
ISSN 2719-6410 Political Science and Security Studies Journal, Vol. 2, No. 3, – 2021 
 

 

Complex mathematical models of inertial navigation system 
errors 

 

Yurii Artabaiev *1 A  

*Corresponding author: 1 Chief of Scientific Research Section, e-mail: kap_a@i.ua, ORCID: 0000-0001-9446-3011 

A Central research institute of weapons and military equipment of the Armed Forces of Ukraine, 28, Povitroflotsky, ave, Kyiv, 03049, Ukraine 

Received: June 12, 2021 | Revised: June 24, 2021 | Accepted: June 30, 2021 

DOI: 10.5281/zenodo.5579139 

Abstract 
The article is devoted to mathematical models of errors of inertial navigation systems (INS). The 
main advantages of autonomous inertial navigation systems are their resistance to horizontal 
accelerations and the ability to work autonomously under any conditions. However, over time, 
the errors of autonomous INS, due to the drift of gyroscopes, zero offset and drift of 
accelerometers, as well as other factors, reach significant values. Therefore, research to 
compensate for these errors is an important and urgent task in the autonomous mode of 
operation of the aircraft. 
To establish the connection between the output and input errors of autonomous INS, the 
equation of errors of autonomous INS is made. In this case, two models of errors of autonomous 
INS are investigated: nonlinear and linear. 
Depending on the requirement for accuracy and time of calculation of navigation parameters 
choose different models of INS errors. The linear model is simpler and requires less 
computational time. But the development of modern technologies allows to solve complex 
problems at an acceptable time interval. Therefore, it is possible to use nonlinear models. 

Key words: aircraft, inertial navigation system, error, error, correction, mathematical model, 
nonlinear, linear. 

Introduction            

The operation of the aircraft in conditions of 
active and passive interference is complicated. 
Determination of navigation parameters and 
orientation parameters of the aircraft is carried 
out using the INS installed on board the aircraft, 
which is autonomous and invariant to horizontal 
accelerations. To increase the accuracy of 

autonomous INS with the help of mathematical 
models of errors predictive models of errors of 
autonomous INS are built. 

The purpose of the article is to consider and 
analyze the linear and nonlinear mathematical 
model of INS errors. 

Results and discussion           

1. Nonlinear error models of autonomous 
INS. Equation of horizontal orientation errors. 

In real conditions, the platform always 
deviates from the navigation coordinate system 
(in our case, the navigation coordinate system – 
a geographical triangle) at some angles Ф𝐸, Ф𝑁, 
Ф𝑢𝑝 (see Fig. 1). These angles are called 

orientation errors. The following discusses how 
to identify these orientation errors. 

The Poisson equation is known 
(Giroskopicheskiye sistemy, 1971; Meleshko 
V.V., Nesterenko O.I., 2011): 

�̇�𝑚
𝑛 = 𝐶𝑚

𝑛 �̆�𝑚 − �̆�𝑛𝐶𝑚
𝑛 ,  (1) 

where �̆�𝑚, �̆�𝑛 − skew-matrix matrices; С𝑚
𝑛  − 

conversion matrix from coordinate system “m” 
to coordinate system “n”. 
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Figure 1 – Deviation angles between platform and geographical triangles  

The problem considers two coordinate 
systems: the platform coordinate system (is 
affected “p”) and і geographical triangular (is 
affected “LL”). In this case, the Poisson equation 
has the form: 

�̇�𝐿𝐿
𝑝 = 𝐶𝐿𝐿

𝑝 �̆�𝐿𝐿 − �̆�𝑝𝐶𝐿𝐿
𝑝 ,         (2) 

where 𝐶𝐿𝐿
𝑝  – matrix of transformation from a 

geographical trihedron into a platform 
coordinate system: 

𝐶𝐿𝐿
𝑝 = [

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

]            (3) 

where:  
с11 = 𝑐𝑜𝑠Ф𝑁 𝑐𝑜𝑠Ф𝑢𝑝 − 𝑠𝑖𝑛Ф𝐸 𝑠𝑖𝑛Ф𝑁 𝑠𝑖𝑛Ф𝑢𝑝; 

с12 = 𝑐𝑜𝑠Ф𝑁 𝑠𝑖𝑛Ф𝑢𝑝 + 𝑠𝑖𝑛Ф𝐸 𝑠𝑖𝑛Ф𝑁 𝑐𝑜𝑠Ф𝑢𝑝; 

с13 = −𝑐𝑜𝑠Ф𝐸 𝑠𝑖𝑛Ф𝑁; 
с21 = −𝑐𝑜𝑠Ф𝐸 𝑠𝑖𝑛Ф𝑢𝑝; 

с22 = 𝑐𝑜𝑠Ф𝐸 𝑐𝑜𝑠Ф𝑢𝑝; 

с23 = 𝑠𝑖𝑛Ф𝐸; 
с31 = 𝑠𝑖𝑛Ф𝑁 𝑐𝑜𝑠Ф𝑢𝑝 + 𝑠𝑖𝑛Ф𝐸 𝑐𝑜𝑠Ф𝑁 𝑠𝑖𝑛Ф𝑢𝑝; 

с32 = 𝑠𝑖𝑛Ф𝑁 𝑠𝑖𝑛Ф𝑢𝑝 − 𝑠𝑖𝑛Ф𝐸 𝑠𝑖𝑛Ф𝑁 𝑐𝑜𝑠Ф𝑢𝑝; 

с33 = 𝑐𝑜𝑠Ф𝐸 𝑐𝑜𝑠Ф𝑁; 

and skew-symmetric matrices �̆�𝐿𝐿 , �̆�𝑝 

acquire the form: 

�̆�𝐿𝐿 = [

0 −𝜔𝑢𝑝
𝐿𝐿 𝜔𝑁

𝐿𝐿

𝜔𝑢𝑝
𝐿𝐿 0 −𝜔𝐸

𝐿𝐿

−𝜔𝑁
𝐿𝐿 𝜔𝐸

𝐿𝐿 0

]

𝐿𝐿

.     (4) 

