_node>

Note that Booleans can be represented as 0 and 1, or false and true.

std::string xml get my name(pugi::xml node node) helps to easily extract the name of
an XML node. (e.g., <bob units="none"> returns bob.)

. bool xml get my bool value(pugi::xml node node) gets the Boolean value of an XML node.

(e.g., <bob units="none">true</bob> returns true.)

int xml get my_int value(pugi::xml node node) gets the int value of an XML node. (e.g.,
<bob units="none">42</bob> returns 42.)

int xml _get my double value(pugi::xml node node) gets the double value of an XML node.
(e.g., <bob units="none">42.03</bob> returns 42.03.)

std::string xml get my string value(pugi::xml node node) gets the string value of an
XML node. (e.g., <bob units="none">is nice</bob> returns Is nice:)

[Return to Table of Contents.]

66

13.2 Passing XML options to PhysiCell

PhysiCell 1.3.0 introduced preliminary support for XML configuration files, via
./modules/PhysiCell_settings.*. Version 1.4.0 introduced further refinements that are detailed in
Sections 13.3 and 13.5. Version 1.6.0 introduced an XML-based specification of the chemical microenvi-
ronment. See Section 13.4.

XML options in PhysiCell work primarily by creating two data structures defined as:

class PhysiCell_Settings
{
private:
public:
// overall
double max_time;

// units
std::string time_units;
std::string space_units;

// parallel options
int omp_num_threads;

// save options
std::string folder;

double full_save_interval;
bool enable_full_saves;
bool enable_legacy_saves;

double SVG_save_interval;
bool enable_SVG_saves;

PhysiCell_Settings();

void read_from_pugixml(void);

};

class PhysiCell_Globals

{

private:

public:
double current_time;
double next_full_save_time;
double next_SVG_save_time;
int full_output_index;
int SVG_output_index;

67

Notice that PhysiCell needs to load an XML configuration file before it can be queried for parameter
values. Use:

bool load_PhysiCell_config file(std::string filename);

Note that the sample projects allow the user to specify the XML configuration file. For example, if your
executable is run_me, and your configuration file is saved in ./config/my_config.xml, then use:

> ./run_me ./config/my_config.xml

Note that PhysiCell will default to ./config/PhysiCell_settings.xml in the sample projects if no XML
file is supplied:

> ./run_me

Lastly, we point out that the settings in the XML figuration files and the settings data structures will
likely be expanded in the next several PhysiCell releases.

[Return to Table of Contents.]

13.2.1 Member data

1. double max_time is the maximum simulation time.

2. std::string time units is the human-readable time units. All PhysiCell functions currently
work in minutes, so this should probably be left as min for now!

3. std::string space units is the human-readable space units. All PhysiCell functions currently
work in pm, so this should probably be left as micron for now!

4. int omp num threads is the number of threads to use for OpenMP parallelization.
5. std::string folder sets where PhysiCell saves data.

6. double full save_interval says how often (in time_units) PhysiCell saves full simulation data
(in MultiCellDS format [1]).

7. bool enable_full saves sets whether PhysiCell saves full simulation data.

8. bool enable legacy saves sets whether PhysiCell saves legacy data and logs for the original
demos. If enabled (default: off), it saves at the same frequency as the full saves.

9. double SVG_save_interval says how often (in time_units) PhysiCell saves SVG cross-sections;
see Section 14.1.1.

10. bool enable SVG saves sets whether PhysiCell saves SVG snapshots.

[Return to Table of Contents.]

13.2.2 Member functions

1. void read from pugixml(void) initializes the member data based upon the DOM that has
previously been loaded with 1load_PhysiCell_config_file.

[Return to Table of Contents.]

68

13.3 Structure of PhysiCell XML parameter files

PhysiCell’s XML files look like this (as of Version 1.6.0); they are subject to extension.

<?xml version="1.0" encoding="UTF-8"7>
<user_details />

<PhysiCell_settings version="devel-version'">

<domain>
<x_min>-1000</x_min>
<x_max>1000</x_max>
<y_min>-1000</y_min>
<y_max>1000</y_max>
<z_min>-10</z_min>
<z_max>10</z_max>
<dx>20</dx>
<dy>20</dy>
<dz>20</dz>
<use_2D>true</use_2D>

</domain>

<overall>
<max_time units="min">7200</max_time>
<time_units>min</time_units>
<space_units>micron</space_units>

<dt_diffusion units="min">0.01</dt_diffusion>

<dt_mechanics units="min">0.1</dt_mechanics>

<dt_phenotype units="min">6</dt_phenotype>
</overall>

<parallel>
<omp_num_threads>4</omp_num_threads>
</parallel>

<save>
<folder>output</folder> <!-- use . for root -->

<full_data>
<interval units="min">60</interval>
<enable>true</enable>

</full_data>

<SVG>
<interval units="min">42.0</interval>
<enable>true</enable>

</SVG>

69

<legacy_data>
<enable>false</enable>
</legacy_data>
</save>

<microenvironment_setup>
</microenvironment_setup>

<user_parameters>
</user_parameters>

</PhysiCell_settings>

The main groupings of settings are:

1. domain stores settings on the simulation domain size. As of Version 1.4.0, all PhysiCell sample
projects parse this section and set hte simulation size accordingly, although most override the use_2D
setting due to 2D /3D specific tissue initializations.

2. overall stores overall simulation settings, like units and maximum simulation time.
3. parallel stores OpenMP options.
4. save stores settings for where and how often data are saved.

5. microenvironment setup specifies the chemical substrates in the microenvironment, including
their diffusion and decay parameters and initial and boundary conditions. This block also sets some
options for the diffusion solvers in BioFVM. See 13.4 for more details.

6. user parameters stores user-defined parameters, specific to their simulation. See 13.5 for more
details.

[Return to Table of Contents.]

13.4 Microenvironment Setup

As of Version 1.6.0, PhysiCell users can fully define the chemical microenvironment by simple modifications
to the XML configuration file. (See Section 8 to learn more about the BioFVM chemical microenvironment.)
In Section 13.4.1, we show how to structure this block of XML.

A detailed tutorial on these parameters is provided at:

http://mathcancer.org/blog/setting-up-the-physicell-microenvironment-with-xml

[Return to Table of Contents.]

70

http://mathcancer.org/blog/setting-up-the-physicell-microenvironment-with-xml

13.4.1 Defining chemical microenvironmental substrates as XML

The microenvironment _setup section of the XML configuration file defines a number of variables,
followed by options:

<microenvironment_setup>
<variable />
</variable />

<optioms />
</microenvironment_setup>

Each chemical substrate is defined in a variable of the following form:

<variable name="NAME" units="UNITS" ID="#">
<physical_parameter_set>
<diffusion_coefficient units="LENGTH_UNITS"2/TIME_UNITS">VALUE1l
</diffusion_coefficient>
<decay_rate units="1/TIME_UNITS">VALUE2</decay_rate>
</physical_parameter_set>
<initial_condition units="UNITS">VALUE3</initial_condition>
<Dirichlet_boundary_condition units="UNITS" enabled="true">VALUE4
</Dirichlet_boundary_condition>
</variable>

Each variable has the following attributes:

e name is the name of the substrate. Specifying this is necessary to allow you to search for that
substrate within PhysiCell applications. (See Section 8.3).

e units gives the physical units of the substrate density or concentration. These could very well be
“dimensionless.” PhysiCell does not actively enforce or convert units, but specifying the units may
help prevent errors in your work.

e ID is a unique integer index to allow cross-referencing your substrate. These should be sequential
and start counting at zero.

variable has several sub-elements, which must all be present:

e physical parameter_set to indicate physical characteristics of the substrate. (The structure is
chosen for compatibilty with MultiCellDS [1].) It contains:

— diffusion _coefficient is the diffusion coefficient (recorded in VALUE1), with units indicated
as an attribute. As before, note that PhysiCell does not convert units. Use this recording
for your own clarity and to help ensure unit consistency. By default, PhysiCell uses pum for
LENGTH_UNITS and minutes for TIME_UNITS throughout its calculations.

— decay_rate is the s ubstrate’s background decay rate (recorded in VALUE2), with units indicated
as an attribute.

71

e initial condition gives the initial condition for the substrate (recorded in VALUE3), applied uni-
formly throughout the domain. The units are indicated as the units attribute. If your units are
self-consistent, they should match UNITS in the variable above.

e Dirichlet boundary condition gives the boundary value of the substrate (recorded in VALUE4),
to be applied uniformly to all simulation boundaries. This condition is only applied if the attribute
enabled is set to true. If enabled is set to false, then BioFVM will default to a Neuman (no flux)
condition for that substrate on the simulation boundary.

The units are indicated as the units attribute. If your units are self-consistent, they should match
UNITS in the variable above.

Next, options helps configure additional code behaviors:

e calculate gradients is set to true if the gradient of each substrate is to be computed at each
voxel at each mechanical time step. Enable this if you use chemotaxis anywhere in your model.

e track internalized substrates is set to true if each individual agent is to track its total amount
of internalized substrates (based on mass conservation with cell-based uptake and secretion in the
biotransport PDEs). See Sections 8.6 and 11.8 for more details.

e initial condition is not yet supported, but it will eventually provide a place to indicate pre-
computed non-uniform conditions, as saved in an external file. For now, a user can manually over-
write the unifrom initial conditions after calling initialize_microenvironment() (typically in a
setup_microenvironment () function).

e dirichlet nodes is not yet supported, but it will eventually provide a place to indicate which voxels
in the microenvironment should be Dirichlet nodes, and what the boundary values of the substrates
should be in those voxels. As in initial_condition, these will be read from an external file. For
now, users can set Dirichlet nodes using the functions in Section 8.4.

Here is a sample of a microenvironment with two substrates (oxygen and glucose), where there is a Dirichlet
boundary condition for oxygen, but none for glucose. (Note that all units are in gm and minutes.) Here,
we compute all gradients, but do not track internalized substrates.

<microenvironment_setup>
<variable name="oxygen" units="mmHg" ID="0">
<physical_parameter_set>
<diffusion_coefficient units="micron~2/min">100000</diffusion_coefficient>
<decay_rate units="1/min">0.1</decay_rate>
</physical_parameter_set>
<initial_condition units="mmHg">60</initial_condition>
<Dirichlet_boundary_condition units="mmHg"
enabled="true">38</Dirichlet_boundary_condition>
</variable>

<variable name='"immunostimulatory factor" units='"dimensionless" ID="1">
<physical_parameter_set>
<diffusion_coefficient units="micron~2/min">18000</diffusion_coefficient>
<decay_rate units="1/min">0.0</decay_rate>

72

</physical_parameter_set>
<initial_condition units="dimensionless">1</initial_condition>
<Dirichlet_boundary_condition units="dimensionless"
enabled="false'">0</Dirichlet_boundary_condition>
</variable>

<options>
<calculate_gradients>true</calculate_gradients>
<track_internalized_substrates_in_each_agent>false
</track_internalized_substrates_in_each_agent>
<!-- not yet supported ——>
<initial_condition type="matlab" enabled="false">
<filename>./config/initial.mat</filename>
</initial_condition>
<!-- not yet supported -->
<dirichlet_nodes type="matlab" enabled="false">
<filename>./config/dirichlet.mat</filename>
</dirichlet_nodes>
</options>
</microenvironment_setup>

[Return to Table of Contents.]

