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A B S T R A C T   

The extensive amount of Earth observation satellite images available brings opportunities and challenges for land 
mapping in global and regional scales. These large datasets have motivated the use of satellite image time series 
analysis coupled with machine learning techniques to produce land use and cover class maps. To be successful, 
these methods need good quality training samples, which are the most important factor for determining the 
accuracy of the results. For this reason, training samples need methods for quality control of class noise. In this 
paper, we propose a method to assess and improve the quality of satellite image time series training data. The 
method uses self-organizing maps (SOM) to produce clusters of time series and Bayesian inference to assess intra- 
cluster and inter-cluster similarity. Consistent samples of a class will be part of a neighborhood of clusters in the 
SOM map. Noisy samples will appear as outliers in the SOM. Using Bayesian inference in the SOM neighbor-
hoods, we can infer which samples are noisy. To illustrate the methods, we present a case study in a large training 
set of land use and cover classes in the Cerrado biome, Brazil. The results prove that the method is efficient to 
reduce class noise and to assess the spatio-temporal variation of satellite image time series training samples.   

1. Introduction 

Humans are changing the Earth’s environment at a fast pace. In the 
last decades, socio-economic and population growth in developing na-
tions have increased the removal of natural lands for food and energy 
production. Such fast changes in land areas resulted in greater green-
house gas emissions and biodiversity loss (Foley et al., 2005). In this 
context, mapping and monitoring of land use and cover change (LUCC) 
are essential for planning and managing natural resources (Gomez et al., 
2016). Technologies and methods of remote sensing image processing 
play a crucial role in the identification, mapping, assessment, and 
monitoring LUCC. 

In this paper, we deal with the problem of noise detection and quality 
improvement in satellite image time series (SITS). The new generation of 
open access remote sensing satellites has made petabytes of Earth 
observation (EO) data available online. From repeated orbits of remote 
sensing satellites, we obtain a sequence of images from the same area. 
After suitable calibrations, these images can be joined into a time series 
to measure change. Time series derived from EO satellite images allow 
us to detect complex underlying processes that would be difficult to 
identify using bi-temporal or other traditional change detection ap-
proaches (Pasquarella et al., 2016). Satellite image time series are being 
increasingly used land use and cover classification and change detection 

with good results (Petitjean et al., 2012; Maus et al., 2016; Inglada et al., 
2017; Picoli et al., 2018; Woodcock et al., 2020). 

Since machine learning methods have emerged as the best way to 
classify remote sensing images for providing land information (Zhang 
et al., 2003; Mountrakis et al., 2011; Belgiu and Dragut, 2016), there is a 
natural interest in using machine learning methods for SITS analysis. 
Recent results show that it is feasible to apply machine learning methods 
to SITS analysis in large areas of 100 million ha or more (Picoli et al., 
2018; Simoes et al., 2020; Parente et al., 2019; Griffiths et al., 2019). 
Experience with machine learning methods has established that the 
limiting factor in obtaining good results is the number and quality of 
training samples. Large and accurate datasets are better, no matter the 
algorithm used (Maxwell et al., 2018); increasing the training sample 
size results in better classification accuracy (Thanh Noi and Kappas, 
2018). Therefore, using machine learning for SITS analysis requires 
large and good quality training sets. 

There are two main sources of noise and errors in satellite image time 
series (Pelletier et al., 2017). One effect is feature noise, caused by clouds 
and inconsistencies in data calibration. The second effect is class noise, 
when the label assigned to the sample is wrongly attributed. Class noise 
effects are common on large datasets. In particular, interpreters tend to 
group samples with different properties in the same category. For this 
reason, one needs good methods for quality control of large training 
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datasets associated with satellite image time series. Our work thus ad-
dresses the question: How to reduce class noise in large training sets of 
satellite image time series? 

The availability of big open EO data is recent and the methods for 
SITS analysis are still maturing. For this reason, there is limited research 
dealing with the problem of how to improve the quality of large sets of 
SITS training data (Pelletier et al., 2017). In this paper, we propose a 
new method for class noise reduction in the SITS reference database. 