�̆�𝑝 = [

0 −𝜔𝑢𝑝
𝑝 𝜔𝑁

𝑝

𝜔𝑢𝑝
𝑝 0 −𝜔𝐸

𝑝

−𝜔𝑁
𝑝 𝜔𝐸

𝑝 0

]

𝑝

,          (5) 

where 𝜔𝑖
𝐿𝐿 , 𝜔𝑖

𝑝 − absolute angular velocities 

of geographical and platform triangles. The 
absolute angular velocities of a geographical 
triangle are determined by formulas 
(Giroskopicheskiye sistemy,1971; Bromberg P. 
V., 1979; Salychev O.S., 1998): 

{
 

 
𝜔𝐸
𝐿𝐿 = −

𝜈𝑁

𝑅

𝜔𝑁
𝐿𝐿 =

𝜈𝐸

𝑅
+ 𝑢 𝑐𝑜𝑠 𝜑

𝜔𝑢𝑝
𝐿𝐿 =

𝜈𝐸

𝑅
𝑡𝑔𝜑 + 𝑢 𝑠𝑖𝑛 𝜑

          (6) 

The difference between the absolute angular 
velocities 𝜔𝑝 та 𝜔𝐿𝐿 caused by a calculation 

error 𝛥𝜔𝑖,𝑖=𝐸,𝑁,𝑢𝑝 and the drift rate of the 

gyroscope 𝜔𝑖,𝑖=𝐸,𝑁,𝑢𝑝
𝑑𝑟 . Let 𝜀 = 𝛥𝜔 + 𝜔𝑑𝑟 − the 

sum of calculation errors and the drift rate of the 
gyroscope, in this case: 

𝜔𝑝 = 𝜔𝐿𝐿 + 𝜀,    (7) 

where 𝜔𝑖
𝐿𝐿 , 𝜔𝑖

𝑝
 

𝜀 = [

𝜀𝐸
𝜀𝑁
𝜀𝑢𝑝

] = [

𝛥𝜔𝐸 + 𝜔𝐸
𝑑𝑟

𝛥𝜔𝑁 + 𝜔𝑁
𝑑𝑟

𝛥𝜔𝑢𝑝 + 𝜔𝑢𝑝
𝑑𝑟

].         (8) 
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When varying equation (6), you can find calculation errors: 

{
 
 

 
 𝛥𝜔𝐸 = −

𝜔𝐸
𝑑𝑟

𝑅

𝛥𝜔𝑁 =
𝛿𝜈𝐸

𝑅
− 𝑢 𝑠𝑖𝑛 𝜑 𝛿𝜑

𝛥𝜔𝑢𝑝 =
𝛿𝜈𝐸

𝑅
𝑡𝑔𝜑 + (𝑢 𝑐𝑜𝑠 𝜑 +

𝜈𝐸

𝑅
𝑠𝑒𝑐2 𝜑)𝛿𝜑

 (9) 

Substitute (9) in (8) and get: 

 

𝜀 = [

𝜀𝐸
𝜀𝑁
𝜀𝑢𝑝

] = [

𝛥𝜔𝐸 + 𝜔𝐸
𝑑𝑟

𝛥𝜔𝑁 + 𝜔𝑁
𝑑𝑟

𝛥𝜔𝑢𝑝 + 𝜔𝑢𝑝
𝑑𝑟

] =

[
 
 
 
 −

𝛿𝜈𝑁

𝑅
+ 𝜔𝐸

𝑑𝑟

𝛿𝜈𝐸

𝑅
− 𝑢 𝑠𝑖𝑛𝜑 𝛿𝜑 + 𝜔𝑁

𝑑𝑟

𝛿𝜈𝐸

𝑅
𝑡𝑔𝜑 + (𝑢 𝑐𝑜𝑠 𝜑 +

𝜈𝐸

𝑅
𝑠𝑒𝑐2 𝜑)𝛿𝜑 + 𝜔𝑢𝑝

𝑑𝑟
]
 
 
 
 

     (10)

Similarly, for skew-symmetric matrices: 

�̆�𝑝 = �̆�𝐿𝐿 + 𝜀̆,       (11) 

where 

𝜀̆ = [

0 −𝜀𝑢𝑝 𝜀𝑁
𝜀𝑢𝑝 0 −𝜀𝐸
−𝜀𝑁 𝜀𝐸 0

].       (12) 

Taking into account equation (11) we 
rewrite equation (2): 

�̇�𝐿𝐿
𝑝 = 𝐶𝐿𝐿

𝑝 �̆�𝐿𝐿 − (�̆�𝐿𝐿 + 𝜀̆)𝐶𝐿𝐿
𝑝 .      (13) 

Substitute equations (3), (4), (10) and (12) 
into equation (13) and obtain nonlinear 
equations of errors of horizontal orientation: 

 

Φ̇𝐸 = (−
𝜈𝑁
𝑅
−
𝛿𝜈𝑁
𝑅

+ 𝜔𝐸
𝑑𝑟) 𝑐𝑜𝑠Φ𝑁 +

𝜈𝑁
𝑅
𝑐𝑜𝑠Φ𝑢𝑝 − (

𝜈𝐸
𝑅
+ 𝑢 𝑐𝑜𝑠 𝜑) 𝑠𝑖𝑛Φ𝑢𝑝 + 

+(
𝜈𝐸

𝑅
𝑡𝑔𝜑 + 𝑢 𝑠𝑖𝑛 𝜑 +

𝛿𝜈𝐸

𝑅
𝑡𝑔𝜑 + 𝑢 𝑐𝑜𝑠 𝜑 𝛿𝜑 +

𝜈𝐸

𝑅
𝑠𝑒𝑐2 𝜑 𝛿𝜑 + 𝜔𝑢𝑝

𝑑𝑟) 𝑠𝑖𝑛Φ𝑁. (14) 

 

Φ̇𝑁 =
𝜈𝐸
𝑅
+ 𝑢 𝑐𝑜𝑠 𝜑 +

𝛿𝜈𝐸
𝑅
− 𝑢 𝑠𝑖𝑛 𝜑 𝛿𝜑 + 𝜔𝑁

𝑑𝑟 −
𝜈𝑁 𝑠𝑖𝑛Φ𝑢𝑝

𝑅 𝑐𝑜𝑠Φ𝐸
− 

−(
𝜈𝐸
𝑅
+ 𝑢 𝑐𝑜𝑠 𝜑)

