
1 Notation

• For any cell i with center xi, let Ri denote the region of space occupied by it. Assume that for any
other cell j, that Ri ∩Rj = ∅.

• For any computational mesh with voxels {Ω} and corresponding volumes {W}, let ρ(Ω) denote the
mean substrate density in voxel Ω, and let n(Ω) =

∫
Ω
ρdV denote the total amount of substrate in the

voxel.

Note that BioFVM tracks the mean substrate density in each voxel, so ρ ≡ ρ(Ω) throughout Ω.

• For any voxel Ωk with an index k, let Wk denote its volume, define ρk = ρ(Ωk), and define nk = n(Ωk).

• For any cell i with center xi, let Ωi denote the voxel containing cell i, with corresponding volume Wi.

• Let 1i(x) be the characteristic function for the cell, so that 1i(x) = 1 inside the cell (inside Ri), and
1i(x) = 0 otherwise.

• Let Vi =
∫
R3 1i(x) dV = Vi be the total volume of cell i.

• For any cell i, let Ni denote the internalized total substrate.

2 Net extracellular substrate change due to the ith cell

Note that in BioFVM the cells’ contribution to changes in total substrate in any volume Ω is given by

∂

∂t

∫
Ω

ρ dV =
∑

cells i

∫
Ω

1i(x)
(
Si

(
ρTi − ρ

)
− Uiρ

)
dV (1)

≈
∑

cells i

Vi

∫
Ω

δ (x− xi)
(
Si

(
ρTi − ρ

)
− Uiρ

)
dV. (2)

Now, let Ω = Ωi be the voxel containing xi as defined above. Then assuming that only cell i is in Ωi:

dni
dt

=
∂

∂t

∫
Ωi

ρ dV ≈ Vi

(
Si

(
ρTi − ρ(xi)

)
− Uiρ(xi)

)
(3)

= Vi

(
Si

(
ρTi − ρi

)
− Uiρi

)
. (4)

(The case with multiple cells in a single computational voxel generalizes by performing this calculation
separately for each cell contained in the voxel.)

Now, because ni = ρiWi, and asssuming Wi is constant or changes very slowly compared to substrate
densities,

Wi
dρi
dt

≈ Vi

(
Si

(
ρTi − ρi

)
− Uiρi

)
(5)

=⇒ dρi
dt

≈ Vi
Wi

(
Si

(
ρTi − ρi

)
− Uiρi

)
(6)

2.1 BioFVM implementation

Now, let’s apply a backward Euler scheme as in BioFVM, to determine the net change in total substrate in
any time step with duration ∆t:

ρi(t+ ∆t)− ρi(t)
∆t

≈ Vi
Wi

(
Si

(
ρTi − ρi(t+ ∆t)

)
− Uiρi(t+ ∆t)

)
(7)

=⇒ ρi(t+ ∆t) ≈ ρi(t) + c1
c2

, (8)
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where

c1 = ∆t
Vi
Wi

(
Siρ

T
i

)
(9)

c2 = 1 + ∆t
Vi
Wi

(Si + Ui) . (10)

This is the algorithm in

void Basic_Agent::simulate_secretion_and_uptake( Microenvironment* pS, double dt )

The constants c1 and c2 are set in void Basic_Agent::set_internal_uptake_constants( double dt ).

2.2 Net extracellular substrate change

Now, let’s determine the change in total substrates in this implementation. First,

ni(t+ ∆t)− ni(t) = Wiρi(t+ ∆t)−Wiρi(t) (11)

= Wi

(
ρi(t) + c1

c2
− ρi(t)

)
(12)

= Wi

(
ρi(t) + c1 − c2ρi(t)

c2

)
(13)

= Wi

(
(1− c2)ρi(t) + c1

c2

)
(14)

(15)

Notice that this can be calculated completely using constants that are already computed and used in BioFVM.

2.3 Algorithm

We will use the following operations in the cell secretion/uptake function. (In the actual implementation,
perform this on the entire vector of substrates, and use element-wise operations. i.e., Hadamard products
and quotients.)