13.4.2 Key microenvironment parsing functions

e bool setup microenvironment from XML(pugi::xml node root node) parsesthe XML DOM
(in the supplied pugixml xm1_node) to find the microenvironment_setup node and process the vari-
ables and options.

It returns true if successful, and false if not.

e bool setup microenvironment from XML(void) calls the prior function using
physicell_config_root.

[Return to Table of Contents.]

13.5 User Parameters

As of Version 1.4.0, PhysiCell supports custom Boolean, integer, double, and string user parameters,
which are automatically parsed into PhysiCell into a parameters data structure and available for query
throughout a project. In Section 13.5.1, we show how to structure new user parameters in an XML
parameter file. In Section 13.5.2, we show how to access them within a project. In section 13.5.3, we
formally define the data types.

A detailed tutorial on these parameters is provided at:

http://www.mathcancer.org/blog/user-parameters-in-physicell /

[Return to Table of Contents.]

73

http://www.mathcancer.org/blog/user-parameters-in-physicell/

13.5.1 Adding User Parameters to an XML Configuration File

In the <user_parameters> section of an XML configuration file, you can add any named parameter with
the following syntax:

<user_parameters>
<parameter_name type="TYPE" units="UNITS">value</parameter_name>
</user_parameters>

e parameter_name is the name of the parameter. Note that this cannot begin with a digit.

e type is the type of parameter. Allowed types are bool (Boolean), int (integer), double (floating point
double precision), and string (std::string). Note that if this attribute is not supplied, PhysiCell will
attempt to process the parameter as a double.

e units are the units (default: none). Note that PhysiCell does not convert units, so supplying units
here is important communication between users to ensure all are using correct units. By default,
PhysiCell works in microns for spatial units and minutes for time units.

e value is the actual value of the parameter.

Here is an example <user_parameters> with each of these types of data

<user_parameters>
<enable_detailed_model type="bool" units="none">true</enable_detailed_model>
<number_of_initial_cells type="int" units="none">42</number_of_initial_cells>
<division_rate type="double" units="1/min">0.001</division_rate>
<mean_waiting_time type="double" units="min">1.2e2</mean_waiting_time>
<mutant_cell_color type="string" units="none">rgb(255,0,0)</mutant_cell_color>
</user_parameters>

PhysiCell reads into a global data structure called parameters. All Boolean parameters are in parameters.bools.
All integer parameters are stored in parameters.ints. All double parameters are stored in parameters.doubles.
All string parameters are stored in parameters.strings. See 13.5.3 for technical details of these struc-
tures.

[Return to Table of Contents.]

13.5.2 Accessing User Parameters in a Project

Use the () operator to access the value of a parameter, either by its name (easier) or by its index (faster).
For example, to get the value of the mean_waiting_time, use:

parameters.doubles("mean_waiting_time")

To find the index of this parameter, and then access by index, use:

74

int i = parameters.doubles.find_index("mean_waiting_ time");
parameters.doubles(i);

Use the [| operator to access the full data structure of a parameter, either by its name (easier) or by its
index (faster). For example, to get the value of the number_of_initial_cells, use:

Parameter<int> param = parameters.ints["number_of_initial_cells"];
std::cout << param.name << " " << param.units << " " << param.value << std::endl;
std::cout << param << std::endl;

To find the index of this parameter, and then access by index, use:

int i = parameters.ints.find_index("mean_waiting_time");

Parameter<int> param = parameters.ints[i];

std::cout << param.name << " " << param.units << " " << param.value << std::endl;
std::cout << param << std::endl;

The usage is similar for Boolean, string, and double parameters.

[Return to Table of Contents.]

13.5.3 User Parameters Technical Details

We first define a template class for a Parameter:

template <class T>
class Parameter
{
private:
template <class Y>
friend std::ostream& operator<<(std::ostream& os, const Parameter<Y>& param);

public:
std::string name;
std::string units;
T value;

Parameter();
Parameter(std::string my_name);

void operator=(T& rhs);

void operator=(T rhs);
void operator=(Parameter& p);

5

The supported types T are int, double, bool, and std: :string. You can use the assignment operator =
to either access the entire parameter or just its value. We also provide user-friendly streaming via the <<
overator.

Next, we provide a template class Parameters that bundles a searchable vector of parameters.

template <class T>
class Parameters

{
private:
std: :unordered_map<std::string,int> name_to_index_map;

template <class Y>
friend std::ostream& operator<<(std::ostream& os , const Parameters<Y>& params);

public:
Parameters();

std::vector< Parameter<T> > parameters;

void add_parameter(std::string my_name);
void add_parameter(std::string my_name , T my_value);
void add_parameter(std::string my_name , T my_value , std::string my_units);

void add_parameter(Parameter<T> param);
int find_index(std::string search_name);

// these access the values
T& operator() (int i);
T& operator() (std::string str);

// these access the full, raw parameters
Parameter<T>& operator[](int i);
Parameter<T>& operator[] (std::string str);

int size(void) const;

+;

As shown in the examples above, use the () operator to access a specific parameter value, and use the ||
operator to access a specific full parameter data structure. Use find_index to search for the index of a
parameter. We also provide a friendly streaming operation to summarize the parameters.

Lastly, User_Parameters bundles Boolean, integer, double, and string parameters:

class User_Parameters

{
private:
friend std::ostream& operator<<(std::ostream& os , const User_Parameters up);

76

public:
Parameters<bool> bools;
Parameters<int> ints;
Parameters<double> doubles;
Parameters<std::string> strings;

void read_from_pugixml(pugi::xml_node parent_node);

[Return to Table of Contents.]

14 PhysiCell Outputs

PhysiCell supports several methods of output, including SVG files (allowing virtual pathology through a
fixed cross-section), MultiCellDS digital snapshots (a single-time save file), and other output methods.

Over the next several releases, we plan further improvements to PhysiCell outputs.

14.1 Virtual Pathology

PhysiCell can simulate transmitted light microscopy to create virtual H&E (hematoxylin and eosin) images,
as well as false-colored images. These images are saved as SVG (scalable vector graphics) files, which allow
lossless rescaling of the image. Moreover, because SVG files are a specialized XML, users can change labels
and other image aspects long after image processing, using simple text editors.

We also note that the SVG functions provided in PhysiCell (./modules/PhysiCell_SVG.h) can be com-
piled independently of PhysiCell.

[Return to Table of Contents.]

14.1.1 SVG functions

SVG functions (defined in ./modules/PhysiCell_SVG.h) provide basic functionality for creating SVG
files. In all the functions below, please note that the origin (0,0) in an SVG file is in the upper left corner.

1. bool Write SVG_start(std::ostream& os, double width, double height) creates the
header information for an SVG file of width width, height height, and writes the stream in os.

Example: Starting a 640 x 480 image:
// open the file, write a basic "header"
std::ofstream os("sample_SVG.svg" , std::ios::out);

Write_SVG_start(os, 640, 480);

2. bool Write SVG end(std::ostream& os) writes the end of an SVG file to the stream in os.
Example: Starting a 640 x 480 image:

7

// open the file, write a basic "header"
std::ofstream os("sample_SVG.svg" , std::ios::out);
Write_SVG_start(os, 640, 480);

// operations on the SVG file

// close and save the file
Write_SVG_end(os);
os.close();

. bool Write SVG text(std::ostream& os, const charx str,

double position x, double position_y, double font_size,

const char* color , const char* font) places the text str at (upper left) position
[position_x,position_y] with text height font_size, color color, and font font. It writes to
the stream os.

Example: Placing a dark red “hello world” at (30,60), with font height 17 and the Arial font.

// open the file, write a basic "header"
std::ofstream os("sample_SVG.svg" , std::ios::out);
Write_SVG_start(os, 640, 480);

std::string my_text = "Hello world!";
std: :string my_color = "rgb(128,0,0)";
std::string my_font = "Arial";

Write_SVG_text(os, my_text.c_str(), 30, 60, 17, my_color.c_str(),
my_font.c_str());

// close and save the file
Write_SVG_end(os);
os.close();

. bool Write_SVG_ circle(std::ostream& os,

double center _x, double center_y, double radius,

double stroke_size, std::string stroke_color,

std::string fill color) places a circle with center at [center_x,center_y] and radius
radius. The circle is filled with color £i11_color, and an outline of thickness stroke_size and
color stroke_color. It writes to the stream os.

Example: Placing a cyan circle with black outline at (100,90), with radius 8.6, and outline width 1.
// open the file, write a basic "header"
std::ofstream os("sample_SVG.svg" , std::ios::out);

Write_SVG_start(os, 640, 480);

std::string my_fill_color = "rgb(0,255,255)";
std::string my_outline_color = "black";

Write_SVG_circle(o0s,100,90,8.6,1,my_outline_color.c_str() ,my_fill_color.c_str());

78

// close and save the file
Write_SVG_end(os);
os.close();

. bool Write SVG rect(std::ostream& os,

double UL_corner_x, double UL _corner.y,

double width, double height, double stroke size,

std::string stroke color , std::string fill color) places arectangle with upper-
left corner [UL_corner_x,UL_corner_y], width width, height height, filled with color £ill_color,
and outlined with color stroke_color and line thickness stroke_size. It writes to the stream os.

Example: Placing a black border with no fill around the SVG image.

// open the file, write a basic "header"
std::ofstream os("sample_SVG.svg" , std::ios::out);
Write_SVG_start(os, 640, 480);

std::string my_fill_color = "none";
std::string my_outline_color = "black";

Write_SVG_rect(0S,0,0,640,480,1,my_outline_color.c_str(),my_fill_color.c_str());

// close and save the file
Write_SVG_end(os);
os.close();

. bool Write SVG_line(std::ostream& os,

double start x, double start_y, double end x, double end.y,

double thickness, std::string stroke_color) draws aline with color stroke_color
and thickness thickness from [start_x,start_y] to [end_x,end_y]. It writes to the stream os.

Example: Placing a thin dark blue line from (0,0) to (640,480).

// open the file, write a basic "header"

std::ofstream os("sample_SVG.svg" , std::ios::out);
Write_SVG_start(os, 640, 480);

std: :string my_stroke_color = "rgb(0,0,64)";
Write_SVG_line(o0s,0,0,640,480,1.5,my_stroke_color.c_str());
// close and save the file

Write_SVG_end(os);
os.close();

[Return to Table of Contents.]

79

14.1.2 Pathology functions

PhysiCell can create fast virtual pathology images through a cross section. Here are the main functions:

1. void SVG_plot(std::string filename , Microenvironment& M,
double z_slice, double time,
std: :vector<std::string> (*cell coloring function) (Cell*)) creates an SVG
plot through z = z_slice, using the coloring function cell_coloring_function (See Section 14.1.3),
with labeling for time time, in the microenvironment M, saved to filename.

This function checks all cells for intersection with the plane through z = z_slice, and plots the
intersecting part of the cell cytoplasm and nucleus (using circular approximations). In the plot, 1
pixel is 1 pm.

Example: H&E plot through z = Opm, followed by a false-colored Ki-67 plot through z = 10um:

SVG_plot("initial HE.svg" , microenvironment, 0.0 , t,
hematoxylin_and_eosin_cell_coloring);

SVG_plot("initial Ki67.svg" , microenvironment, 10.0 , t,
false_cell_coloring Ki67);

The SVG plotting options are set by PhysiCell_SVG_options, which is discussed further in Section
16.6.