𝑐𝑜𝑠Φ𝑢𝑝

𝑐𝑜𝑠Φ𝐸
+ (−

𝜈𝑁
𝑅
−
𝛿𝜈𝑁
𝑅

+ 𝜔𝐸
𝑑𝑟)𝑡𝑔Φ𝐸 𝑠𝑖𝑛Φ𝑁 − 

−(
𝜈𝐸
𝑅
𝑡𝑔𝜑 + 𝑢 𝑠𝑖𝑛 𝜑 +

𝛿𝜈𝐸
𝑅
𝑡𝑔𝜑 + 𝑢 𝑐𝑜𝑠 𝜑 𝛿𝜑 +

𝜈𝐸
𝑅
𝑠𝑒𝑐2𝜑 𝛿𝜑 

+𝜔𝑢𝑝
𝑑𝑟)𝑡𝑔Φ𝐸 𝑐𝑜𝑠Φ𝑁 ,      (15)

Here: 𝜈𝑁 , 𝜈𝐸 , 𝜈𝑈𝑝 − projections of the 

velocity of the aircraft on the axis of the 
geographical trihedron; 𝛿𝜈𝑁 , 𝛿𝜈𝐸 , 𝛿𝜈𝑈𝑝 − 

projections of the velocity of the aircraft on 
the axis of the geographical trihedron; 
Φ𝑁 , Φ𝐸 , Φ𝑈𝑝 − angles of deviation between 

the platform and geographic trihedra; 

𝜔𝑁
𝑑𝑟 , 𝜔𝐸

𝑑𝑟 , 𝜔𝑈𝑝
𝑑𝑟  − projections of the GSP drift 

velocity on the axis of the geographical 
trihedron; 𝜑 − the latitude of the area; 𝛿𝜑 − 

error determining latitude; 𝑢 − angular 
velocity of rotation of the Earth; 𝑅 − radius of 
the Earth; 

Equation of errors of horizontal 
accelerometers. 

To derive the error equations of horizontal 
accelerometers, first consider the basic 
equation of navigation. 

The basic equation of inertial navigation. 
In the inertial coordinate system, Newton's 
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second law is known (Inertsial'nyye, 2012): 

𝑚
𝑑2𝑟

𝑑𝑡2
= 𝐹,   (16) 

where 𝑚 − the mass of the material point; 
r − radius vector of the material point; F − 
equal effect of all forces applied to the 
material point is equal to: 

𝐹 = 𝐹акт + 𝐺𝑟 ,  (17) 

where 𝐹акт − active non-gravity forces 
acting on the point; 𝐺𝑟 – gravitational forces 
acting on a point in the gravitational field of 
the Earth. 

Put equation (17) in (16) we get: 

𝑚
𝑑2𝑟

𝑑𝑡2
= 𝐹акт + 𝐺𝑟.      (18) 

Let's redo equation (18) and get: 

𝑑2𝑟

𝑑𝑡2
=

𝐹акт

𝑚
+
𝐺𝑟

𝑚
    

or 

𝑎 = 𝑓 + 𝑔𝑚,   (19) 

where α − absolute acceleration; f − 
acceleration, measured by an accelerometer; 
𝑔𝑚 − gravitational acceleration. 

Next we will consider how to use equation 
(19) to determine the navigation parameters 
of objects. We know the Coriolis formula: 

𝑑𝑟

𝑑𝑡
|
𝐼
=

𝑑𝑟

𝑑𝑡
|
𝑛
+ 𝜔𝑛 × 𝑟 = 𝜈 + 𝑢 + 𝑟,    (20) 

where the index “n” denotes the Earth's 
coordinate system; ν − the speed of the object 

relative to the terrestrial coordinate system; u 
− angular velocity of rotation of the Earth. 

Integrate equation (20) with respect to the 
inertial coordinate system and we obtain the 
absolute acceleration of the object: 

𝑎 =
𝑑

𝑑𝑡
[𝑣 + 𝑢 + 𝑟]𝐼 =

𝑑𝑣

𝑑𝑡
|
𝐼
+ 𝑢 ×

𝑑𝑟

𝑑𝑡
|
𝐼
.  (21) 

Decompose the first term of the right-
hand side of the equation (21): 

𝑑𝑣

𝑑𝑡
|
𝐼
=

𝑑𝑣

𝑑𝑡
|
𝐿𝐿
+ 𝜔𝐿𝐿 × 𝑣,       (22) 

where the index “LL” denotes a 
geographical trihedron. 

Put equations (20), (22) in equation (21) 
and obtain: 

𝑎 =
𝑑𝑣

𝑑𝑡
|
𝐿𝐿
+𝜔𝐿𝐿 × 𝑣 + 𝑢 × 𝑣 + 𝑢 × 𝑢 × 𝑟.

 

(23) 

Let us rewrite equation (19) taking into 
account equation (23): 

𝑓 + 𝑔𝑚 =
𝑑𝑣

𝑑𝑡
|
𝐿𝐿
+𝜔𝐿𝐿 × 𝑣 + 𝑢 × 𝑣 + 𝑢 × 𝑢 × 𝑟, 

or 

𝑓 =
𝑑𝑣

𝑑𝑡
|
𝐿𝐿
+ 𝜔𝐿𝐿 × 𝑣 + 𝑢 × 𝑣 + 𝑢 × 𝑢 × 𝑟 −

𝑔𝑚 =
𝑑𝑣

𝑑𝑡
|
𝐿𝐿
+ 𝜔𝐿𝐿 × 𝑣 + 𝑢 × 𝑣 − 𝑔,

    

(24) 

where 𝑔 = 𝑔𝑚 − 𝑢 × 𝑢 × 𝑟 − acceleration 
of gravity. 

Equation (24) is the basic equation of 
navigation.  