The proposed method creates a self-organizing map (SOM) to reduce 
image time series dimensionality. SOM presents a fundamental property 
of neighborhood topological preservation. Time series samples with 
similar patterns tend to be close in the SOM output space. Hence, the 
neighborhood can offer additional information for outlier identification 
and intra-class and inter-class variability. Based on the SOM neighbor-
hood preservation feature, we use Bayesian inference to reinforce the 
intra-class similarities evaluation and enhance the samples assessment 
quality. We present how the proposed method improves the results of 
land use and cover classification using a large SITS dataset. 

2. Related work 

Class label noise refers to mislabeling or sample instances whose la-
bels are different from the ground truth labels (Pelletier et al., 2017). 
The problem of class label noise and their effects in supervised learning 
are widely discussed in the literature of Neurocomputing, Artificial In-
telligence and Machine Learning (Zhu and Wu, 2004; Frénay and Ver-
leysen, 2013; Garcia et al., 2015). 

In Machine Learning, techniques to identify and remove label noise 
include filter approaches based on geometric, statistical and structural 
measures extracted from datasets (Zhu and Wu, 2004; Garcia et al., 
2012), based on Bayesian classifier (Sun et al., 2007) or based on clus-
tering methods (Rebbapragada and Brodley, 2007). Filters are applied 
before learning process. Differently from filters, noise tolerant variants 
of classifiers are proposed in order to be more tolerant and robust to 
noise, dealing with label noise during learning or considering label noise 
in an embedded way (Khardon and Wachman, 2007; Natarajan et al., 
2013; Frénay and Verleysen, 2013; Patrini et al., 2017). For example, 
one variant of Support Vector Machine (SVM) method has a parameter 
to be tuned during its training, called regularization or lambda, that is 
responsible for identifying misclassified samples and replacing them to 
near ones based on decision boundaries. For hyperspectral classfication, 
the use of joint sparse representation approach (Peng et al., 2019) and 
Log-Euclidean kernel-based joint sparse representation (Yang et al., 
2019) have been applied to replace the least square loss to reduce the 
effects of outliers and heterogeneous pixels. Although these methods are 
robust, they are not still free to be affected by noise (Frénay and Ver-
leysen, 2013). 

In Remote Sensing, many works have highlighted the importance of 
good quality samples to train machine learning methods in order to 
produce land use and cover maps with great accuracy from SITS analysis 
(Olofsson et al., 2014; Gomez et al., 2016; Belgiu and Dragut, 2016; 
Elmes et al., 2020). However, there are few papers that focus on the 
problem of class label noise in large sets of SITS training (Pelletier et al., 
2017). Most of the literature deals with the removal of feature noise 
focusing on cloud removal and smoothing (Hird and McDermid, 2009; 
Atzberger and Eilers, 2011; Atkinson et al., 2012). For class label noise, 
most papers evaluate the impact of mislabeled training data for land 
cover mapping using classical classifiers as SVM and Random Forest and 
show that their performance drop down for higher noise levels (Jiang 
et al., 2008; Mellor et al., 2015; Pelletier et al., 2017). There is a lack of 
solutions to identify and remove class label noise in large sets of SITS 
training samples. 

This paper addresses the class label noise problem in large sets of 
SITS training samples and presents a solution for that. We propose a 
novel method for class label noise reduction in large SITS data and 
present how it improves the quality of land use and cover samples. In 

land use and cover applications, label noise is common and occurs 
during field works mainly due to the lack of consensus in land cover 
definitions and the subjectivity of human judgment (Pelletier et al., 
2017). The proposed method is useful for land use and cover applica-
tions, helping users to identify and remove label noise in large SITS 
training datasets. 

3. Material and methods 

3.1. Study area 

Our case study uses a dataset of classes in the Cerrado biome in 
Brazil, the second largest biome in South America with an area of more 
than 2 million km2 (∼ 22% of Brazil) (see Fig. 1) (Ministry of the 
Environment, 2019). The Cerrado is a global biodiversity hotspot due of 
the abundance of endemic species; it has undergone a significant habitat 
loss in recent decades (Strassburg et al., 2017). The advance of agri-
cultural and livestock activities has caused intense land change (Soter-
roni et al., 2019). Only 8.21% of the Cerrado is legally protected by 
conservation units (Ministry of the Environment, 2019), and it is esti-
mated that 88 Mha (46%) of its natural vegetation cover has been lost 
(Strassburg et al., 2017). 