2. std::string formatted minutes to DDHHMM(double minutes) creates a nicely formated
string (in days, hours, and minutes) based upon minutes. It is used extensively in SVG_plot.

3. std::vector<double> transmission(std::vector<double>& incoming light,
std: :vector<double>& absorb_color, double thickness,
double stain) simulates transmission of light of color incoming_light
through a tissue of thickness thickness, stained at relative intensity stain (with range from 0 to 1),
which absorbs light of color absorb_color. Its output is the transmitted color, as an RGB vector.

We use a Lambert-Beer [5] light transmission model for each color channel (Red, Green, Blue):

1
Transmitted¢ = Incoming, -exp <— <thickness - stain - 555 OAbsorbc>> ,
C € {Red, Green,Blue} (19)
Note that we use 24-bit color, so red, green, and blue values should vary from 0 to 255. Outputs to

SVG files will be rounded to the nearest integer value. This function is available for use in custom
coloring functions, and PhysiCell uses it for virtual H&E stains.

Future releases will include functions to color the background according to data values in the BioFVM
microenvironment.

[Return to Table of Contents.]

80

14.1.3 Cell coloring functions

PhysiCell’s virtual pathology functions are built upon choosing a coloring function for the cells. A coloring
function takes the form:

std: :vector<std::string> some_coloring_function(Cell* pCell)

and it returns a vector of four strings: the cytoplasm fill color, cytoplasm outline color, nuclear color, and
nuclear outline color.

Colors in SVG can be specified as:

1. RGB colors: Use a string of the form "rgb(R,G,B)", where R, G, and B are the red, green, and
blue values, and they are integers between 0 and 255.

2. Standard web colors: Use a string like "black" or "red", or use "none" for no color (trans-
parent). See https://www.w3.org/TR/SVG11/types.html#ColorKeywords for a list of valid SVG
colors.

The following cell coloring functions are provided in PhysiCell:

1. simple cell coloring colors the cytoplasm red (255,0,0), the nucleus blue (0,0,255), and all out-
lines black.

2. false_cell _coloring Ki67 is recommended for the Ki67_Basic and Ki67_Advanced cycle models.
(See Section 11.1 and Section 17.1.) Pre-mitotic Ki67+ cells are colored green (0,255,0), with a
darker green nucleus (0,125,0). Post-mitotic Ki67+ cells are colored magenta (255,0,255), with a
darker magenta nucleus (125,0,125). (In the Ki67_Basic model, all Ki67+ cells are green.) Ki67- cells
are colored blue (40,200,255) with a darker blue nucleus (20,100,255).

Apoptotic cells are colored red (255,0,0) with a darker red nucleus (125,0,0). Necrotic cells are colored
brown (250,138,38) with a darker brown nucleus (139,69,19). All outlines are black.

3. false _cell coloring live_dead colors live cells green, apoptotic cells red, and necrotic cells
brown, with colors defined as the Ki67 coloring function. All outlines are black.

4. hematoxylin and eosin cell coloring colors the cytoplasm by first using the transmission
function, with white (255,255,255) incoming light, an eosin absorb color (2.55,33.15,2.55) [10], a
thickness of 20, and a stain intensity given by

pCell->phenotype.volume.cytoplasmic_solid

(20)

stain = X ’
pCell->phenotype.volume.cytoplasmic + 10~10

which approximates the process of staining cytoplasmic solids with eosin, and the water fraction re-
maining unstained. The result of this simulated transmission is then fed back through the transmission
function (as the incoming light color), with an hematoxylin absorb color (49.90,51.00,20.40) [10], a
thickness of 20, and a stain intensity given by

stain = pCell->phenotype.volume.calcified fraction (21)

which approximates the process of staining calcified cytoplasmic solids with hematoxylin.

81

https://www.w3.org/TR/SVG11/types.html#ColorKeywords

The nucleus is colored by virtual hematoxylin staining, with incoming light color white (255,255,255),
hematoxylin absorb color (49.90,51.00,20.40) [10], and a stain intensity given by

. pCell->phenotype.volume.nuclear_solid
stain =

22
pCell->phenotype.volume.nuclear + 10~10’ (22)

which approximates the process of staining nuclear solids with hematoxylin, and the water fraction
remaining unstained.

All outlines match the corresponding fill colors.

. false_cell _coloring cycling quiescent colors quiescent and cycling cells as Blue and Green,

respectively, for use in the cycling quiescent cell cycle model.

. false cell coloring cytometry supports all the various flow cytometry-based cell cycle models.

As other coloring funcitons, apoptotic cells are red, and necrotic cells are brown.

GO/G1 cells, or G1 cells, are colored light blue. (0,80,255).
GO cells are colored pale blue . (40,200,255).

S cells are colored magenta. (255,0,255).

G2 cells are colored yellow. (255,255,0).

G2/M and M cells are colored green. (0,255,0).

[Return to Table of Contents.]

14.1.4 Examples of custom cell coloring functions

14.1.4.1 Example: Black nucleus and oxygen-based cytoplasmic coloring

std: :vector<std::string> oxygen_coloring(Cellx pCell)

{

std::vector< std::string > output(4 , "black");
// nucleus and both outlines are already black.
// cytoplasm color

// first, get the oxygenation

// determine the 02 index the first time the function is run.
static int o2_index = microenvironment.find_density_index("oxygen") ;

// sample the microenvironment at the cell’s locaiton
double 02 = pCell->nearest_density_vector() [02_index];

// set the 02 max scale by the cell’s parameters.
static double max_o2 = pCell->parameters.o2_proliferation_saturation;

// 02 goes from blue (anoxic, O mmHg) to red (fully oxygenated).
int color = (int) round(o2 * 255.0 / max_o2);

82

char szTempString [128];
sprintf (szTempString , "rgb(%u,0,%u)", color, 255-color);
output [0] .assign(szTempString);

return output;

14.1.4.2 Example: Simulated immunohistochemistry with DAB and a hematoxylin coun-
terstain As in H&E, we assume that hematoxylin stains all nuclear solids, and here we assume that it
stains cytoplasmic solids at 10% of the nuclear intensity. We assume that DAB stains a nuclear protein
(in custom data). Based on these virtual stains, we use simulated light transmission.

For reference, we use a DAB absorb color of (25.50,53.55,73.95) [10].

std: :vector<std::string> nuclear_immunostain(Cell* pCell)

{

std::vector< std::string > output(4 , "black");

// absorb colors
static std::vector<double> hematoxylin_absorb = {45.90,51.00,20.40};
static std::vector<double> DAB_absorb = {25.50,53.55,73.95};

// cytoplasm colors
double solid_fraction = 1.0 - pCell->phenotype.fluid_fraction;
double cyto_stain_intensity = 0.1 * solid_fraction;

std: :vector<double> = color(3, 255.0); // start with white light
color = transmission(color,hematoxylin_absorb,20,cyto_stain_intensity);

char szTempString [128];
sprintf (szTempString , "rgb(lu,%u,%w)",
(int)round(color[0]), (int)round(color[1]), (int)round(color[2]));
output [0] .assign(szTempString);
output[1] .assign(szTempString) ;

// nuclear colors

// determine the index of the nuclear protein (assumed between O and 1)
static int protein_index =

pCell->custom_data.find_variable_index("nuclear_protein");
double nuclear_DAB_stain_intensity = pCell->custom_data[protein_index];
double nuclear_H_stain_intensity = solid_fraction;

color = {255.0,255.0,255.07};
color = transmission(color,hematoxylin_absorb,20,nuclear_H_stain_intensity);
color = transmission(color,DAB_absorb,20,nuclear_DAB_stain_intensity);

sprintf (szTempString , "rgb(%u,%u,%u)",

83

(int)round(color[0]), (int)round(color[1]), (int)round(color[2]));
output [2] .assign(szTempString);
output [3] .assign(szTempString);

return output;

[Return to Table of Contents.]

14.2 MultiCellDS digital simulation snapshots

PhysiCell saves its data as specialized MultiCellDS digital snapshots [1]. These snapshots save key meta-
data (See Section 16.5), the microenvironment, and a compact cell readout in an XML file. See [1] and
http://multicellds.org/Standards.php for detailed information on the data standard.

To save a MultiCellDS simulation snapshot, use:

void save PhysiCell to MultiCellDS xml pugi(std::string filename base,
Microenvironment& M , double current_simulation_time);

Here, the filebase determines how all the snapshot sub-files will be named: filebase.xml, filebase_cells.mat
filebase_meshO.mat, etc.

Example:

double t = 0.0;

double dt = 0.01;

double t_max = 30.0 * 24.0 * 60.0; // 30 days
double tolerance = 0.01 * dt;

// other initialization code

// save the initial data
save_PhysiCell_to_MultiCellDS_xml_pugi("initial" , microenvironment , t);

double next_save_time = t;
double save_interval = 60.0; // save every 60 minutes
output_index = O;

while(t < t_max + tolerance)
{

// save if it’s time

if(fabs(t - next_save_time) < tolerance)
{

// make an appropriate file name

char filename[1024];
sprintf(filename , "output%08u" , output_index);

84

http://multicellds.org/Standards.php

// save
save_PhysiCell_to_MultiCellDS_xml_pugi(filename , microenvironment , t);

next_save_time += save_interval;
output_index++;

// more simulation steps

t += dt;

Here is the overall structure of PhysiCell snapshot

1. XML headers in the <XML> tag.

2. MultiCellDS tag, indicating a digital simulation snapshot:
<MultiCellDS version="0.5" type="snapshot/simulation">.

(a) Metadata in a <metadata> tag, including simulation provenance (who ran it, with what software,
citation information, etc.), and other notable elements including:

i. The current simulation time, saved in a tag like
<current_time units="min">0.000000</current_time>.

(b) The BioFVM microenvironment, in a <microenvironment> tag structured as:

i. <domain> (MultiCellDS can support multiple domains, although we only use one.)
A. <mesh> describes the BioFVM mesh. The spatial units are given as an XML attribute
of this element. Here is the overall (truncated) structure

<mesh type="Cartesian" uniform="true" regular="true" units="micron">
<bounding_box type="axis-aligned" units="micron" />

<x_coordinates delimiter=" " />
<y_coordinates delimiter=" " />
<z_coordinates delimiter=" " />
<voxels type="matlab">
<filename>initial_meshO.mat</filename> <!-- compact storage -->
</voxels>
</mesh>

The voxel information (in this case, in initial_meshO.mat) is stored with one voxel
per column. The first three rows give the x-, y-, and z-coordinates of each voxel’s center,
respectively. The fourth row gives each voxel’s volume.