1. change = 1 // 1

2. change -= c2 // 1-c2

3. change *= substrates // (1-c2)*rho

4. change += c1 // (1-c2)*rho + c1

5. change /= c2 // ((1-c2)*rho + c1)/c2

6. change *= voxel_volume // W_i*((1-c2)*rho + c1)/c2

This is the net change in total substrates in Ωi. For conservation, the net chnage in cell i is equal and
opposite. Thus

7. internalized_substrates -= change

3 Additional option(s)

If you set Basic_Agent::use_internal_densities_as_targets = true, then whenever the internal con-
stants are changed, it sets

ρ∗i =
Ni

Vi
(16)
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This criterion would be appropriate for non-active, diffusive secretion from the cell.
Please note that if ρ∗i < ρi, there is nothing in the mathematical form to prevent diffusion of the substrate

back into the cell. If this is a concern, I suggest users manually test for that and set the secretion rates to
zero accordingly.

Future releases of PhysiCell may automate this testing, but we note that this test should be performed
substrate-by-substrate.

4 Internal model

Without an internal model, internalized substrate will reflect the total history of all uptaken substrates, or
the sum tutoal fo all secreted substrates. In particular, in the case of secretion, the internalized value will
be negative to upload mass conservation. (No thing made inside, minus the secreted amount.)

Users can provide their own internal model (e.g., for metabolomics), but we provide a “sensible default.”
Inside the cell, we model:

dN

dt
=

use︷ ︸︸ ︷
−uN +

creation︷ ︸︸ ︷
c(N∗ − n) (17)

= −uρIW + s(ρ∗I − ρE)W, (18)

where ρI is the internal density, and c, u, and ρ∗I are to be determined. We shall give the rationale for this
form in the analysis below.

To determine these parameters, let us consider the total amount of substrate in the cell:

dN

dt
=

import︷ ︸︸ ︷
UρEW −

export︷ ︸︸ ︷
S (ρ∗E − ρE)W −

internal use︷ ︸︸ ︷
uρIW +

internal creation︷ ︸︸ ︷
c (ρ∗I − ρE)W (19)

Now, consider the case where there is uptake and use but no creation or secretion. Then

dN

dt
= UρEW − uρIW = (UρE − uρI)W. (20)

In quasi-steady (or steady) conditions, we seek u so that ρI ≈ ρE . Notice that if u = U , then

dN

dt
= U (ρE − ρI)W, (21)

and so ρI = ρE in quasi-steady condition. This model balances import with internal use. Moreover, if we
balance all substrate in the environment (assuming without loss of generality only one uptaking cell):

d

dt
(n+N) = −UρEW + UρEW − UρIV = −UρIW, (22)

and over long times, ρI ≈ ρE , so we arrive at the normal situation from BioFVM where the overall loss rate
is −UρEW .

Next, consider the case of only creation and export. In that case,

dN

dt
= −S(ρ∗E − ρE)W + s(ρ∗I − ρE)W. (23)

Suppose we follow our prior motivation and set s = S. Then

dN

dt
= S (−ρ∗E + ρE + ρ∗I − ρE)W = S (−ρ∗E + ρ∗I)W. (24)

If we choose ρ∗I = ρ∗E , then

dN

dt
= 0 (25)

and so we have successfully balanced creation and export. This the motivation for the functional form
s(ρ∗I − ρE) instead of the more obvious s(ρ∗I − ρI). The biophysical interpretation is that the cell internally
creates the substrate until the extenral density reaches the target value.
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4.1 Summary:

Returning now to the original notation where ρ is the vector of (extracellular) substrate densities, N is the
vector of total internalized substrates, then we use (as an internal model), and

dN

dt
= −u ◦N + c ◦ (ρ∗ − ρ)W (26)

and we set defaults:

u = U (27)

c = S (28)

5 Key cellular processes

When a cell divides, it must distribute its internalized substrates to its daughter cells while maintaining
conservation of mass.

In PhysiCell 1.5.0, we do this by dividing the substrate by half in each of the daughter cells.
When a cell dies and is removed by the simulation, multiple things could happen: for some substrates,

it may make sense to remove them from the environment entirely, release it entirely at the time of lysis, or
slowly release it back into the environment while the cell degrades.

In PhysiCell, we opt for the simplest solution: release (some fraction) of internalized substrates when the
basic agent (and hence cell) calls its destructor. Let 0 ≤ F ≤ 1 denote the fraction of internalized substrates
released at the time of death.

We overwrite the density in the cell’s voxel by first noting that there should be conservation of mass:

ni(t+ ∆t) = ni(t) + FNi(t) (29)

=⇒ Viρi(t+ ∆t) = Viρi(t) + FNi(t) (30)

=⇒ ρi(t+ ∆t) = ρi(t) +
F

Vi
Ni (31)
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