3.2. Training Samples 

The training samples were collected by ground surveys and high- 
resolution image interpretation by experts from the Brazilian National 
Institute for Space Research (INPE) team and partners. This set ranges 
from 2000 to 2017 and includes 50,160 land use and cover samples 
divided into 12 classes: (1) Dunes, (2) Fallow-Cotton, (3) Millet-Cotton, 
(4) Soy-Corn, (5) Soy-Cotton, (6) Soy-Fallow, (7) Pasture, (8) Rocky 
Savanna (in Portuguese cerrado rupestre), (9) Savanna, (10) Dense 
Woodland (in Portuguese cerradão), (11) Savanna Parkland (in Portu-
guese savana parque) and (12) Planted Forest. The class labels of natural 
classes of the Cerrado follow the work of (Ribeiro and Walter, 2008) who 
provide a taxonomy of classes for the biome. The samples number for 
each class is presented in Table 1. 

As shown in Fig. 2, each sample has a spatial location (latitude and 
longitude), an interval (start and end dates) that corresponds to an 
agricultural year, a LUCC class, and a satellite image time series for each 
band or attribute. The time series were extracted from the MODIS sensor 
(MOD13Q1 product, collection 6) of the NASA’s Terra satellite, avail-
able on a 16-day time interval with a 250 meter spatial resolution. We 
used a multidimensional time series with four MODIS bands: Normal-
ized Difference Vegetation Index (NDVI) and Enhanced Vegetation 
Index (EVI), and the original bands near-infrared (NIR) and mid-infrared 
(MIR). Fig. 2 illustrate the four satellite image time series, one for each 
attribute (NDVI, EVI, NIR, and MIR), associated with samples of Savanna 
and Soy-Cotton classes. 

Multi-dimensional time series help in distinguishing the different 
land classes. In the Cerrado biome, the dry season occurs from May to 
September and the rainy season from October to April. The variability of 
EVI values during the rainy season helps to distinguish between natural 
vegetation cover types (Liesenberg et al., 2007). For crop classes, the 
NDVI and EVI values are high during the growth of vegetation and start 
to decrease during the harvest. Spectral bands NIR and MIR also 
contribute to class discrimination as they are related to the structure of 
the leaves and soil (Adam et al., 2010). Areas with forests and wood-
lands have high values of NIR because of their leaf structures; they also 
have low MIR due to absorption of water (Adam et al., 2010). 

3.3. General Description 

Many factors lead to class noise in SITS. One of the main problems is 
the inherent variability of class signatures in space and time. When 
training data is collected over a large geographic region, natural 
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variability of vegetation phenology can result in different patterns being 
assigned to the same label. Phenological patterns can vary spatially 
across a region and are strongly correlated with climate variations 
(Suepa et al., 2016). A related issue is the limitation of crisp boundaries 
to describe the natural world. Class definition use idealized descriptions 
(e.g., ”a savanna woodland has tree cover of 50% to 90% ranging from 8 
to 15 meters in height”). However, in practice the boundaries between 
classes are fuzzy and sometimes overlap, making it hard to distinguish 
between them. Class noise can also result from labeling errors. Even 
trained analysts can make errors in class attributions. Despite the fact 
that machine learning techniques are robust to errors and in-
consistencies in the training data (Gomez et al., 2016; Pelletier et al., 
2017), quality control of training data can make a significant difference 
in the resulting maps. 

The main steps of our proposed method for quality assessment of 
satellite image time series is shown in Fig. 3. The method uses self- 
organizing maps (SOM) (Kohonen, 1990) to perform dimensionality 
reduction while preserving the topology of original datasets. Since SOM 
preserves the topological structure of neighborhoods in multiple di-
mensions, the resulting 2D map can be used as a set of clusters. Training 
samples that belong to the same class will usually be neighbors in 2D 
space. The neighbors of each neuron of a SOM map provide additional 
information on intra-class and inter-class variability. We apply Bayesian 
inference to the neighborhoods of the SOM map to improve the evalu-
ation of the quality of each time series sample. 