B. <variables> gives a list of variables, including the name (XML attributes), units (XML
attributes), and some physical parameters. Here is a (truncated) example:
<variables>

<variable name="oxygen" units="mmHg" ID="0">
<physical_parameter_set>
<conditions />

85

<diffusion_coefficient units="micron~2/min" />
<decay_rate units="1/min" />
</physical_parameter_set>
</variable>
</variables>
C. Microenvironment data, typically stored compactly in a MATLAB file, like this:
<data type="matlab">
<filename>initial_microenvironmentO.mat</filename>
</data>
The data file (here, initialize_microenvironment0.mat) stores the microenviron-
ment in one column per voxel, and if there are n substrates, n+3 rows, where rows one
to three are the (x,y,z) coordinates of the voxel, and each subsequent row is a variable
value (as defined in <variables> above).
ii. Cellular information, here in a customized and compact MultiCellDS format:
<cellular_information>
<cell_populations>
<cell_population type="individual">
<custom>
<simplified_data type="matlab" source="BioFVM">
<filename>initial_cells.mat</filename>
</simplified_data>
<simplified_data type="matlab" source="PhysiCell">
<labels>
<label index="0" size="1">ID</label>
<label index="1" size="3">position</label>
<label index="4" size="1">total_volume</label>
<label index="b" size="1">cell_type</label>
<label index="6" size="1">cycle_model</label>
<label index="7" size="1">current_phase</label>
<label index="8" size="1">elapsed_time_in_phase</label>
<label index="9" size="1">nuclear_volume</label>
<label index="10" size="1">cytoplasmic_volume</label>
<label index="11" size="1">fluid_fraction</label>
<label index="12" size="1">calcified_fraction</label>
<label index="13" size="3">orientation</label>
<label index="16" size="1">polarity</label>
</labels>
<filename>initial_cells_physicell.mat</filename>
</simplified_data>
</custom>
</cell_population>
</cell_populations>
</cellular_information>
In the indicated MATLAB file, each cell is stored in a separate column, with cell-scale data
given in separate rows as defined in <labels> above. We anticipate improvements in this
MultiCellDS output in future editions, but the data will always be structured as above with
labels. We will also always preserve the ordering of the first 17 data elements for compati-
bility.

86

In the case above, the first row is the cell ID, the next three rows are the cell (x,y,z)
position, the next row is the cell’s (integer) type, the next row gives the cell’s cycle model
(as a PhysiCell::constants integer), and so forth.

[Return to Table of Contents.]

14.2.1 Reading PhysiCell snapshots in MATLAB

In the . /matlab directory, we include a few MATLAB functions to parse the PhysiCell MultiCellDS XML
files and associated .mat files. We recommend copying them to your path, or to the same directory as your
data.

Here is an example of loading a snapshot (in MATLAB), plotting a microenvironment variable, and then
plotting some cells.

MCDS = read_MultiCellDS_xml(’initial.xml’);

% output looks like this

% Elapsed time is 0.522643 seconds.

yA

% Summary for file initial.xml:

% Voxels: 40000

% Substrates: 1

% oxygen (mmHg)

% Cells: 21845

yA

contour (MCDS.mesh.X , MCDS.mesh.Y, MCDS.continuum_variables(1).data(:,:,1))
axis 1ij

axis square

% label using MCDS metadata

xlabel(sprintf(’x (%s)’, MCDS.metadata.spatial_units) , ’fontsize’, 13)
ylabel(sprintf(’y (%s)’, MCDS.metadata.spatial_units) , ’fontsize’, 13)
% more labeling

title(sprintf(’%s at time %3.2f %s’, MCDS.continuum_variables(1l) .name |,
MCDS.metadata.current_time , MCDS.metadata.time_units) , ’fontsize’ , 14);
% add a colorbar, and label

¢ = colorbar;

c.Label.String = sprintf(’%s (%s)’, MCDS.continuum_variables(1l) .name ,
MCDS.continuum_variables (1) .units);

c.FontSize = 13;

yA

yA

% Now, plot the cell positions in 3D

figure

plot3(MCDS.discrete_cells.state.position(:,1) ,
MCDS.discrete_cells.state.position(:,2),
MCDS.discrete_cells.state.position(:,3) , ’ko’);

% labeling

87

axis equal

xlabel(sprintf(’x (%s)’, MCDS.metadata.spatial_units) , ’fontsize’, 13)
ylabel(sprintf(’y (%s)’, MCDS.metadata.spatial_units) , ’fontsize’, 13)
zlabel(sprintf(’z (%s)’, MCDS.metadata.spatial_units) , ’fontsize’, 13)

We anticipate further refinements to MATLAB plotting, and improvements to importing this data be-
yond MATLAB. Please also note that the current matlab read script uses the reduced matlab file stored
in <simplified_data type="matlab" source="BioFVM">. Future PhysiCell releases will use the more
complete <simplified_data type="matlab" source="PhysiCell">.

Unfortunately, Octave does not yet ship with xmlread, so the example above will not fully run. You must
get the xerces java binaries and xmlread (in the IO octave forge package). There are instructions there on
how to get your xerxes JAR files in the path. Please note that xmlread is about one order of magnitude
slower on Octave than in Matlab.

[Return to Table of Contents.]

14.3 Other outputs

PhysiCell also has limited POV-ray support (visualization by the open source POV-Ray raytracer), and
some additional logging. This will be further documented soon.

15 Key initialization functions
The following initialization functions should be called (in this order):

1. omp_set num threads (omp num threads) ; to set the number of threads in the simulation.

2. SeedRandom() ; to initialize the random number generator. (It generates a random seed based on
the current system time.) You can also use long SeedRandom(long input); to specify the
random seed, such as to continue a simulation.

3. initialize microenvironment () ; to initialize the microenvironment, after setting any options
in default_microenvironment_options. See Section 8.2.

4. Cell Container* cell _container =
create _cell _container for microenvironment (

microenvironment, mechanics_voxel_size);. Notethat microenvironment

is the default PhysiCell microenvironment. See Section 12.

5. initialize default cell definition() ; sets up the default Cell_Definition and makes sure
it is self-consistent. It also automatically runs setup functions to create standard cell cycle and death
models. Users creating new cell definitions are encouraged to copy the default cell definition and
then modify it.

All these initialization functions are included in the 2-D and 3-D project templates. See Section 6.

[Return to Table of Contents.]

88

http://xerces.apache.org/xerces-j/
https://octave.sourceforge.io/io/index.html

16 Key global data structures

PhysiCell (and BioFVM) have numerous global data structures to help configure options. Here, we detail
the most useful of these.

16.1 Global strings

The BioFVM and PhysiCell versions and strings can be accessed via

std::string BioFVM_version;
std::string BioFVM_URL;
std::string PhysiCell_version;
std::string PhysiCell_URL;

16.2 Default microenvironment

The name of the default microenvironment in PhysiCell is microenvironment, which is declared in
./BioFVM/BioFVM_microenvironment.cpp. This structure is initialized with the function

initialize_microenvironment ()

based upon the settings in default_microenvironment_options (of type Microenvironment_Options).
Here is the definition of that data structure:

class Microenvironment_Options

{

private:

public:
Microenvironment* pMicroenvironment;
std::string name;

std::string time_units;
std::string spatial_units;
double dx;

double dy;

double dz;

bool outer_Dirichlet_conditions;
std: :vector<double> Dirichlet_condition_vector;

bool simulate_2D;

std::vector<double> X_range;
std::vector<double> Y_range;
std::vector<double> Z_range;

89

Microenvironment_Options();

bool calculate_gradients;

};

See Section 8.2 for more details on these options.

[Return to Table of Contents.]

16.3 Default cell definition

In Section 9.4.5, we documented the data structure for a Cell Definition (similar to a MultiCellDS digital
cell line [1]).

PhysiCell creates a default Cell_Definition called cell_defaults. Once the user calls
initialize_default_cell_definition() (Section 15), this default definition is set to parameter values
for the a generic breast epithelium line (calibrated to MCF-10A).

1. It uses the Ki-67 Advanced model. (See Section 17.1.3.)

2. It defaults to apoptosis and necrosis death models, with parameters for a generic breast epithelium
line (calibrated to MCF-10A) as given in [3].

3. It uses general breast epithelial parameters (calibrated to MCF-10A) for volume, and the standard
volume regulation model
standard_volume_update_function. (See Section 17.3.)

4. Tt sets the cell to be non-motile.

5. It sets the custom rule (custom_cell_rule) to NULL and update phenotype function
(update_phenotype) to update_cell_and_death_parameters_02_based, so the cell changes its cy-
cle entry rate and necrosis rate according to its local oxygenation conditions. (See Section 17.6.)

6. It uses the default mechanics model in [3], by setting update_velocity equal to
standard_update_cell_velocity. (See Section 17.4.)

When create_cell() or the default Cell constructor is called, this default definition is used. (See Section
9.3.)

Users can modify cell_defaults at any time; the changes will only apply to cells created after that point
in time.

[Return to Table of Contents.]

16.4 A list of all cells

PhysiCell keeps a list of all current cells in the simulation:

std::vector<Cell*> *all_cells;

90

It is critical that users do not modify this data structure, but it is available for peforming an operation
on all cells.

Example: Dislay the cycle phase of all cells

Cellx pC = NULL;
for(int i=0; i < (*all_cells).size(); i++)
{
pC = (*all_cells) [i];
std::cout << pC->ID << ": " << pC->phenotype.cycle.current_phase().name << std::endl;

[Return to Table of Contents.]

16.5 MultiCellDS options

MultiCellDS embeds program and user metadata each time it saves. You can modify this information.
BioFVM (and hence PhysiCell) saves the default metadata in BioFVM_metadata (of type
MultiCellDS_Metadata). Here is the full class definition:

class MultiCellDS_Metadata
{
private:
public:
std::string MultiCellDS_type;

Software_Metadata program;
Citation_Metadata data_citation;

// scientific information
std::string spatial_units;
std::string time_units;
std::string runtime_units;
double current_time;
double current_runtime;

std::string description; // any optional text -- not implemented

MultiCellDS_Metadata();

void display_information(std::ostream& os);

void sync_to_microenvironment(Microenvironment& M);
void restart_runtime(void);

void add_to_open_xml_pugi(double current_simulation_time,
pugi: :xml_document& xml_dom);
I

The various member functions are used by BioFVM/PhysiCell when saving a simulation snapshot, and

91

are not needed for users. We define Software_Metadata, Citation_Metadata, and Person_Metadata
(currently unused) below. The other metadata elements (spatial_units, etc.) are as expected.

[Return to Table of Contents.]

16.5.1 Software metadata

class Software_Metadata

{

private:

public:
// basic program information
std::string program_name;
std::string program_version;
std::string program_URL;

Person_Metadata creator;
Person_Metadata user;
Citation_Metadata citation;

Software_Metadata();

void display_information(std::ostream& os);
void insert_in_open_xml_pugi(pugi::xml_node& insert_here);

[Return to Table of Contents.]

16.5.2 Citation metadata

class Citation_Metadata

{
private:
public:
std::string DOI;
std::string PMID;
std::string PMCID;
std::string text;
std::string notes;
std::string URL;
Citation_Metadata() ;
void display_information(std::ostream& os);
void insert_in_open_xml_pugi(pugi::xml_node& insert_here);
I

[Return to Table of Contents.]

92

16.5.3 Person metadata

class Person_Metadata

{
private:
bool is_empty;
public:
std::string type; // author, creator, user, curator
std::string surname;
std::string given_names;
std::string email;
std::string URL;
std::string organization;
std::string department;
std::string ORCID;
Person_Metadata();
void display_information(std::ostream& os);
void insert_in_open_xml_pugi(pugi::xml_node& insert_here);
I

[Return to Table of Contents.]

16.6 SVG options

PhysiCell keeps a simple data structure named PhysiCell_SVG_options (of type
PhysiCell_SVG_options_struct) to easily set SVG plotting options (particularly in digital pathology;
see Section 14.1). Here is how that data structure is defined (with its default values):

struct PhysiCell_SVG_options_struct

{
bool plot_nuclei = true;
std::string simulation_time_units = "min";
std::string mu = "μ";
std::string simulation_space_units = "μm";
std::string label_time_units = "days";
double font_size = 200;
std::string font_color = "black";
std::string font = "Arial";
double length_bar = 100;

s

All plots are performed in the simulation units, so a font of height 200 is 200 pm tall.