Let us decompose the second and third 
terms of the right-hand side of equation (24):  

𝜔𝐿𝐿 × 𝑣 = 𝑑𝑒𝑡 [

𝑖 𝑗 𝑘
𝜔𝐸 𝜔𝑁 𝜔𝑢𝑝
𝑣𝐸 𝑣𝑁 𝑣𝑢𝑝

] = (𝜔𝑁𝑣𝑢𝑝 −𝜔𝑢𝑝𝑣𝑁)𝑖 + (𝜔𝑢𝑝𝑣𝐸 −𝜔𝐸𝑣𝑢𝑝)𝑗 + (𝜔𝐸𝑣𝑁 −𝜔𝑁𝑣𝐸)𝑘,    (25)

𝑢 × 𝑣 = 𝑑𝑒𝑡 [

𝑖 𝑗 𝑘
𝑢𝐸 𝑢𝑁 𝑢𝑢𝑝
𝑣𝐸 𝑣𝑁 𝑣𝑢𝑝

] = (𝑢𝑁𝑣𝑢𝑝 − 𝑢𝑢𝑝𝑣𝑁)𝑖 + (𝑢𝑢𝑝𝑣𝐸 − 𝑢𝐸𝑣𝑢𝑝)𝑗 + (𝑢𝐸𝑣𝑁 − 𝑢𝑁𝑣𝐸)𝑘, (26)

where 𝑢𝐸 , 𝑢𝑁 , 𝑢𝑢𝑝 − projections of the 

angular velocity of rotation of the Earth on the 
axes of the geographical trihedron, defined by 
the formulas: 

𝑢𝐸 , 𝑢𝑁 , 𝑢𝑢𝑝 {

𝑢𝐸 = 0
𝑢𝑁 = 𝑢 𝑐𝑜𝑠 𝜑
𝑢𝑢𝑝 = 𝑢 𝑠𝑖𝑛𝜑

.       (27) 

In this case, taking into account equations 
(24), (25), (26), the projection of the 
accelerations of the object on the axis of the 
geographical trihedron are determined by the 
formulas: 

58 

https://portal.issn.org/resource/ISSN/2522-9842


ISSN 2719-6410 Political Science and Security Studies Journal, Vol. 2, No. 3, – 2021 
 

 

{
 
 

 
 𝑓𝐸 =

𝑑𝑣𝐸

𝑑𝑡
+ 𝜔𝑁𝑣𝑢𝑝 − 𝜔𝑢𝑝𝑣𝑁 + 𝑢𝑁𝑣𝑢𝑝 − 𝑢𝑢𝑝𝑣𝑁

𝑓𝑁 =
𝑑𝑣𝑁

𝑑𝑡
+ 𝜔𝑢𝑝𝑣𝐸 − 𝜔𝐸𝑣𝑢𝑝 + 𝑢𝑢𝑝𝑣𝐸 − 𝑢𝐸𝑣𝑢𝑝

𝑓𝑢𝑝 =
𝑑𝑣𝑢𝑝

𝑑𝑡
+ 𝜔𝐸𝑣𝑁 − 𝜔𝑁𝑣𝐸 + 𝑢𝐸𝑣𝑁 − 𝑢𝑁𝑣𝐸 + 𝑔

.            (28)

  

Let us rewrite equation (29) in matrix form: 

𝑓 = �̇� + �̆�𝑣 + �̆�𝑣 + 𝑔*,       (29) 

where  

0

; ; 0 ;

0

E E up N

N N up E

up up N E

f v

f f v v

f v

 

  

 

    − 
     

= = = −     
     −    

*

0 0

0 ; 0 .

0

up N

up E

N E

u u

u u u g

u u g

−   
   

= − =
   
   −   

 

Due to the deviation of the gyroplatform 
from the geographical trihedron at the 
corners Φ𝐸 ,Φ𝑁 ,Φ𝑢𝑝 accelerometers do not 

measure the projection of accelerations along 
the axes of the geographical trihedron. The 
relationship between the projections of 
accelerations along the axes of the 
gyroplatform (“p”) and the geographical 
trihedron (“LL”) is expressed by the formula: 

𝑓𝑝 = 𝑐𝐿𝐿
𝑝 𝑓𝐿𝐿 + Δ𝑓,        (30) 

where f  − accelerometer errors (this 

includes zero offset and scale factor error). 
The difference between 𝑓𝑝and 𝑓𝐿𝐿 can be 
found by varying equation (29) and we obtain: 

𝑓𝑝 − 𝑓𝐿𝐿 = 𝛿𝑓 = 𝛿�̇� + �̆�𝛿𝑣 + 𝛿�̆�𝑣 + �̆�𝛿𝑣.  (31) 

From equation (31) it follows: 

𝑓𝑝 = 𝑓𝐿𝐿 + 𝛿𝑓 = 𝑓𝐿𝐿 + 𝛿�̇� + �̆�𝛿𝑣 + 𝛿�̆�𝑣 + �̆�𝛿𝑣. (32) 

Let's put equation (30) in equation (32) and 
get: 

𝑓𝐿𝐿 + 𝛿�̇� + �̆�𝛿𝑣 + 𝛿�̆�𝑣 + �̆�𝛿𝑣 = 𝐶𝐿𝐿
𝑝
𝑓𝐿𝐿 + Δ𝑓, (33) 

it follows that: 

𝛿�̇� = [𝐶𝐿𝐿
𝑝
− 𝐼]𝑓𝐿𝐿 − [�̆� + �̆�]𝛿𝑣 − 𝛿�̆�𝑣 + Δ𝑓. (34) 

We will decompose the equation (34): 

 

[

𝛿�̇�𝐸
𝛿�̇�𝑁
𝛿�̇�𝑢𝑝

] = [𝐶𝐿𝐿
𝑝 − 𝐼] [

𝑓𝐸
𝑓𝑁
𝑓𝑢𝑝

] − [

0 −𝜔𝑢𝑝 − 𝑢𝑢𝑝 𝜔𝑁 + 𝑢𝑁
𝜔𝑢𝑝 + 𝑢𝑢𝑝 0 −𝜔𝐸 − 𝑢𝐸
−𝜔𝑁 − 𝑢𝑁 𝜔𝐸 + 𝑢𝐸 0

] [

𝛿𝜈𝐸
𝛿𝜈𝑁
𝛿𝜈𝑢𝑝

] − 

−[

0 −𝛿𝜔𝑢𝑝 𝛿𝜔𝑁
𝛿𝜔𝑢𝑝 0 −𝛿𝜔𝐸
−𝛿𝜔𝑁 𝛿𝜔𝐸 0

] [

𝜈𝐸
𝜈𝑁
𝜈𝑢𝑝

] + [

𝜇𝐸
𝜇𝑁
𝜇𝑢𝑝

𝑓𝐸
𝑓𝑁
𝑓𝑢𝑝

] + [

𝐵𝐸
𝐵𝑁
𝐵𝑢𝑝

].                                (35) 