3.4. Using SOM for dimensionality reduction 

SOM is an unsupervised neural network that maps a high dimen-
sional input dataset to low-dimensional one, usually a 2D grid. As Fig. 4 
shows, the grid is composed by units called neurons. Each neuron has a 
weight vector, with the same dimension as the training samples. At the 
start, neurons are assigned a small random value and then trained by 
competitive learning. The algorithm computes the distances of each 
member of the training set to all neurons and finds the neuron closest to 
the input, called the best matching unit (BMU). The weights of the BMU 
and its neighbors are updated so as to preserve their similarity (Koho-
nen, 2013). This mapping and adjustment procedures is done in several 
iterations. At each step, the extent of the change in the neurons di-
minishes, until a convergence threshold is reached. The result is a 2D 
mapping of the training set, where similar elements of the input are 
mapped to the same neuron or to nearby ones. The resulting SOM grid 
combines dimensionality reduction with topological preservation. 

Fig. 1. a. Cerrado location relative to Brazil and South America. b. Land use and cover map of the Cerrado. Source: TerraClass (INPE, 2013).  

Table 1 
Input dataset.  

Class Count Frequency 

Dunes 550 1.1% 
Fallow-Cotton 630 1.26% 
Millet-Cotton 316 0.63% 
Soy-Corn 4971 9.9% 
Soy-Cotton 4124 8.22% 
Soy-Fallow 2098 4.1% 
Pasture 7206 14.4% 
Rocky Savanna 8005 16% 
Savanna 9172 18.3% 
Dense Woodland 9966 19.9% 
Savanna Parkland 2699 5.3% 
Planted Forest 423 0.84%  
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To project a multidimensional set of time series onto a SOM map, 
each neuron j is associated a random vector of weights wj = [wj1,…,wjn], 
with the same length of each time series sample x(t)i = [xt1 ,…,xtn ]. Each 
time a sample is allocated to its best matching unit (BMU) b, which is the 
neuron with the smaller distance between the time series and its vector 
of weights. To compute the distance Dj between a time series x(t)i and a 
neuron j we compared three metrics (Euclidean, Manhattan and Dy-
namic Time Warping) in a previous paper (Ferreira et al., 2019). We 
found out that Euclidean metric provides reliable and robust results. 
Therefore, our method uses Euclidean distances to find the BMU, db, as 
shown in Eq. (1) and Eq. (2). 

Dj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

(

x(t)i − wj

)2
√
√
√
√ . (1)  

db = min
{

D1,…,Dj
}
. (2)  

The next step is to update the weights of the BMU and its neighbors. The 
weights are adjusted to approximate the input vector, as shown in Eq. 
(3). 

wj = wj +α × hb,j[x(t)i − wj], (3)  

The parameter α is the learning rate and hb,j is the neighborhood func-
tion. They are updated at each iteration of SOM. The learning rate 
controls how the weight vector changes. It must be set as 0 < α < 1. The 
neighborhood function hb,j determines which neurons must be updated 
and the intensity of the readjustment of each one (Natita et al., 2016). 

SOM allows the use of multiple attributes as input data. Thus, our 
approach uses a unique vector composed of all attributes, including 
spectral bands and vegetation indexes, to represent the input samples. 
Consequently, the weight vectors are initialized with the same dimen-
sion of the input vectors. Although all attributes are put together in a 
unique vector, the distance between the input and weight vectors is 
computed separately for each attribute. Then, the distances of all attri-
butes are summed to obtain a unique distance value that is used to find 
the BMU. 

At the end of SOM training phase, each time series is associated with 
a neuron j in a 2D grid. Since the class of each time series is known, we 
assign a class to a neuron using majority voting. As an example, Fig. 5 
presents a grid with a set of neurons, the samples associated to neuron 1 
are presented. We then compute the class frequencies of the samples 
linked to the neuron. In this example, since four samples belong to Class 
1, and one to Class 2, the neuron is assigned to Class 1 with 80% 
probability and to Class 2 with 20% probability. These probabilities will 
be used in the next phase of the method. 