93

[Return to Table of Contents.]

16.7 PhysiCell Constants

The structure PhysiCell_constants (in ./core/PhysiCell_constants.h) defines many standardized
constants and integer identifiers. They can be accessed with syntax like this:

std::cout << "Here is the code for the Ki67 Advanced model: "
<< PhysiCell_constants::advanced_Ki67_cycle_model << std::endl;

Cellx pC = NULL;
for(int i=0; i < (*all_cells).size(); i++)

{
pC = (*all_cells) [i];
if (pC->phenotype.cycle.current_phase().code ==
PhysiCell_constants: :Ki67_negative)
{
std::cout << "Cell is Ki67 negative" << std::endl;
+
+

Here is the list of all current constants (in Version 1.2.0):

class PhysiCell_constants
{
public:
static constexpr double pi=3.1415926535897932384626433832795;

static constexpr double cell_removal_threshold_volume = 20;
// 20 cubic microns -- about 1% of typical cell

static const int keep_pushed_out_cells_in_outer_voxel=1;

static const int solid_boundary = 2;

static const int default_boundary_condition_for_pushed_out_agents
= keep_pushed_out_cells_in_outer_voxel;

static const int deterministic_necrosis = O;
static const int stochastic_necrosis = 1;

static const int oxygen_index = 0; // deprecate
static const int glucose_index = 1; // deprecate

static const int TUMOR_TYPE=0; // deprecate
static const int VESSEL_TYPE=1; // deprecate

static const int mesh_min_x_index=0;
static const int mesh_min_y_index=1;

94

static const int mesh_min_z_index=2;
static const int mesh_max_x_index=3;
static const int mesh_max_y_index=4;
static const int mesh_max_z_index=5;

static const int mesh_lx_face_index=0;
static const int mesh_ly_face_index=1;
static const int mesh_lz_face_index=2;
static const int mesh_ux_face_index=3;
static const int mesh_uy_face_index=4;
static const int mesh_uz_face_index=5;

// currently recognized cell cycle models
static const int advanced_Ki67_cycle_model= O;
static const int basic_Ki67_cycle_model=1;
static const int flow_cytometry_cycle_model=2;
static const int live_apoptotic_cycle_model=3;
static const int total_cells_cycle_model=4;
static const int live_cells_cycle_model = 5;

// currently recognized death models

static const int apoptosis_death_model = 6;
static const int necrosis_death_model = 7;
static const int autophagy_death_model = 8;

static const int custom_cycle_model=9999;

// currently recognized cell cycle and death phases
// cycle phases

static const int Ki67_positive_premitotic=0;
static const int Ki67_positive_postmitotic=1;
static const int Ki67_positive=2;

static const int Ki67_negative=3;

static const int GOG1l_phase=4;

static const int GO_phase=5;

static const int G1l_phase=6;

static const int Gla_phase=7;

static const int Glb_phase=8;

static const int Glc_phase=9;

static const int S_phase=10;

static const int G2M_phase=11;

static const int G2_phase=12;

static const int M_phase=13;

static const int live=14;

static const int custom_phase = 9999;

// death phases
static const int apoptotic=100;

95

static const int necrotic_swelling=101;
static const int necrotic_lysed=102;
static const int necrotic=103;

static const int debris=104;

};

extern std::string time_units = "min";
extern std::string space_units
extern double diffusion_dt =
extern double mechanics_dt
extern double phenotype_dt

= "micron";
.01;
.1
.0;

I

]
o O O

[Return to Table of Contents.]

16.8 User Parameters

As detailed in Section 13.5, PhysiCell has a global User_Parameters data struture called parameters.

[Return to Table of Contents.]

17 Standard models

PhysiCell includes several models for easier out-of-the-box simulation. We document here the underlying
mathematics of these models, as also presented in [3].

17.1 Cell Cycle Models

PhysiCell includes several pre-built cell cycle models. More models will be added in future releases.

17.1.1 Live (1ive)
code: PhysiCell constants::1live cells cycle model)

This Cycle_Mode has the following Phases:
1. Phase 0: Named live with code PhysiCell_constants::1live.

In this model, live cells can divide into two live cells, with birth rate b. See Fig. 1. The population-scale
model is given by:

dL
dt
In PhysiCell, the transition rate from the Live state to the Live state is

bL. (23)

transition_rate(0,0) = b. (24)

Further details on the biology of this model (including details the placement of daughter cells and changes
in cell volume) and reference parameter values can be found in [3].

[Return to Table of Contents.]

96

start —> b (divides)

Figure 1: The graph structure of the Live cell cycle model. The default phase is marked “start.”

To1
start —

T10 (leldGS)

Figure 2: The graph structure of the Ki67 Basic cell cycle model. The default phase is marked
“start.”

17.1.2 Ki-67 Basic (Ki67_basic)
(Code: PhysiCell constants::basic Ki67 _cycle model)

This Cycle_Mode has the following Phases:

1. Phase 0: Named Ki67- with code PhysiCell_constants: :Ki67_negative.

2. Phase 1: Named Ki67+ with code PhysiCell_constants::Ki67_positive.

In this model, Ki67- cells (those staining negative for the cell proliferation marker Ki67) can enter the cell
cycle to become Ki67+ cells, at transition rate ry;. Ki67+ cells divide into two Ki67- cells at rate r1g. See
Fig. 2. The population-scale model is given by:

d [Ki67—]

= = —ro1 [Ki67—] + 210 [Ki67+] (25)
d[Ki67
% = 701 [Ki67—] — 110 [Ki67+] (26)

Further details on the biology of this model (including details the placement of daughter cells and changes
in cell volume) and reference parameter values can be found in [3].

[Return to Table of Contents.]

17.1.3 Ki-67 Advanced (Ki67_advanced)
(code: PhysiCell constants::advanced Ki67_cycle model)

This Cycle_Mode has the following Phases:

97

Top r12 (divides)

start —

20

Figure 3: The graph structure of the Ki67 Advanced cell cycle model. The default phase is marked
“start.”

1. Phase 0: Named Ki67- with code PhysiCell_constants: :Ki67_negative. This is the default
phase of the model.

2. Phase 1: Named Ki67+ (premitotic) with code
PhysiCell_constants: :Ki67_positive_premitotic.

3. Phase 2: Named Ki67+ (postmitotic) with code
PhysiCell_constants: :Ki67_positive_postmitotic.

In this model, Ki67- cells (those staining negative for the cell proliferation marker Ki67) can enter the
cell cycle to become premitotic Ki67+ cells, at transition rate ro;. Ki674 premitotic cells divide into two
Ki67+ postmitotic cells at rate ry5. Postmitotic Ki67+ cells become Ki67- cells at rate ry9. See Fig. 3.
The population-scale model is given by:

T =
d [Ki67d;r (pre)] ror [Ki67—] — r12 [Ki67 + (pre)] (28)
d [KiG?C—l: (pOSt)] — 9y [Ki67 + (pre)] — Ty [Ki67 + (post)] (29>

Further details on the biology of this model (including details the placement of daughter cells and changes
in cell volume) and reference parameter values can be found in [3].

[Return to Table of Contents.]

17.1.4 Flow Cytometry (flow_cytometry cycle model)
(code: PhysiCell constants::flow cytometry cycle model)

This Cycle_Mode has the following Phases:

98

o1 r12

start —

90 (divides)

Figure 4: The graph structure of the Flow Cytometry cell cycle model. The default phase is
marked “start.”

1. Phase 0: Named GOG1 with code PhysiCell_constants::GOG1_phase. This is the default phase
of the model.

2. Phase 1: Named S with code
PhysiCell_constants: :S_phase.

3. Phase 2: Named G2M with code
PhysiCell_constants: :G2M_phase.

In this model, G¢/G; cells can enter the cell cycle to become S-phase cells, at transition rate ro;. S-phase
cells can become G5 /M-phase cells at rate r15. G5/M-phase cells can divide into two Gy/G; daughter cells
at rate rog. See Fig. 4. The population-scale model is given by:

d[GOG1]

o = =701 [GOGI] + 213 [G2M] (30)
afs] _

= To0[GOG1] =iz [S] (31)

d [(j;M] — 11y [S] = rag [G2M] (32)

Further details on the biology of this model (including details the placement of daughter cells and changes
in cell volume) and reference parameter values can be found in [3].

[Return to Table of Contents.]

17.1.5 Flow Cytometry Separated (flow_cytometry separated cycle model)
(code: PhysiCell constants::flow cytometry separated cycle model)

This Cycle_Mode has the following Phases:

1. Phase 0: Named GOG1 with code PhysiCell_constants::GOG1_phase. This is the default phase
of the model.

99

o1 r12

start —

r40 (divides) 723

Figure 5: The graph structure of the Flow Cytometry Separated cell cycle model. The default
phase is marked “start.”

2. Phase 1: Named S with code
PhysiCell_constants: :S_phase.

3. Phase 2: Named G2 with code
PhysiCell_constants: :G2_phase.

4. Phase 3: Named M with code
PhysiCell_constants: :M_phase.

In this model, G¢/G; cells can enter the cell cycle to become S-phase cells, at transition rate rg;. S-phase
cells can become Gs-phase cells at rate r15. Ga-phase cells can become M-phase cells at rate ro3. M-phase
cells can divide into two G/G; daughter cells at rate 3. See Fig. 5. The population-scale model is given
by:

% — oy [GOG] + 20 [M] (33)
% = 701 [GOG1] — r15 [S] (34)
% = 7112 [S] — o3 [G2] (35)
dM]

o - = [G2] — 130 [M] (36)

Further details on the biology of this model (including details the placement of daughter cells and changes
in cell volume) and reference parameter values can be found in [3].

[Return to Table of Contents.]

100

To1

start —|(Quiescent

r10 (divides)

Figure 6: The graph structure of the Cycling-Quiescent cell cycle model. The default phase is
marked “start.”

17.1.6 Cycling-Quiescent (cycling quiescent)
(Code: PhysiCell constants::cycling quiescent model)

This Cycle_Mode has the following Phases:

1. Phase 0: Named Quiescent with code PhysiCell_constants: :quiescent.

2. Phase 1: Named Cycling with code PhysiCell_constants::cycling.

In this model, Quiescent cells can enter the cell cycle to become Cycling cells, at transition rate rg;. Cycling
cells divide into two Quiescent cells at rate ri9. See Fig. 6. The population-scale model is given by:

d [Quiescent]

- = —ro1 [Ki67—] + 27y [Cycling] (37)
d li
% = 1o [Quiescent] — rip [Cycling] (38)

Further details on the biology of this model (including details the placement of daughter cells and changes
in cell volume) and reference parameter values can be found in [3].

[Return to Table of Contents.]

17.2 Death Cycle Models

PhysiCell currently includes two pre-built death cycle models. More models may be added in future
releases, such as autophagy.

