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 

Abstract: This work proposes a linear phase sparse minimum 

error entropy adaptive filtering algorithm. The linear phase 

condition is obtained by considering symmetry or anti symmetry 

condition onto the system coefficients. The proposed work 

integrates linear constraint based on linear phase of the system 

and   -norm for sparseness into minimum error entropy adaptive 

algorithm. The proposed   -norm linear constrained minimum 

error entropy criterion (   -CMEE) algorithm makes use of 

high-order statistics, hence worthy for non-Gaussian channel 

noise.  The experimental results obtained for linear phase sparse 

system identification in the presence of non-Gaussian channel 

noise reveal that the proposed algorithm has lower steady state 

error and higher convergence rate than other existing MEE 

variants.  

Keywords: Constrained adaptive filtering, Information theory, 

non-Gaussian noise, sparse system 

I. INTRODUCTION 

Constrained adaptive filtering has now become a topic of 

deep interest due to substantial advancements in linear 

constrained applications. A linear constraint based on some 

advance information about the filter coefficients is utilized in 

developing constrained adaptive algorithm. For example, 

linear phase of system is utilized as constraint in developing 

constrained adaptive algorithm [1].  Similarly information 

about pseudorandom code in spread spectrum and direction 

of interest in adaptive beam forming are utilized as 

constraints in developing adaptive algorithm [2-3]. 

In this paper, we are considering the linear phase adaptive 

filtering problem. Some examples of linear phase adaptive 

filtering are:  system identification, channel equalization, 

spectral estimation, line enhancement [4]. These applications 

need to preserve the constant phase delay among the 

frequency components to restrict the phase distortion in pass 

band. Hence, several constrained adaptive filtering algorithm 

have been developed in the past. Constrained least mean 

square (CLMS) algorithm is well known adaptive algorithm 

because of simplicity and low computational cost [5]. Several 

other constrained adaptive algorithms have been developed, 

for example: constrained affine projection (CAP) for colored 

input, least square algorithm for linear phase filtering, fast 

least square algorithm for linear phase system, constrained 
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recursive least square [6-9]. However, these algorithms are 

based on minimum mean square error (MSE) criterion by 

considering only second order statistics. Hence, these 

algorithms perform well in the presence of Gaussian 

observation noise. But the performance is degraded in the 

presence of non-Gaussian observation noise due to higher 

order statistics.  

Meanwhile information theory based adaptive algorithms 

have been developed to deal with non-Gaussian noise [10].  

Some examples of information theory based adaptive 

filtering algorithms are: maximum correntropy criterion 

(MCC) adaptive algorithm, minimum error entropy adaptive 

algorithm (MEE), mutual information based adaptive 

algorithm [11-13]. . Recently, Siyuan Peng et al. have 

proposed constrained MEE (CMEE) algorithm for 

constrained adaptive filtering in the presence of impulsive 

channel noise [14].  CMEE adaptive algorithm is developed 

by adding a linear constraint on the system coefficients into 

cost function of minimum error entropy adaptive algorithm 

(MEE).  The idea behind developing any MEE based 

adaptive algorithm is to lower the entropy of error between 

desired output and unidentified system output.  As entropy is 

of higher order statistics, hence suitable for non-Gaussian 

channel noise. The entropy considered in MEE based 

algorithms is quadratic i.e. Renyi entropy.   

The aforesaid CMEE algorithm performs imperfectly in 

sparse system. Recently Jos´e F. de Andrade Jr. and Marcello 

L. R. de Campos have proposed   -norm linear constrained 

LMS algorithm to consider the linear constraint and sparsity 

of the system [15]. Based on the same approach, the proposed 

work integrates the   -norm based sparsity penalty and linear 

constraint into MEE adaptive algorithm to take into account 

the sparseness of constrained system in the presence of 

non-Gaussian noise.   -norm based adaptive algorithm 

increases the convergence speed of small coefficients and 

reduce the bias of large coefficients. Hence, the proposed 

  -CMEE algorithm excels in constrained sparse system 

identification in the presence of non-Gaussian noise. 

The rest of the paper is organized as follows. In section 2, we 

review constrained minimum error entropy (CMEE) 

algorithm. In section 3, we propose   -CMEE algorithm by 

integrating   -norm into the cost function of CMEE algorithm. 