 
After converting expression (35), we obtain 

the error equation of horizontal 
accelerometers: 

 

 

𝛿�̇�𝐸 = −𝑓𝐸 − 𝑣𝑢𝑝(
𝛿𝑣𝐸

𝑅
− 𝑢 𝑠𝑖𝑛𝜑 𝛿𝜑) + 𝑣𝑁(

𝛿𝑣𝐸

𝑅
𝑡𝑔𝜑 + 𝑢 𝑐𝑜𝑠 𝜑 𝛿𝜑 +

𝑣𝐸

𝑅
𝑠𝑒𝑐2𝜑 𝛿𝜑) − 

−𝛿𝑣𝑢𝑝(2𝑢 𝑐𝑜𝑠 𝜑 +
𝑣𝐸
𝑅
) + 𝛿𝑣𝑁(2𝑢 𝑠𝑖𝑛 𝜑 +

𝑣𝐸
𝑅
𝑡𝑔𝜑) − 𝑓𝑢𝑝 𝑐𝑜𝑠Φ𝐸 𝑠𝑖𝑛Φ𝑁 + 

+𝑓𝐸 𝑐𝑜𝑠Φ𝑁 𝑐𝑜𝑠Φ𝑢𝑝 + 𝑓𝑁(𝑐𝑜𝑠Φ𝑁 𝑠𝑖𝑛Φ𝑢𝑝 + 𝑠𝑖𝑛Φ𝐸 𝑠𝑖𝑛Φ𝑁 𝑐𝑜𝑠Φ𝑢𝑝) − 
−𝑓𝐸 𝑠𝑖𝑛Φ𝐸 𝑠𝑖𝑛Φ𝑁 𝑠𝑖𝑛Φ𝑢𝑝 + 𝑓𝐸𝜇𝐸 + 𝐵𝐸;                                     (36) 
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2( cos sec )

(2 sin ) cos cos cos sin

sin .

N NE E
N N up E up

E
E N E up E E up

up E N N N

v vv v
v f v v u v

R R R R

v
v u tg fv f

R

f f B

 
   

  



= − − − − + − −

− + +   −   +

+  + +

           (37) 

Here: 𝑓𝑁 , 𝑓𝐸 , 𝑓𝑢𝑝 − projections of the 

apparent acceleration of the aircraft on the 
axis of the geographic trihedron; 𝜇𝑁 , 𝜇𝐸 − 
accelerometer scale factor errors; 𝐵𝑁 , 𝐵𝐸 − 
zero offset accelerometers; 

As a result, we obtain 4 nonlinear 
equations of horizontal errors of autonomous 
INS (14), (15), (36) and (37). We see that these 
equations are complex, so to use these 
equations they need to be simplified. 

2. Linear error models of autonomous INS.  
Orientation error equation. In an ideal 

system, the GSP accurately simulates a 
reference trihedron and the axes closely 
connected to the stabilized platform of the 
instrument trihedron 𝑥𝑝𝑦𝑝𝑧𝑝 are parallel to 

the axes of the reference trihedron 𝑥𝐿𝐿𝑦𝐿𝐿𝑧𝐿𝐿. 
Axes of the instrument trihedron 𝑥𝑝𝑦𝑝𝑧𝑝 

coincide with the axes of sensitivity of 
gyroscopes in their neutral position (angles of 
precession are zero). 

In real systems, the absolute angular 
velocities of the reference and instrument 
trihedron will be inconsistent at small angles 
Φ𝐸 , Φ𝑁 , Φ𝑢𝑝, which change over time and 

characterize the errors of orientation of the 
GSP. Corners Φ𝐸 , Φ𝑁 determine the errors of 
the instrument vertical, and the angle Φ𝑢𝑝 − 

error in azimuth orientation of the platform. 
The matrix of transition from the 

navigation coordinate system to the platform 
coordinate system has the form (taking into 
account the small number of angles 
Φ𝐸 , Φ𝑁 , Φ𝑢𝑝) [6]: 

𝐶𝐿𝐿
𝑝 = [

1 Φ𝑢𝑝 −Φ𝑁

−Φ𝑢𝑝 1 Φ𝐸

Φ𝑁 −Φ𝐸 1

],      (38) 

where “p” − platform trihedron; “LL” − 
geographical trihedron. The linear equations 
of INS orientation errors are based on the 
relation: 

[

𝜔𝐸
𝜔𝑁
𝜔𝑢𝑝

]

𝑝

= 𝐶𝐿𝐿
𝑝 [

𝜔𝐸
𝜔𝑁
𝜔𝑢𝑝

]

𝐿𝐿

+ [

Φ𝐸

Φ𝑁

Φ𝑢𝑝

].   (39) 

The first term is responsible for the skew of 
the platform SC relative to the navigation SC, 
the second – for departure errors. 

Substitute (38) into (39) and obtain a 
system of equations in scalar form: 

.