17.2.1 Apoptosis (apoptosis)
(code: PhysiCell constants::apoptosis_death model)

This Cycle_Mode has the following Phases:

1. Phase 0: Named Apoptotic with code PhysiCell_constants: :apoptotic.

101

. To1
start —| Apoptotic > removed

Figure 7: The graph structure of the Apoptosis death cycle model. The default phase is marked
“start,” and the cell is removed as marked.*

In this model, apoptotic cells shrink and exit the phase at rate rg; (with fixed duration 1/r¢;). Cells
are removed from the simulation at the end of the apoptotic phase. (PhysiCell currently uses a dummy
“debris” phase to avoid coding a phase transition from the apoptotic phase to the apoptotic phase; this
may be removed in future releases.) See Fig. 7. The population-scale model is given by:

d [Apoptotic]

o = —ro1 [Apoptotic| . (39)

Further details on the biology of this model (including details on changes in cell volume) and reference
parameter values can be found in [3].

[Return to Table of Contents.]

17.2.2 Necrosis (necrosis)
(code: PhysiCell constants::necrosis death model)

This Cycle_Mode has the following Phases:

1. Phase 0: Named Necrotic (swelling) with code PhysiCell_constants: :necrotic_swelling.

2. Phase 1: Named Necrotic (lysed) with code PhysiCell_constants: :necrotic_lysed.

In this model, unlysed necrotic cells swell and attempt to transition to the lysed necrotic phase. There is
a block on the transition until the cell reaches a sufficient total volume. Lysed cells gradually shrink (and
calcify, if enable) and exit the phase at rate rj5. Cells are removed from the simulation at the end of the
lysed necrotic phase. (PhysiCell currently uses a dummy “debris” phase to avoid coding a phase transition
from the lysed necrotic phase phase to another necrotic phase; this may be removed in future releases.)
See Fig. 8.

Further details on the biology of this model (including details on changes in cell volume) and reference
parameter values can be found in [3].

[Return to Table of Contents.]

102

To1, Block T12

start —[Nec. (swelling) removed

Figure 8: The graph structure of the Necrosis death cycle model. The default phase is marked
“start,” and the cell is removed as marked. The transition from the unlysed to lysed state is
blocked until the cell volume reaches sufficient volume.

17.3 Volume model (standard volume update function)

The standard volume model separately evolves the total fluid volume, cytoplasmic solid volume, and nuclear
solid volume, as a system of ODEs (given in [3]). The standard model also updates cell calcification (but
the default rate parameter is zero). See Section 11.3 for more information on the Volume class in the
Phenotype, and [3] for the biological details of this model.

[Return to Table of Contents.]

17.4 Cell velocity model (standard update cell velocity)

In this model, the cell uses the mechanics interaction data structure to find nearby cells, adds the contri-
butions from adhesion and “repulsion,”, adds the effects of basement membrane interactions (by calling
functions.add_cell_basement_membrane_interactions), then computes the contribution to cell veloc-
ity by the motility model (by calling update_motility_vector, which in turn calls

functions.update_migration_bias). See Section 11.6 for details on motility, Section 11.5 for key cell
mechanics phenotype parameters, and Section 9 for more information on Cells and their member functions.

[Return to Table of Contents.]

17.5 Up orientation model (up orientation)

By default 3-D cells have no preferred orientation, and 2-D cells have an “up” orientation (set to [0,0,1])
to ensure they stay in the z = 0 plane. This supplied function is up_orientation.

17.6 Oxygen-dependent phenotype
(update cell and death parameters 02 based)
Oxygen-dependent cell proliferation and death rates are so commonly needed in cancer models that we in-

clude a model function as standard: update_cell_and_death_parameters_02_based. Here is the overall
model for proliferation:

103

1. Sample the microenvironment for the oxygen concentration o at the cell center.

2. If 0 > [parameters.o2 proliferation saturation|, then the cycle entry rate is set to 100% of the
entry rate in the pReference_live_phenotype reference phenotype.

3. If 0 < [parameters.o2 proliferation threshold|, then the cycle entry rate is set to 0% of the entry
rate in the pReference_live_phenotype reference phenotype.

4. Otherwise, the reference cycle entry rate is scaled by

0 — |parameters.o2 proliferation threshold]

(40)

[parameters.o2 proliferation saturation| — [parameters.o2 proliferation threshold]
Here is the overall model for the necrosis death rate:

1. Sample the microenvironment for the oxygen concentration o at the cell center.
2. If 0 > |[parameters.o2 necrosis_threshold|, then the necrotic death rate is zero.

3. If 0 < [parameters.o2 necrosis max|, then the necrosis death rate is set to 100% of
parameters.max_necrosis_rate.

4. Otherwise, the necrotic death rate is scaled by

[parameters.o2 necrosis_threshold| — o

(41)

[parameters.o2 necrosis_threshold| — [parameters.o2 necrosis max

This function currently works for the following cell cycle models:
1. The Ki67 advanced model (PhysiCell_constants::advanced_Ki67_cycle_model). See Section
17.1.3.
2. The Ki67 basic model (PhysiCell_constants: :basic_Ki67_cycle_model). See Section 17.1.2.
3. The Live model (PhysiCell_constants::1live_cells_cycle_model). See Section 17.1.1.
See Section 11.1 for more on the cell cycle portion of the phenotype, Section refsec:Death for more in-

formation on the death phenotype elements, Section 17.2 on standard death models, and Section 17.1 on
standard cell cycle models. See [3] for more on the biology of these models.

[Return to Table of Contents.]

18 Functions for Random Events

PhysiCell provides several functions for working with random variables and events. All this functionality is
based upon C++11 standard, cross-platform functions, using the 64-bit Mersenne Twister for generating
random longs. The following functions simplify using random numbers:

1. long SeedRandom(long input) seeds the pseudo-random number generator with the supplied
seed.

104

. long SeedRandom(void) seeds the pseudo-random number generator based upon the system
time.

. double UniformRandom(void) returns a uniformly distributed random number between 0 and
1.

. double NormalRandom(double mean, double standard deviation) provides a random
number from a Gaussian distribution with mean mean and standard deviation standard_deviation.

. int choose event(std::vector<double>& probabilities) helps choose a random event
based upon the supplied probabilities in the vector probabilities (which must sum to 1). For
example, suppose we have events {0, 1, 2, 3} with probabilities {0.01, 0.82, 0.14, 0.03}.
Then this code will (on average) return 0 with probability 0.01, return 1 with probability 0.82, and
so forth.

std: :vector<double> probabilities = {0.01, 0.82, 0.14, 0.03};

int number_of_samples = 100000;
std: :vector<int> events(number_of_samples , 0);

//this is thread-safe

#pragma omp parallel for

for(int i=0 ; i < number_of_samples ; i++)

{ events[i] = choose_event(probabilities); }

std: :vector<int> counts(probabilities.size() , 0);
//this is not thread-safe

for(int i=0 ; i < number_of_samples ; i++)

{ counts[events[i] J++; }

// display counts vs.

std::cout << "Summary: fraction vs correct fraction " << std::endl;
for(int i=0; i < counts.size(); i++)
{
std::cout << i << " : " << (double) counts[i] / (double) number_of_samples
<< " vs " << probs[i] << std::endl;

[Return to Table of Contents.]

105

19 Examples

19.1 Working with Cell functions

19.1.1 Example: a custom volume model

Here, we will define a simpler volume model that only upates the total volume. We use the mathematical
model:

d

E[volume.total] =7 (V* — [volume.total]), (42)
where
I+t t_cytoplasmic_t lear_rati
Ve o= - [target cytoplasmic to nuclear ratio) - [volume.target_solid nuclear] (43)
1 — [volume.fluid fraction]
1-0.95

r = In 05 [phenotype.cycle.model.transition rate(0,0)] (44)

(This uses the built-in phenotype to get the “target” total volume in terms of the built-in targets, and it
sets r so that a divided cell reaches 95% of its target within the mean duration of the cell’s interdivision
time.)

void simple_volume_function(Cell* pCell, Phenotype& phenotype, double dt)
{
double V_target = phenotype.volume.target_solid_nuclear *
(1.0 + phenotype.volume.target_cytoplasmic_to_nuclear_ratio) /
(1-phenotype.volume.fluid_fraction);
double rate = phenotype.cycle.model().transition_rate(0,0) * log(0.1);

double addme = V_target;

addme -= phenotype.volume.total;

addme *= rate;

addme *= dt; // dt*ratex(V_target - V)

phenotype.volume.total += addme;

return;

[Return to Table of Contents.]

19.1.2 Example: a custom migration bias

In this example, cells migrate along oxygen gradients. The migration speed is fastest in regions of low
oxygen, and the migration is least stochastic (most biased) as the oxygenation increases.

void chemotaxis_bias_function(Cell* pCell, Phenotype& phenotype , double dt)
{

106

// quickly find 02
static int 02_index = microenvironment.find_density_index("oxygen");

// sample 02
double 02 = pCell->nearest_density_vector() [02_index];

// set direction along 02 gradients
phenotype.motility.migration_bias_direction = pCell->nearest_gradient(02_index);
normalize(&(phenotype.motility.migration_bias_direction));

// set speed proportional to 02, scaled by normoxic 02 (160 mmHg) ;
// with a maximum of 1.2 micron per minute

double theta = 02 / 160.0;

phenotype.motility.migration_speed = 1.2%(1.0-theta);

if (phenotype.motility.migration_speed > 1.2)

{ phenotype.motility.migration_speed = 1.2; }

// the greater the oxygen, the more biased the motion
phenotype.motility.migration_bias = theta;

return;

[Return to Table of Contents.]

19.1.3 Example: a custom cell rule

In this example, an immune cell tests nearby cells first for contact, and then for expression of an antigen (a
custom variable). The immune cell initiates apoptosis in the target cell with probability that scales with
the antigen expression.

void immune_cell_rule(Cell* pCell, Phenotype& phenotype, double dt)
{
static int antigen_index =
pCell->custom_data.find_variable_index("antigen");
static int activation_index =
pCell->custom_data.find_variable_index("activation");

static int apoptosis_model_index =
pCell->phenotype.death.find_death_model_index("apoptosis");

// exit if immune function is not yet stimulated, or dead
if (pCell->custom_datalactivation_index] < 1le-3
| | pCell->phenotype.death.dead == true)

{ return; }

std: :vector<Cellx> nearby = pCell->cells_in_my_container();

107

// test antigen on nearby cells. stop if you find one
// Don’t try to kill dead cells.

// Don’t kill yourself

Cell* pC = NULL;

bool stop = false;

int i=0;

while(!stop && i < nearby.size())

{
pC = nearbyl[il;
if (pC->custom_datalantigen_index] > 1le-3 &&
pC—>phenotype.death.dead == false &&
pC !'= pCell)
{ stop = true; }
i++;
if(stop == false)
{ pC = NULL; }
}
// if we found a cell, attempt to kill it
if(pC)
{

double probability = 1.0; // dt*pC->custom_datal[antigen_index];
if (UniformRandom() < probability)

{
std::cout << "death!" << std::endl;
system("pause") ;
pC->start_death(apoptosis_model_index);
}
}
return;

}
Here is the code to add the custom variables to a specific cell:

pCell->custom_data.add_variable("antigen", "dimensionless", 0.0);
pCell->custom_data.add_variable("activation", "dimensionless", 0.0);

Better still, you could make cell definitions for tumor cells and immune cells:
Cell_Definition immune_cell;
// operations to define this type

immune_cell.functions.custom_cell_rule = immune_cell_rule;
immune_cell.custom_data.add_variable("activation", "dimensionless", 0.0);

Cell_Definition MCF7 = cell_defaults;
MCF7.custom_data.add_variable("antigen", "dimensionless", 0.0);

108

[Return to Table of Contents.]