3.5. Using Bayesian Inference to assess the influences of the SOM 
neighborhood 

After all time series are assigned to a neuron, the SOM map is used to 
assess the quality of each element of the training set. Each neuron will be 
associated to a discrete probability distribution, as shown in Fig. 2. More 
homogeneous neurons (those with a single class of high probability) are 
composed of good quality samples. Heterogeneous neurons (those with 
two or more classes with significant probability) are likely to contain 

Fig. 2. Reference dataset.  
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noisy samples. Furthermore, we consider that the neuron class proba-
bility is not the best measure of class noise. It represents the prior 
probability P(ClassNeuron/ClassSample). In fact, what we need is the 
inverse probability P(ClassSample/ClassNeuron). To obtain this inverse 
(also called posterior) probability, we use Bayesian inference. 

Bayesian inference estimates the conditional probability f(θj,k|yj,k)

where θj,k is the random variable associated to the occurrence of a class k 
in a neuron j and yj,k is the value of probability of neuron j being of class 
k. Bayes’ Rule is given by: 

f (θj,k|yj,k)∝f (yj,k|θj,k)f (θj,k), (4)  

where f(θj,k) is the prior probability distribution of θj,k, that is, what we 

know about the samples of class k that are part of neuron j before the 
SOM mapping. The conditional probability f(yj,k|θj,k) represents the 
probability of a neuron j belonging to a class k, given the samples of class 
k that are associated to it. It is called the likelihood in Bayesian 
inference. 

Since there is not enough information to compute the probabilities 
associated to the prior f(θj,k) and the likelihood f(yj,k|θj,k), we need to 
make some assumptions. First, we consider these probabilities to be 
modeled by Gaussian distributions. Second, we consider that the prior 
f(θj,k) can be estimated using the neighborhood of neuron j. This 
assumption is based on the SOM properties of topological consistency. 
Given how SOM works, we expect similar samples to be close together in 
SOM 2D space. Such strategy of ”borrowing strength from the 

Fig. 3. A method for class noise reduction in satellite image time series reference data.  
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neighbors” is commonly used in Bayesian inference (Assuncao et al., 
2005). 

The approach is illustrated in Fig. 6, where the neuron j has a prior 
probability of 52% of belonging to class k1. Since most of its neighbors 
have high probability of belonging to the class k1, the posterior proba-
bility of the neuron j belonging to a class k1 increases due the neigh-
borhood effects. 

To estimate the prior distribution of θj,k, we consider it to be 
expressed as a Gaussian distribution: 

θj,k ∼ N(mj,k, s2
j,k). (5)  

where mj,k is the mean of the probability of values for class k and s2
j,k is 

the variance for class k. We estimate the means and variances 

Fig. 4. Self-Organizing Maps structure.  

Fig. 5. Assignment of classes to neurons.  
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considering the neighborhood of neuron j. Let Vj be the neighborhood of 
neuron j, and #(Vj) be the number of elements in Vj. We then have: 

mj,k =

∑

(i)∈Vj

yi,k

#(Vj,t)
, (6)  

s2
j,k =

∑

(i)∈Vj

[yi,k − mj,k]
2

#(Vj) − 1
. (7)  

For the likelihood f(yj,k|θj,k), we also consider a normal distribution 
given by: 

yj,k|θj,k ∼ N(θj,k, σ2
j ) (8)  

where σ2
j is an unknown hyper-parameter that controls the smoothness 

level. Given these estimates, according to Bayesian statistics the ex-
pected conditioned mean for θj,k is given by: 

E[θj,k|yj,k] =
mj,k × σ2

j + yj,k × s2
j,k

σ2
j + s2

j,k
(9)  

Rewriting the equation we have: 

E[θj,k|yj,k] =

[
s2

j,k

σ2
j + s2

j,k

]

× yj,k + [
σ2

j

σ2
j + s2

j,k
] × mj,k (10)  

When the neighborhood variance s2
j,k for class k is high, Eq. (10) gives 

more weight to the prior probability of yj,k. Otherwise, if the neighbor-
hood variance s2

j,k is small, the posterior estimate is controlled by the 
neighborhood mean mj,k. This reflects the intuition that samples in areas 
of low variance are similar, while they differ in regions of high variance. 