P LL LL LL

E E N up N up E

P LL LL LL

N N up E up E E

P LL LL LL

up up E N E N up

   

   

   

 = +  − +


= +  − +
 = +  − +

       (40) 

Let's find out the reasons of difference 𝜔𝑖
𝑃 

і 𝜔𝑖
𝐿𝐿: 

,

P LL dr

E E E E

P LL dr

N N N N

P LL dr

up up up up

   

   

   

 − = + 


− = + 
 − = + 

        (41) 

where 𝜔𝑖
𝑑𝑟 − drift of the computing 

platform; Δ𝜔𝑖 − errors in calculating platform 
control signals 𝜔𝑖: 

2

sin

cos sec

N
E

E
N

E E
up

V

R

V
u

R

V V
u

R R




 


  


 = −




 = −


 = + +


. (42) 

Substitute (41), (42) into (40) and obtain: 
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{
 
 

 
 Φ̇𝐸 + 𝜔𝑁Φ𝑢𝑝 −Φ𝑁𝜔𝑢𝑝 = −

𝛿𝑣𝑁

𝑅
+ 𝜔𝐸

𝑑𝑟

Φ̇𝑁 − 𝜔𝐸Φ𝑢𝑝 +Φ𝐸𝜔𝑢𝑝 =
𝛿𝑣𝐸

𝑅
− 𝑢 𝑠𝑖𝑛𝜑 𝛿𝜑 + 𝜔𝑁

𝑑𝑟

Φ̇𝑢𝑝 + 𝜔𝑁Φ𝑁 −Φ𝐸𝜔𝑁 =
𝛿𝑣𝐸

𝑅
𝑡𝑔𝜑 + (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸

𝑅
𝑠𝑒𝑐2 𝜑)𝛿𝜑 + 𝜔𝑢𝑝

𝑑𝑟

.   (43) 

 
The system of equation (43) describes the 

errors of the orientation of the platform in the 
horizon and in azimuth. 

Equation of errors of horizontal 
accelerometers. Linear error equations of 
horizontal INS accelerometers are based on 
the relation [7]: 

,

E E E E E

Pl

N LL N N N N

up up up up upp LL

a a B a

a C a B a

a a B a







       
       

= + +        
              

(44) 

where 𝐵𝐸,𝑁,𝑈𝑝 − zero offset 

accelerometers; 𝜇𝑖 − accelerometer scale 
factor errors; 𝑎𝐸,𝑁,𝑈𝑝 − projections of the 

apparent acceleration on the axis of a 
geographical trihedron.  

Substitute (38) into (44) and obtain a 
system of equations in scalar form: 

.

p LL LL LL

E E N up up N E E E

p LL LL LL

N N E up up E N N N

a a a a B a

a a a a B a





 − =  −  + +


− = −  +  + +

(45) 

Difference 𝑎𝑖
𝑝 from 𝑎𝑖

𝐿𝐿 due to the values 

𝛿�̇�𝐸 , 𝛿�̇�𝑁 and errors in the calculation of 
Coriolis amendments, which are determined 
by varying the nominal values of these 
amendments. Finally, we get: 

 

{
 
 

 
 
𝛿�̇�𝐸 = 𝑎𝑁Φ𝑢𝑝 − 𝑎𝑢𝑝Φ𝑁 + 𝐵𝐸 + 𝑎𝐸𝜇𝐸 + (2𝑢 𝑠𝑖𝑛 𝜑 +

𝑣𝐸

𝑅
𝑡𝑔𝜑)𝛿𝑣𝑁 +

+𝑣𝑁𝑢 𝑐𝑜𝑠 𝜑 +
𝛿𝑣𝐸

𝑅
𝑡𝑔𝜑𝑣𝑁 + (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸

𝑅
𝑠𝑒𝑐2𝜑)𝑣𝑁𝛿𝜑

𝛿�̇�𝑁 = −𝑎𝐸Φ𝑢𝑝 + 𝑎𝑢𝑝Φ𝐸 + 𝐵𝑁 + 𝑎𝑁𝜇𝑁 − (2𝑢 𝑠𝑖𝑛 𝜑 +
𝑣𝐸

𝑅
𝑡𝑔𝜑)𝛿𝑣𝐸 −

−𝑣𝐸𝑢 𝑐𝑜𝑠 𝜑 𝛿𝜑 −
𝛿𝑣𝐸

𝑅
𝑡𝑔𝜑𝑣𝐸 − (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸

𝑅
𝑠𝑒𝑐2𝜑)𝑣𝐸𝛿𝜑

,  (46) 

 

where 

𝛿Δ𝑎𝐸
𝐶 = (2𝑢 𝑠𝑖𝑛 𝜑 +

𝑣𝐸

𝑅
𝑡𝑔𝜑)𝛿𝑣𝑁 + 𝑣𝑁𝑢 𝑐𝑜𝑠 𝜑 +

𝛿𝑣𝐸

𝑅
𝑡𝑔𝜑𝑣𝑁 + (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸

𝑅
𝑠𝑒𝑐2𝜑)𝑣𝑁𝛿𝜑; 

𝛿Δ𝑎𝑁
𝐶 = −(2𝑢 𝑠𝑖𝑛 𝜑 +

𝑣𝐸

𝑅
𝑡𝑔𝜑)𝛿𝑣𝐸 − 𝑣𝐸𝑢 𝑐𝑜𝑠 𝜑 𝛿𝜑 −

𝛿𝑣𝐸

𝑅
𝑡𝑔𝜑𝑣𝐸 − (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸

𝑅
𝑠𝑒𝑐2𝜑)𝑣𝐸𝛿𝜑 − 

errors from the calculation of Coriolis corrections. 
 

In addition, the two connection equations 
have the form [8]: 

{
𝛿�̇� =

𝛿𝑣𝑁

𝑅

𝛿�̇� =
𝛿𝑣𝐸

𝑅 𝑐𝑜𝑠𝜑
+

𝑣𝐸

𝑅 𝑐𝑜𝑠𝜑
𝑡𝑔𝜑𝛿𝜑

.      (47) 

Equations (43), (46) and (47) make up the 
system of equations of INS errors: 

1)Φ̇𝐸 + 𝜔𝑁Φ𝑢𝑝 − 𝜔𝑢𝑝Φ𝑁 = −
𝛿𝑣𝑁
𝑅

+ 𝜔𝐸
𝑑𝑟; 

2)Φ̇𝑁 −𝜔𝐸Φ𝑢𝑝 − 𝜔𝑢𝑝Φ𝐸 =
𝛿𝑣𝐸
𝑅

− 𝑢 𝑠𝑖𝑛 𝜑 𝛿𝜑 + 𝜔𝑁
𝑑𝑟; 

3)Φ̇𝑢𝑝 + 𝜔𝐸Φ𝑁 − 𝜔𝑁Φ𝐸 =
𝛿𝑣𝐸
𝑅
𝑡𝑔𝜑 + (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸
𝑅
𝑠𝑒𝑐2 𝜑)𝛿𝜑 + 𝜔𝑢𝑝