19.1.4 Example: a custom phenotype update function

Let’s create a custom phenotype update rule that uses the the standard oxygen-based cell birth and death
rates, but also increases cell motility and decreases cell-cel adhesion in low oxygen conditions.

Note that these effects gradually turn on and then saturate based on oxygen values in the cell’s parameters
and we use the cell’s pReference_live_phenotype.

void custom_o2_phenotype_rule(Cell* pCell, Phenotype& phenotype, double dt)

{

// don’t bother if you’re dead
if (pCell->phenotype.death.dead == true)
{ return; %}

// first, call the standard function
update_cell_and_death_parameters_02_based(pCell,phenotype,dt);

// next, let’s evaluate the oxygen
static int o2_index = microenvironment.find_density_index("oxygen");

double 02 = pCell->nearest_density_vector() [02_index];

if(02 > pCell->parameters.o2_hypoxic_response)
{ return; }

// interpolation variable

double theta = (pCell->parameters.o2_hypoxic_response - 02)/
(pCell->parameters.o2_hypoxic_response - pCell->parameters.o2_hypoxic_saturation);

if(theta > 1.0)

{ theta = 1.0; }

// increase the speed of motiltiy up to a max of 1.5 micron/min
phenotype.motility.is_motile = true;
phenotype.motility.migration_speed = 1.5;
phenotype.motility.migration_speed *= theta;

phenotype.mechanics.cell_cell_adhesion_strength = (1.0-theta);
phenotype.mechanics.cell_cell_adhesion_strength *=

pCell->parameters.pReference_live_phenotype->mechanics.cell_cell_adhesion_strength;
return;

[Return to Table of Contents.]

109

19.1.5 Example: a custom velocity update function

We'll add an example soon. For now, use the default, along with the default motility functions (which
allow considerable customization!).

19.1.6 Example: analytical basement membrane functions

This space held in reserve.

19.1.7 Example: a custom cell orientation function

This space held in reserve.

19.2 Cell cycle models

19.2.1 Creating a custom cell cycle model

Let’s create a simple cycle model, with three phases: Red, Green, and Blue. Red cells become Green.
Green cells become Blue. Blue cells divide into two Red cells. Here’s how we accomplish this using the
Cycle_Model class. Notice that we're saving the indices of the newly-created phases for easier reference.

Cycle_Model model;

// set up name information
model.code = PhysiCell_constants::custom_cycle_model;
mode .name = "Red Green Blue";

// add the phases

int red_index = model.add_phase(O , "Red");
int green_index = model.add_phase(1 , "Green");
int blue_index = model.add_phase(2 , "Blue");

// set the Blue phase to have division at its end
model.phases[blue_index] .division_at_phase_exit = true;

// set up the phase links

model.add_phase_link(red_index , green_index , NULL); // red -> green
model.add_phase_link(green_index , blue_index , NULL); // green -> blue
model.add_phase_link(blue_index , red_index , NULL); // blue -> red

// set the transition rates

model.transition_rate(red_index,green_index) = 1.0/(60.0 * 5.0);
// mean duration: 5 hours

model.transition_rate(green_index,blue_index) = 1.0/(60.0 * 8.0);
// mean duration: 8 hours

110

model .transition_rate(blue_index,red_index) = 1.0/(60.0 *x 2.0);
// mean duration: 2 hours

// display the model
model.display(std::cout);

And this is how we would register that model in a cell definition:
immune_cell.phenotype.cycle.sync_to_cycle_model(rgb_model);
Or in a single cell:

pCell->phenotype.cycle.sync_to_cycle_model(rgb_model);

[Return to Table of Contents.]

19.2.2 Adding an arrest function

Suppose now that we only want to allow Blue cells to proceed to Red and divide if they have a fluid fraction
over 50%. (See Section 11.3.) Then we can define an arrest function:

bool fluid_arrest_function(Cell* pCell, Phenotype& phenotype, double dt)
{

if (phenotype.volume.fluid_fraction < 0.5)

{ return true; }

return false;

We then assign this arrest function to the transition from the Blue phase to the Red phase:

rgb_model .phase_link(blue_index,red_index) .arrest_function = fluid_arrest_function;

[Return to Table of Contents.]

19.2.3 Adding a custom phase entry function

Suppose now that we want the cell to “mutate” its transition rates whenever it re-enters the Red phase.
We can do this with an entry function:

void my_mutation_function(Cell* pCell, Phenotype& phenotype, double dt)
{
// mutate all transition rates by a uniformly-distributed
// number within 10\’ of the current value
double multiplier = 0.9 + 0.2*uniform_random();
phenotype.cycle.data.transition_rate(0,1) *= multiplier;

111

multiplier = 0.9 + 0.2*%uniform_random() ;
phenotype.cycle.data.transition_rate(1,2) *= multiplier;

multiplier = 0.9 + 0.2*uniform_random() ;
phenotype.cycle.data.transition_rate(2,0) *= multiplier;

return;

Then, we assign this as the entry function for the Red phase:

rgb_model .phases[red_index] .entry_function = my_mutation_function;

Alternatively, we can assign this as the exit function for the Blue-Red transition:

rgb_model .phase_link(blue_index,red_index).exit_function = my_mutation_function;

[Return to Table of Contents.]

20

Future

Several features are planned for upcoming PhysiCell releases:

10.

. We will further refine the MultiCellDS output functions to capture more of the cell’s state, including

custom variable values. (Completed in Version 1.2.2)

. We will add functions to read in a saved simulation state.
. We will add an XML-based configuration file. (Completed in Version 1.3.0)

. We will add a function like void contact_interaction_function(Cell*,Phenotype&,double) to

allow cell contact-based signaling and behavior changes.

. We plan to start actively tracking the cell’s list of mechanically interacting neighbors in

cell.state.neighbors

. We will further develop cell.state.simple_pressure and provide better examples.

. We will create a standard standard_update_orientation function to let cells rotate towards a

preferred orientation (which will be based upon its neighbors).

. We will generalize the cell-cell adhesion model to allow differing levels of adhesion between different

types of cells. (Completed in Version 1.2.0)

. We will merge the Vector_Variable and Variable types for a more unified Custom_Cell_Data

struture.

We may update motilty and associated update functions to build in some hysteresis (bias towards
the last direction of the day).

112

11.
12.
13.
14.

15.

We will consider partial SBML support for importing molecular-scale models.

We will continue to refine XML parsing for options and configuration.

We will allow ellipsoidal cell potential functions for better approximation of cell shapes.

We will introduce a standard library of simplified (bulk) vasculatures.

We will introduce a standard library of simplified ECM functions.

[Return to Table of Contents.]

21

Some notes on parameter values

We chose reference proliferation and apoptosis rates for the generic breast epithelium line (calibrated to
MCF-10A) so that the apoptotic fraction is approximately 2% [11], and the net proliferation rate (for the
total cell population) is on the order of 0.04 hrt [1, 8, 13].

21.1 Live cycle model

For the Live cell model (Section 17.1.1), we fit the system of ODEs

d

%[Live] = (b—d)[Live]
4 ppoptotic] = d[Live] — — [Apoptotic]
i poptotic| = ive T poptotic|,
and we note that
d[Ttl] = b[Live] 1[A totic]
o ota = ive T poptotic
Al
= (b(l —Al) - —> [Total]
Ty
= r(Total]

Here, 7 = 0.04 hr™', AT = 0.02 is the apoptotic index, and T,y = 8.6 hour (Section 17.2.1). Thus,

b —T+%AI 0.0432 hr*
= 1—AI ~ U. T .

To get the death rate d, we use a simple iterative fitting method (see
./documentation/matlab/tune_death_in_live_model) to get d ~ 0.00319 hr™.

(48)

[Return to Table of Contents.]

113

21.2 Ki67 Basic model

For the Ki67 Basic model (Section 17.1.2), we fit the system of ODEs

%[KiG?—] = — (TLQ + d) [Ki67-] + %[K167+] (49)
i[Ki67+] = L[Kies?—] — <i + d) [Ki67+] (50)
dt T Tk
i[Apoptotic] = d([Ki67-] + [Ki67+]) — L[Ap0ptotic}, (51)
dt T
and we note that
i[Total] = i[Ki67+] - i[Apoptotic]
dt ti Ty
= (E — E) [Total
Tk Ty
= r|[Total] (52)

We set Tx = 13 + 2.5 hr (the duration of the two phases in the Ki67 Advanced model), r = 0.04 hr™*,
and we set AI = 0.02 as before and keep d = 0.00319 hr™' from the prior estimate. We thus need to fit

To. We use a simple iterative fitting method (see ./documentation/matlab/tune_Ki67_basic) to get
Ty ~ 4.59 hr.

[Return to Table of Contents.]

21.3 Ki67 Advanced model

For the Ki67 Advanced model (Section 17.1.3), we fit the system of ODEs

%[KiG?—] = — (TLQ + d) [Ki67-] + TLKQ[Ki67+]2 (53)
i[Ki67+] = L[Kifs?—] — <i + d) [Ki67+] (54)
dt ! To Tr1 !
i[KiG7+] = i[}<167+] — (L +d> [Ki67+] (55)
dt 2 T ! Txo 2

%[Apoptotic] = d([Ki67-] + [Ki67+|, + [Ki67+],) — %A[Apoptotic], (56)
and we note that
i[Total] = L[1(167+] - L[Apoptotic]
dt T LTy
= (& — E) [Total]
Tikr Ta
= r[Total] (57)

We set T = 13 hr, Txo = 2.5 hr, Ty = 8.6 hr, and » = 0.04 hr_l, and we set AI = 0.02 as before and
keep d = 0.00319 hr™! from the prior estimate. We thus need to fit Tp. We use a simple iterative fitting
method (see ./documentation/matlab/tune_Ki67_advanced) to get Tjy ~ 3.62 hr for this model. [12].

[Return to Table of Contents.]

114

21.4 Flow Cytometry model

For the Flow Cytometry model (Section 17.1.4), we fit the system of ODEs

d 1 2
—[coG1l] = -— +d | [cog1] + G2M 58
 feoca] (Tm) o001+ o2 (59)
d 1 1
—[s] = GoGl] — [=— +d | [s 59
R) (TS)[| (59)
d 1 1
E[GQM] = ZTS[s] — (Teanr + d) [G2M] (60)
i[Apoptotic] = d([GoG1] + [8] + [G2M]) — i[Apoptotic], (61)
dt Ta
and we note that
d[T tal] = [G2M] ! [Apoptotic]
o ota = Toons T poptotic

- (L [eon —§> [Total]

Taom [Total] Ty
= r[Total] (62)

For consistency with our estimates for the Ki67-Advanced model (see Section 21.3), we set Tg = 8 hr,
Teomy = Teo + Ty = 5 hr, Ty = 8.6 hr, and 7 = 0.04 hr !, and we set AI = 0.02 as before and keep
d = 0.00319 hr™! from the prior estimates. We thus need to fit Tgog1. We use a simple iterative fitting
method (see ./documentation/matlab/tune_cytometry) to get Togi ~ 5.15 hr for this model. [12].

[Return to Table of Contents.]

21.5 Separated Flow Cytometry model

For the Flow Cytometry model (Section 17.1.5), we fit the system of ODEs

46 = 8- (7 +d) (65)
G = el = (o vd) (66)
lapoprotic] — d((606t] +(s] + [62] +) — 7 lapoprotic), (67)
and we note that
Sltotal] =] — ——[apoptotic]
_ (%_%) Total]
= r[Total], (68)

115

where [MI] is the mitotic index.