The value of the hyper-parameter σ2
j should be set so as to balance 

the neighborhood effects. A high value of yj,k signals a strong confidence 
that all samples in neuron j belong to class k. In general, as the value of 
yj,k increases, the smoothing σ2

j should decrease. To maintain the σ2
j 

adjusted according to the class variance of neuron j, we define σ2
j as: 

σ2
j = |0.999999 − max(yj,k)| (11) 

Fig. 7 shows how the Bayesian inference is applied in our context. 
Given the prior probabilities of neuron 3 and its neighbors, initially 
neuron 3 belongs to a Class 2, however, all neurons of its neighborhood 
belongs to Class 1. When the Bayesian inference is applied, the proba-
bility of this neuron belongs to a Class 2 decreases due to the strength of 
the neighbors. Therefore, the sample 1, labeled as Class 2, inherits the 
probability of the neuron belonging to Class 2. 

3.6. Analyzing and removing class noise 

Our method uses the probabilities calculated in the previous step to 
evaluate the quality of the samples. Using these probabilities, we iden-
tify outlier neurons as those whose classes are distinct from their 
neighborhood. Identifying outlier neurons is a key part of our method. 
Our experiments show there are two possible causes for an outlier 
neuron: (a) its samples may be mislabeled or of bad quality; (b) due to 
the different patterns of land use and cover classes in space or time. Case 
(a) arises from class noise, and the associated samples should be dis-
carded. By contrast, case (b) results from variability; thus, the associated 
samples should not be removed automatically from the dataset and need 
to be flagged for later analysis. To distinguish between these situations, 
we proposed the following rule, which include thresholds τc for the prior 
probability and τp for the posterior probability:  

1. If the prior probability is < τc then, the sample is removed from 
dataset;  

2. If the prior probability is ⩾τc and the posterior probability is ⩾τp, 
then, the sample is kept in the dataset;  

3. If the prior probability is ⩾τc and the posterior probability is < τp, the 
samples will be flagged for further inspection. 

4. Results and Discussions 

As a proof of concept, this section presents a study that evaluates the 
quality of a time series sample set associated with land use and cover 

Fig. 6. Update neuron j for class k1.  
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classes and shows how to identify class noise in this set, and thus 
improve the accuracy of the resulting classification. 

4.1. Detecting noisy and outlier samples 

In what follows, we show how to apply our method to analyze and 
improve sample quality. Fig. 8 shows the SOM grid map generated for 

Fig. 7. Applying Bayesian Inference in neuron 3.  

Fig. 8. SOM grid.  
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the training data. The parameters used in SOM are: grid size = 20× 20, 
learning rate = (0.50,0.01), 100 iterations, and Euclidean distance for 
finding the BMU. Each sample is associated with its BMU neuron; after 
that, each neuron is labeled with its majority class. 

To define the SOM grid size, (Vesanto and Alhoniemi, 2000) suggest 
about 5 ∗

̅̅̅̅
N

√
neurons, where N is the number of observations or 

samples. However, based on empirical tests, we got a good result using 
around 5 ∗

̅̅̅
N

√

2 neurons. Regarding learning rate, too small values can 
lead to a twisted maps and big values to a non ordered map (Tan and 
George, 2004). We suggest using a decreasing learning rate, starting 
with 0.5 to 0.1. The number of iterations is related to the convergence of 
SOM, that is, when additional iterations do not update the weight vec-
tors. We tested our dataset and reached the convergence with 100 it-
erations. To select the distance measure, we evaluated three metrics and 
concluded that Euclidean and Manhattan are more accurate than Dy-
namic Time Warping for image time series clustering in land use and 
cover application (Ferreira et al., 2019). 

Because of the variability among time series of the same land use and 
cover class, samples of the same class can be mapped into different 
neurons. However, due to the SOM properties, time series samples of the 
same class are expected to be similar and so neighbors in the output 
map. The map also contains potentially mislabeled and outlier samples. 
Mislabeled samples are those that have been mapped to neurons whose 
majority class is different from their own label. Outlier neurons are those 
whose majority class is different from that of their neighbors. Our hy-
pothesis is that mislabeled samples and outlier neurons are indicators of 
class noise. Thus, by examining them and identifying incorrect samples, 
we can improve the quality of the training set. 