𝑑𝑟; 
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4)𝛿�̇�𝐸 = 𝑎𝑁Φ𝑢𝑝 − 𝑎𝑢𝑝Φ𝑁 + 𝑎𝐸𝜇𝐸 + 𝑏𝐸 + (2𝑢 𝑠𝑖𝑛 𝜑 +
𝑣𝐸
𝑅
𝑡𝑔𝜑)𝛿𝑣𝑁 + 

𝑣𝑁𝑢 𝑐𝑜𝑠 𝜑 𝛿𝜑 +
𝛿𝑣𝐸
𝑅
𝑡𝑔𝜑𝑣𝑁 + (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸
𝑅
𝑠𝑒𝑐2𝜑)𝑣𝑁𝛿𝜑; 

5)𝛿�̇�𝑁 = −𝑎𝐸Φ𝑢𝑝 + 𝑎𝑢𝑝Φ𝐸 + 𝑎𝑁𝜇𝑁 + 𝑏𝑁 − (2𝑢 𝑠𝑖𝑛 𝜑 +
𝑣𝐸
𝑅
𝑡𝑔𝜑)𝛿𝑣𝐸 − 

−𝑣𝐸𝑢 𝑐𝑜𝑠 𝜑 𝛿𝜑 −
𝛿𝑣𝐸
𝑅
𝑡𝑔𝜑𝑣𝐸 − (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸
𝑅
𝑠𝑒𝑐2 𝜑)𝑣𝐸𝛿𝜑; 

6)𝛿�̇� =
𝛿𝑣𝑁
𝑅
; 

7)𝛿�̇� =
𝛿𝑣𝐸

𝑅 𝑐𝑜𝑠 𝜑
+

𝑣𝐸
𝑅 𝑐𝑜𝑠 𝜑

𝑡𝑔𝜑𝛿𝜑.

We write down the system of INS error equations in discrete form and get: 
 

1)
Φ𝐸𝑘+1

−Φ𝐸𝑘

𝑇
+ 𝜔𝑁𝑘Φ𝑢𝑝𝑘

−𝜔𝑢𝑝𝑘Φ𝑁𝑘
= −

𝛿𝑣𝑁𝑘
𝑅

+ 𝜔𝐸
𝑑𝑟; 

2)
Φ𝑁𝑘+1

−Φ𝑁𝑘

𝑇
− 𝜔𝑁𝑘Φ𝑢𝑝𝑘

− 𝜔𝑢𝑝𝑘Φ𝑁𝑘
=
𝛿𝑣𝐸𝑘
𝑅

− 𝑢 𝑠𝑖𝑛 𝜑 𝛿𝜑𝑘 + 𝜔𝑁
𝑑𝑟; 

3)
Φ𝑢𝑝𝑘+1

−Φ𝑢𝑝𝑘

𝑇
+ 𝜔𝐸𝑘Φ𝑁𝑘

− 𝜔𝑁𝑘Φ𝐸𝑘
= (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸
𝑅
𝑠𝑒𝑐2 𝜑)𝛿𝜑𝑘 +

𝛿𝑣𝐸𝑘
𝑅

𝑡𝑔𝜑 + 𝜔𝑢𝑝
𝑑𝑟; 

4)
𝛿𝐸𝑘+1 − 𝛿𝐸𝑘

𝑇
= 𝑎𝑁𝑘Φ𝑢𝑝𝑘

− 𝑎𝑢𝑝𝑘Φ𝑁𝑘
+ 𝑎𝐸𝑘𝜇𝐸 + 𝑏𝐸 + 𝑣𝑁𝑢 𝑐𝑜𝑠 𝜑 𝛿𝜑𝑘 + (2𝑢 𝑠𝑖𝑛 𝜑

+
𝑣𝐸
𝑅
𝑡𝑔𝜑)𝛿𝑣𝑁𝑘 +

𝛿𝑣𝐸𝑘
𝑅

𝑡𝑔𝜑𝑣𝑁 + (𝑢 𝑐𝑜𝑠 𝜑 +
𝑣𝐸
𝑅
𝑠𝑒𝑐2𝜑)𝑣𝑁𝛿𝜑𝑘; 

5)
𝛿𝑣𝑁𝑘+1 − 𝛿𝑣𝑁𝑘

𝑇
= −𝑎𝐸𝑘Φ𝑢𝑝𝑘

+ 𝑎𝑢𝑝𝑘Φ𝐸𝑘
+ 𝑎𝑁𝑘𝜇𝑁 + 𝑏𝑁 −

𝛿𝑣𝐸𝑘
𝑅

𝑡𝑔𝜑𝑣𝐸 − 

−(𝑢 𝑠𝑖𝑛 𝜑 +
𝑣𝐸
𝑅
𝑡𝑔𝜑)𝛿𝑣𝐸𝑘 − 𝑣𝐸𝑢 𝑐𝑜𝑠 𝛿 𝜑𝑘 − (𝑢 𝑐𝑜𝑠 𝜑 +

𝑣𝐸
𝑅
𝑠𝑒𝑐2𝜑)𝑣𝐸𝛿𝜑𝑘; 

6)
𝛿𝜑𝑘+1 − 𝛿𝜑𝑁𝑘

𝑇
=
𝛿𝑣𝑁𝑘
𝑅

; 

7)
𝛿𝜆𝑘+1 − 𝛿𝜆𝑘

𝑇
=

𝛿𝑣𝐸𝑘
𝑅 𝑐𝑜𝑠 𝜑

+
𝑣𝐸

𝑅 𝑐𝑜𝑠 𝜑
𝑡𝑔𝜑𝛿𝜑𝑘.