For consistency with our estimates for the Ki67-Advanced model (see Section 21.3), we set Tg = 8 hr,
Teo =4 h, Tyy = 1 hr, Ty = 8.6 hr, and » = 0.04 hr !, and we set AI = 0.02 as before and keep d =
0.00319 hr~* from the prior estimates. We thus need to fit Tgog1. We use a simple iterative fitting method
(see ./documentation/matlab/tune_cytometry_separated) to get Tog: ~ 4.98 hr for this model. [12].

[Return to Table of Contents.]

22 Acknowledgements

We thank the Breast Cancer Research Foundation, the Jayne Koskinas Ted Giovanis Foundation for Health
and Policy, and the National Cancer Institute for past and present funding for PhysiCell. We gratefully
acknowledge the encouragement and suport of the multiscale modeling community as we developed and
refined MultiCellDS. We hope the community finds this software useful!

Paul Macklin thanks the Chaste, CompuCell3D, COPASI, and Morpheus communities and developers for
Open Source leadership and inspiration.

[Return to Table of Contents.]

Bibliography

[1] S. H. Friedman, A. R. Anderson, D. M. Bortz, A. G. Fletcher, H. B. Frieboes, A. Ghaffarizadeh,
D. R. Grimes, A. Hawkins-Daarud, S. Hoehme, E. F. Juarez, C. Kesselman, R. M. Merks, S. M.
Mumenthaler, P. K. Newton, K.-A. Norton, R. Rawat, R. C. Rockne, D. Ruderman, J. Scott,
S. S. Sindi, J. L. Sparks, K. Swanson, D. B. Agus, and P. Macklin. MultiCellDS: a standard
and a community for sharing multicellular data. PLoS Biol., 2017. doi: 10.1101/090696. URL
http://dx.doi.org/10.1101/090696/. in revision.

[2] A. Ghaffarizadeh, S. H. Friedman, and P. Macklin. BioFVM: an efficient, parallelized diffu-
sive transport solver for 3-D biological simulations. Bioinformatics, 32(8):1256-8, 2016. doi:
10.1093 /bioinformatics/btv730. URL http://dx.doi.org/10.1093/bioinformatics/btv730.

[3] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, and P. Macklin. PhysiCell: an
open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput. Biol., 14(2):
e1005991, 2018. doi: 10.1371/journal.pcbi.1005991. URL http://dx.doi.org/10.1371/journal.
pcbi.1005991.

[4] A.Z. Hyun and P. Macklin. Improved patient-specific calibration for agent-based cancer modeling. J.
Theor. Biol., 317:422-4, 2013. doi: 10.1016/j.jtbi.2012.10.017. URL http://dx.doi.org/10.1016/
j.-jtbi.2012.10.017.

[5] B. Jéhne. Practical Handbook on Image Processing for Scientific Applications. CRC Press, Boca
Raton, FL. USA, 1997. ISBN 978-0849389061.

[6] A. Kapoulkine. pugixml: Light-weight, simple and fast XML parser for C++ with XPath support,
2016. URL https://github.com/zeux/pugixml.

116

http://dx.doi.org/10.1101/090696/
http://dx.doi.org/10.1093/bioinformatics/btv730
http://dx.doi.org/10.1371/journal.pcbi.1005991
http://dx.doi.org/10.1371/journal.pcbi.1005991
http://dx.doi.org/10.1016/j.jtbi.2012.10.017
http://dx.doi.org/10.1016/j.jtbi.2012.10.017
https://github.com/zeux/pugixml

[7]

[12]

P. Macklin, M. E. Edgerton, A. M. Thompson, and V. Cristini. Patient-calibrated agent-based mod-
elling of ductal carcinoma in situ (DCIS): From microscopic measurements to macroscopic predictions
of clinical progression. J. Theor. Biol., 301:122-40, 2012. doi: 10.1016/j.jtbhi.2012.02.002. URL
http://dx.doi.org/10.1016/j.jtbi.2012.02.002.

NCI PS-OC Bioresource Core Facility. Thawing, propagating, and cryopreserving protocol:
MCF10A-JSB breast epithelium (NCI-PBCF-1000), 2012. URL http://physics.cancer.gov/docs/
bioresource/breast/NCI-PBCF-1000-S0P-052814_508. pdf.

Persistence of Vision Pty. Ltd. Persistence of vision raytracer, 2004. URL http://www.povray.org.

A. C. Ruifrok and D. A. Johnston. Quantification of histochemical staining by color deconvolu-
tion. Anal. Quant. Cytol. Histol., 23(4):291-9, 2001. URL https://www.ncbi.nlm.nih.gov/pubmed/
11531144.

A. Sadlonova, Z. Novak, M. R. Johnson, D. B. Bowe, S. R. Gault, G. P. Page, J. V. Thottassery, D. R.
Welch, and A. R. Frost. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional
in vitro co-culture. Br. Canc. Res., 7(1):R46, Nov 2004. ISSN 1465-542X. doi: 10.1186/bcr949. URL
https://doi.org/10.1186/bcr949.

M. Vaapil, K. Helczynska, R. Villadsen, O. W. Petersen, E. Johansson, S. Beckman, C. Larsson,
S. Pahlman, and A. Jogi. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial
cells. PLoS One, 7(9):1-12, 09 2012. doi: 10.1371/journal.pone.0046543. URL https://doi.org/
10.1371/journal .pone.0046543.

N. D. Zantek, J. Walker-Daniels, J. Stewart, R. K. Hansen, D. Robinson, H. Miao, B. Wang, H.-J.
Kung, M. J. Bissell, and M. S. Kinch. MCF-10A-NeoST: A new cell system for studying cell-ecm
and cell-cell interactions in breast cancer. Clinical Cancer Research, 7(11):3640-3648, 2001. ISSN
1078-0432. URL http://clincancerres.aacrjournals.org/content/7/11/3640.

117

http://dx.doi.org/10.1016/j.jtbi.2012.02.002
http://physics.cancer.gov/docs/bioresource/breast/NCI-PBCF-1000-SOP-052814_508.pdf
http://physics.cancer.gov/docs/bioresource/breast/NCI-PBCF-1000-SOP-052814_508.pdf
http://www.povray.org
https://www.ncbi.nlm.nih.gov/pubmed/11531144
https://www.ncbi.nlm.nih.gov/pubmed/11531144
https://doi.org/10.1186/bcr949
https://doi.org/10.1371/journal.pone.0046543
https://doi.org/10.1371/journal.pone.0046543
http://clincancerres.aacrjournals.org/content/7/11/3640

	Introduction and citing PhysiCell
	Getting started: The Quickstart and your First Simulation
	Further resources for help
	Preparing your development environment
	Special notes for OSX users
	Virtual Machine option
	Suggested tutorials and resources
	Linux and Makefile tutorials
	C++ references
	Matlab tutorials
	VirtualBox and related information (virtual appliances)
	Recommended additional tools

	Overall codebase structure
	Time step sizes in PhysiCell

	Using project templates
	Using the Sample Projects
	Extra makefile rules

	The BioFVM microenvironment
	Notes on the microenvironment
	Setting up and using the microenvironment
	Specifying the microenvironment via XML (Preferred Method)
	Manual configuration via C++ function calls (Less Preferred Method)
	Setting BioFVM options
	Adding new diffusing substrates to the tissue environment
	Initializing the BioFVM tissue microenvironment

	Sampling the microenvironment
	Dirichlet conditions
	Refined control of Dirichlet conditions

	Setting the initial conditions
	Setting a non-uniform initial condition

	Automated tracking of internalized substrates
	Automated release of internalized substrates at cell death

	Other BioFVM resources

	Cells
	Other member data
	Member functions
	Other key functions
	Important classes (except Phenotype)
	Custom_Cell_Data
	Cell_Parameters
	Cell_Functions
	Cell_State
	Cell Definition

	Phenotype
	Member functions

	Phenotype details
	Cycle Models
	Phase
	Member functions

	Phase_Link
	Member functions

	Cycle_Model
	Member functions

	Cycle_Data
	Member functions

	Cycle
	Member functions

	Death models
	Death_Parameters
	Member functions

	Death
	Member functions

	Volume
	Member functions

	Geometry
	Member functions

	Mechanics
	Member functions

	Motility
	Member functions
	Motility definitions

	Secretion
	Member functions

	Molecular
	Member functions

	Cell Containers
	PhysiCell Inputs
	XML parsing in PhysiCell
	Passing XML options to PhysiCell
	Member data
	Member functions

	Structure of PhysiCell XML parameter files
	Microenvironment Setup
	Defining chemical microenvironmental substrates as XML
	Key microenvironment parsing functions

	User Parameters
	Adding User Parameters to an XML Configuration File
	Accessing User Parameters in a Project
	User Parameters Technical Details

	PhysiCell Outputs
	Virtual Pathology
	SVG functions
	Pathology functions
	Cell coloring functions
	Examples of custom cell coloring functions
	Example: Black nucleus and oxygen-based cytoplasmic coloring
	Example: Simulated immunohistochemistry with DAB and a hematoxylin counterstain

	MultiCellDS digital simulation snapshots
	Reading PhysiCell snapshots in MATLAB

	Other outputs

	Key initialization functions
	Key global data structures
	Global strings
	Default microenvironment
	Default cell definition
	A list of all cells
	MultiCellDS options
	Software metadata
	Citation metadata
	Person metadata

	SVG options
	PhysiCell Constants
	User Parameters

	Standard models
	Cell Cycle Models
	Live (live) code: PhysiCell_constants::live_cells_cycle_model)
	Ki-67 Basic (Ki67_basic) (Code: PhysiCell_constants::basic_Ki67_cycle_model)
	Ki-67 Advanced (Ki67_advanced) (code: PhysiCell_constants::advanced_Ki67_cycle_model)
	Flow Cytometry (flow_cytometry_cycle_model) (code: PhysiCell_constants::flow_cytometry_cycle_model)
	Flow Cytometry Separated (flow_cytometry_separated_cycle_model) (code: PhysiCell_constants::flow_cytometry_separated_cycle_model)
	Cycling-Quiescent (cycling_quiescent) (Code: PhysiCell_constants::cycling_quiescent_model)

	Death Cycle Models
	Apoptosis (apoptosis) (code: PhysiCell_constants::apoptosis_death_model)
	Necrosis (necrosis) (code: PhysiCell_constants::necrosis_death_model)

	Volume model (standard_volume_update_function)
	Cell velocity model (standard_update_cell_velocity)
	Up orientation model (up_orientation)
	Oxygen-dependent phenotype (update_cell_and_death_parameters_O2_based)

	Functions for Random Events
	Examples
	Working with Cell functions
	Example: a custom volume model
	Example: a custom migration bias
	Example: a custom cell rule
	Example: a custom phenotype update function
	Example: a custom velocity update function
	Example: analytical basement membrane functions
	Example: a custom cell orientation function

	Cell cycle models
	Creating a custom cell cycle model
	Adding an arrest function
	Adding a custom phase entry function

	Future
	Some notes on parameter values
	Live cycle model
	Ki67 Basic model
	Ki67 Advanced model
	Flow Cytometry model
	Separated Flow Cytometry model

	Acknowledgements
	Bibliography