In addition, we derive the update equation of   -CMEE 

algorithm by using the concept of Lagrange multiplier. In 

section 4, the estimation performance of proposed   -CMEE 

algorithm is examined by the experiments carried out in 

MATLAB and compared with existing MEE, 

CMEE,   -CLMS algorithms.  Finally the conclusion of the 

proposed work is drawn in section 5. 
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II. REVIEW OF CONSTRAINED MINIMUM ERROR 

ENTROPY ALGORITHM (CMEE) 

Consider an unknown linear phase system with coefficient 

vector w0 ∈ R
 NX1

. Let x(k) ∈ R
 NX1 

is input vector to 

unknown system and adaptive filter and      ∈ R
 NX1

 

represents coefficient vector of adaptive filter. 

Now we can write the instantaneous estimation error e(k) 

between adaptive filter output and unknown system output 

as:  

                                                    

       
                                                      (1)            

                                                                                       

where      represents the channel noise. 

 

The information potential       in term of quadratic Renyi’s 

entropy     
    can be written as [12]: 

    
     =       

 

                 
       

 
       

  )=       V( )    (2)                                                    

where     is kernel function having bandwidth   and M is 

available sample length, 

 

and       
 

                      
       

 
           (3)                                                                                                                                                                                        

 

The most widely used kernel is the Gaussian kernel defined 

as: 

       = 
 

    
  

    

                                                 (4)                                                                                                                                                                                                                        

  

Hence, the constrained minimum error entropy (CMEE) 

algorithm can be derived by solving following optimization 

criterion. 

 

                subject to                                  (5)                      

          

where    is constraint matrix of NxL dimension and   is the 

corresponding L constraint values. In this work, the matrix   

imposes a linear phase constraint on the system coefficients. 

The linear phase of FIR filter is obtained by symmetry or anti 

symmetry property of system coefficients. 

 

We can write linear phase condition for system coefficients 

as: 

                           (6)                                                                                                     

 

where   sign represents symmetric condition and   sign 

represents anti-symmetric condition. 

          

Hence, the constraint on system coefficients for linear phase 

will be: 
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   for N even               (8) 

 

b= [0 0 … 0] 
T 

                (9) 

 

where I is an identity matrix of order 
   

 
 and   represents an 

identity matrix in which all rows are written in reverse order 

Using the Lagrange multipliers approach, we have the 

unconstrained cost function for optimization problem 

represented by eq. (5) as: 

 

             
                                                (10)                                                                                                           

                    

Here    is a vector of Lagrange multipliers of dimension 

Lx1. 

 

By Gradient ascent approach, the weight update equation of 

CMEE becomes [14]: 

 

         

        
 

                 
       

 
       

   )     (    ( )+                        (11)                

where                   ,                and   is 

an identity matrix of dimension NXN. 

III.   -NORM CONSTRAINED MINIMUM ERROR 

ENTROPY (  -CMEE) ALGORITHM 

In this section, we combine the effect of zero attraction based 

on   -norm and linear phase constraint with MEE algorithm 

to consider sparse system identification in the presence of 

impulsive channel noise. The zero attraction is based on 

  -norm. 

. 

The optimization problem of   -CMEE algorithm becomes: 

 

                 

 

subject to             
       

 
       

                                   (12) 

 

where a     is    norm and   is constraint value. 

 

The unconstrained optimization function of   -CMEE 

becomes: 
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                             (14)              

 

Using Gradient ascent approach, the weight update equation 

of   -CMEE becomes: 

 

         

      
 

                 
       

 
       

   )     (    ( )+    + 2(F 1 k+1)                                                                          
(15)                                                          

where         
      

     
                            (16)               

                                     

In steady state condition, 

 

                                                    (17)                                                                                          

 

Now pre multiplying eq, (15) by A
T
, we have: 
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From eq. (18), we let       
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Pre multiplying eq. (21) by    
        , we let: 
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We can rewrite eq. (27) as: 

 

        

        
 

                 
       

 
       

   )  F 1 k  1  k       (    ( )+  1  F 1 k+ . 

IV. SIMULATION RESULTS 

This section discusses the estimation performance of the 

proposed work. The unknown system and adaptive filter are 

considered to be of same length N having linear phase feature. 

The location and values of non-zero coefficients are 

considered to be of Gaussian distribution having zero mean 

and unity variance.  

In this work, we have considered Gaussian distribution for 

the input signal having zero mean and unity variance. At first, 

we have considered impulsive channel noise to compare the 

performance of proposed   -CMEE with CMEE,   -MEE and 

  -CLMS algorithms. The alpha stable noise as impulsive 

chanel noise is considered in this work [12]. 