Let's rewrite the system of INS error equations in matrix form: 

 
𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘−1, 
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where 𝑥𝑘 =

[
 
 
 
 
 
 
Φ𝐸

Φ𝑁

Φ𝑢𝑝

𝛿𝑣𝐸
𝛿𝑣𝑁
𝛿𝜑
𝛿𝜆 ]

 
 
 
 
 
 

𝑘

; 𝑤𝑘−1 =

[
 
 
 
 
 
 
 
𝑇. 𝜔𝐸

𝑑𝑟

𝑇.𝜔𝑁
𝑑𝑟

𝑇.𝜔𝑢𝑝
𝑑𝑟

𝑇. 𝑎𝐸 . 𝜇𝐸 + 𝑇. 𝑏𝐸
𝑇. 𝑎𝑁 . 𝜇𝑁 + 𝑇. 𝑏𝑁
0
0 ]

 
 
 
 
 
 
 

𝑘−1

; 

2

2
2

2
2

1 0 0 0

1 0 sin 0

1 0 ( cos sec ) 0

0 1 (2 sin ) (2 cos sec ) 0

0 2 (2sin ) 1 ( sec 2 cos ) 0

0 0 0 0 1 0

0 0 0 0
cos cos

N N

up E

E
N E

NE
up N N N

E E
up E E

E

T
T T

R

T
T T Tu

R

vT
T T tg T u

R R

vvT
Ta Ta tg v T u tg T v uF

R R R

v v
Ta Ta T tg T v u

R R

T

R

TvT
t

R R

 

  

    

    

  

 

− −

− −

− +

− + + +=

− − + − +

.

1g

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

In practice, when considering horizontal 
channels of information, as a rule, simplified 
equations of errors of autonomous INS are 
used. At the same time, we neglect cross-links 
and errors from calculation of Coriolis 
corrections, and then we can write down the 
equation of errors of INS separately for each 
horizontal information channel: 

− East Channel: 

{

𝛿�̇�𝐸 = −𝑔Φ𝑁 + 𝑎𝑁Φ𝑢𝑝 + 𝐵𝐸 + 𝜇𝐸𝑎𝐸

Φ̇𝑁 =
𝛿𝑣𝐸

𝑅
+ 𝜔𝑁

𝑑𝑟

�̇�𝑁
𝑑𝑟 = −𝛽𝜔𝑁

𝑑𝑟 + 𝐴√2𝛽𝑤

. (48) 

− North Channel: 

{

𝛿�̇�𝑁 = 𝑔Φ𝐸 − 𝑎𝐸Φ𝑢𝑝 + 𝐵𝑁 + 𝜇𝑁𝑎𝑁

Φ̇𝐸 = −
𝛿𝑣𝑁

𝑅
+ 𝜔𝐸

𝑑𝑟

�̇�𝐸
𝑑𝑟 = −𝛽𝜔𝐸

𝑑𝑟 + 𝐴√2𝛽𝑤

. (49) 

Here: 𝜔𝑁
𝑑𝑟 , 𝜔𝐸

𝑑𝑟 − projections of the GSP 
drift velocity on the axis of the geographical 

trihedron; А − root mean square deviation of 
random drift; β − the average frequency of 
random changes in drift; w − white noise. 

Equations (48) and (49) include two 
components: stationary (Schuler's), which 
contains terms 𝑔Φ𝐸 , 𝑔Φ𝑁 , 𝐵𝐸 , 𝐵𝑁, which are 
independent of the motion of objects and 
non-stationary, which contains members 
𝑎𝑁Φ𝑢𝑝, 𝜇𝐸𝑎𝐸 , 𝑎𝐸Φ𝑢𝑝, 𝜇𝑁𝑎𝑁 and depends on 

the movement of objects. Consider the 
stationary equations of INS errors (Bromberg 
P. V., 1979; Salychev O.S., 2012; Neusypin 
K.A., 2009): 

- East Channel: 

{

𝛿�̇�𝐸 = −𝑔Φ𝑁 + 𝐵𝐸

Φ̇𝑁 =
𝛿𝑣𝐸

𝑅
+𝜔𝑁

𝑑𝑟

�̇�𝑁
𝑑𝑟 = −𝛽𝜔𝑁

𝑑𝑟 + 𝐴√2𝛽𝑤

.       (50) 

Rewrite equation (50) in matrix form: 
𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘−1,  (51) 

where 

𝑥𝑘 = [

𝛿𝑣𝐸
Φ𝑁

𝜔𝑁
𝑑𝑟
]

𝑘

; 𝐹 = [

1 −𝑇𝑔 0
𝑇

𝑅
1 𝑇

0 0 1 − 𝑇𝛽

] ;𝑤𝑘−1 = [

𝑇𝐵𝐸
0

𝑇𝐴√2𝛽𝑤
]

𝑘−1

.
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− North Channel: 

{

𝛿�̇�𝑁 = 𝑔Φ𝐸 + 𝐵𝑁

Φ̇𝐸 = −
𝛿𝑣𝑁

𝑅
+ 𝜔𝐸

𝑑𝑟

�̇�𝐸
𝑑𝑟 = −𝛽𝜔𝐸

𝑑𝑟 + 𝐴√2𝛽𝑤

.     (52) 

Rewrite equation (52) in matrix form: 
𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘−1,  (53) 

 

where  

𝑥𝑘 = [

𝛿𝑣𝑁
Φ𝐸

𝜔𝐸
𝑑𝑟
]

𝑘

; 𝐹 = [

1 𝑇𝑔 0

−
𝑇

𝑅
1 𝑇

0 0 1 − 𝑇𝛽

] ;𝑤𝑘−1 = [

𝑇𝐵𝑁
0

𝑇𝐴√2𝛽𝑤
]

𝑘−1

.

 
Thus, linear models of INS errors in discrete form are obtained, which are used later in the 

development of algorithms. 

Conclusions             

1. Linear and nonlinear mathematical models 
of INS errors are considered. Depending on the 
requirement for accuracy and time of 
calculation of navigation parameters, different 
models of INS errors are selected. 

2. It is advisable to use a linear mathematical 
model because of its simplicity, while the 
calculation time is quite short. 

3. Currently, with the development of 
modern computing technologies, there are 

powerful onboard digital computer system 
(ODCS) that can solve complex problems in an 
acceptable time interval. Therefore, as a model 
of INS errors, you can use nonlinear models and 
thus get better results compared to the use of a 
linear model. 

The direction of further research is practical 
modeling in the MatLab environment of linear 
and nonlinear model of INS errors. 
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