In the first experiment, we demonstrate the transient behavior 

of the proposed   -CMEE algorithm for odd N=13 for 

different values of sparsity constant T={3,7}. Here, we have 

considered symmetric condition for linear phase of unknown 

system. We compare the convergence analysis of the 

proposed   -CMEE algorithm with CMEE,   -MEE and 

  -CLMS algorithms. The parameter,   =     
 
 is taken for 

  -CMEE and   -CLMS algorithms. We have taken the step 

size        for CMEE and   -CMEE algorithms and 

       for   -CLMS algorithm. The kernel width σ=0.8 is 

adopted here. 

Figure1 and figure 2 demonstrate the estimation performance 

for  N=13 for different value of T={3,7}..  

In the second experiment, we have taken N=16 and tested the 

performance of the proposed algorithm for sparsity constant 

T={2,6}.  

Figure 3and figure 4 demonstrate the estimation performance 

for N=16for for different values of T.  
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Fig. 1. Comparison of the proposed l1-CMEE algorithm 

with other MEE variants for sparsity level T=3 and N=13 

in the presence of impulsive channel noise 

 
Fig. 2. Comparison of the proposed l1-CMEE algorithm 

with other MEE variants for sparsity level T=7 and N=13 

in the presence of impulsive channel noise 

 

From fgs. 1, 2, 3 and 4, it is clear that the proposed algorithm 

has lower mean square deviation error and higher 

convergence rate than other MEE based algorithms for any 

value of sparsity level T in even or odd length linear phase 

system. The existing   -CLMS algorithm performs very 

poorly in the presence of impulsive noise, as this is based on 

second order statistics of error signal and impulsive noise is 

of higher order statistics. 

The same can be inferred from the results given in table I that 

is based on Fig. 1. 

 

Table- I: Convergence behavior of the proposed 

algorithm extracted from fig. 1 

Algorithms 

Minimum 

Mean Square 

Deviation 

Error (dB) 

Iteration 

Number 

  -CMEE  -25.29 689 

CMEE -23.2  1489  

  -MEE  -20.19 1930  

  -CLMS    
Does not 

converge  

 

 

 

 
Fig. 3. Comparison of the proposed l1-CMEE algorithm 

with other MEE variants for sparsity level T=2 and N=14 

in the presence of impulsive channel noise 

 
Fig. 4. Comparison of the proposed l1-CMEE algorithm 

with other MEE variants for sparsity level T=6 and N=14 

in the presence of impulsive channel noise 

 

In the next experiment, we compare the proposed   -CMEE 

with CMEE,   -MEE and   -CLMS algorithms in the 

presence of Gaussian noise having channel SNR=20 dB.  

The other parameters taken are: N=14, T=6, the step size 

       for   -MEE, CMEE and   -CMEE algorithms and 

       for   -CLMS algorithm. 

  However, the performance of    -CLMS improves in the 

presence of Gaussian channel noise. Still the proposed 

  -CMEE algorithm performs better than   -CLMS 

algorithm. Fig.5 confirms the same. 

 
Fig. 5. Comparison of the proposed l1-CMEE algorithm 

with other MEE variants for sparsity level T=6 and N=14 

in the presence of Gaussian channel noise. 
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Fig. 6. Performance of the proposed l1-CMEE algorithm 

under different values of step size 

The impact of step size on the performance of MEE 

algorithm is shown in fig. 6. Here the channel noise is 

impulsive as taken in the first experiment. As the step size 

increase, the convergence speed increases but mean square 

deviation error also increases. Hence, the step size should be 

chosen very carefully to improve the performance of the 

proposed algorithm so that the balance between convergence 

speed and mean square deviation error should be maintained. 

The other parameters taken are: N=14, T=2, kernal width 

σ=0.8. 

 
Fig. 7. Performance of the proposed l1-CMEE algorithm 

under different values of kernal width σ 

Fig. 7 shows the effect of kernel width of l1-CMEE on its 

performance. The kernel width affects both the convergence 

speed and MSD error. Hence it should be selected very 

carefully. Other parameters taken are: N=14, T=2,        

for CMEE and   -CMEE algorithms and        for 

  -CLMS algorithm. 

V. CONCLUSION 

This paper presents an information theory based l1-CMEE 

algorithm for sparse linear phase system identification. The 

proposed algorithm performs better in the presence of both 

impulsive and Gaussian channel noise. As higher order 

statistics of error is utilized in developing the proposed 

algorithm, hence performs better in the presence of impulsive 

noise which is of higher order statistics. The performance of 

the proposed algorithm is examined for different values of 

sparsity constant (number of non-zero coefficients). The 

proposed algorithm has higher convergence speed and lower 

MSD than other MEE algorithms in sparse system 

identification. The effects of other parameters are also tested 

in the proposed work. 
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