Based on the rules presented in Section 2 to identify good samples 
and class noise, we set the threshold as 60% to both prior and posterior 
probabilities to decide if each sample is to be kept or removed from the 
training set. Table 2 shows the percentage of samples by class that have 
been kept, removed, or flagged for analysis. 

As shown in Table 2, our method identifies noisy samples. Some 
should be removed, and others need to be analyzed to decide whether to 
keep or remove them. There are classes with large percentage of noisy 
samples, such as Millet-Cotton. Other classes have many samples flagged 
for further analysis, such as Planted Forest and Fallow-Cotton. Noisy 
samples can arise due to high intra-class variability or due to confusion 
between class signatures. Whatever the case, the SOM-based analysis 
helps to identify them. The SOM-based method also allows measuring 
confusion between classes, as shown in Fig. 9. As the figure shows, 
almost 20% of the Planted Forest samples are confused with those from 
the Dense Woodland class. Also, 19% of the Soy-Fallow samples have 
been mixed with samples from the Soy-Corn class. Such information 
helps experts to have a detailed view of class noise in their samples. 

The confusion between classes in the Cerrado arises because its 
natural vegetation is a continuous mix of grasslands and trees. The 
boundaries between classes such as Savanna Parkland, Savanna, Rocky 
Savanna are fuzzy and there are many transitional regions. According to 

(Ribeiro and Walter, 2008), areas of Savanna have trees whose height is 
between 3 and 8 meters and cover range from 20% to 50% of the area. 
Savanna Parkland areas have trees between 3 and 6 meters tall and the 
tree cover between 5% and 20% of the area. Rocky-Savannas occurs in 
regions with rock outcrops, where the tree cover ranges from 5% to 20% 
and the trees are between 2 and 4 meters tall. Dense Woodlands have a 
continuous canopy and the tree cover range from 50% to 90%, and trees 
between 7 and 15 meters of height (Ribeiro and Walter, 2008). In a 
complex biome such as the Cerrado, these labels are approximations of a 
continuous gradient of changes in the tree and grassland mix (Ribeiro 
and Tabarelli, 2002). Thus, some degree of confusion between the nat-
ural vegetation classes in the Cerrado biome is to be expected. 

Outside transitions areas, one can distinguish these classes using 
vegetation indices, Figs. 10a and b. The values of NDVI, EVI and NIR for 
samples of Dense Woodlands are higher than for samples of Savanna. 
Samples of Savanna Parkland and Rocky Savanna classes have NDVI 
values lower than Savanna and Dense-Woodland. Although the NDVI 
values for Savanna Parkland and Rocky-Savanna can be similar, the EVI 
and NIR values for Savanna Parkland are more constant during the year 
than those of Rocky-Savanna (Figs. 10c and d). In our dataset, the 
samples of Savanna Parkland are located close to riverbanks. Therefore 
the vegetation does not have significant leaf loss during the dry season 
(Liesenberg et al., 2007). This explains the constant values of EVI and 
NIR during the year. The Rocky-Savanna and Savanna Parkland classes 
are more difficult to confuse with Dense-Woodland class because of the 
different NDVI values. This is confirmed in the SOM map (Fig. 8), where 
the Dense Woodland neurons are far from Rocky Savanna and Savanna 
Parkland ones. Therefore, in general, these classes show different time 
series signals. 

4.2. Identifying mislabeled samples 

We now consider how our method helps to identify wrongly labeled 
samples. Fig. 11 shows the NDVI signature of two different clusters of 
samples of Rocky-Savanna class identified in the SOM map. In our 
assessment, the time series samples presented in Fig. 11a are consistent 
with the expected response of the Rocky Savanna class. The posterior 
probability of these samples belonging to the Rocky Savanna class is 
100%. By contrast, the samples presented in Fig. 11b were removed 
from the dataset; their posterior probability of belonging to the Rocky 
Savanna class is 18.5%. These samples have been actually mapped to 
neuron whose label is Dense Woodland. These samples have likely been 
mislabeled. 

We now consider the sources of confusion between natural vegeta-
tion and crops and between crop samples. In general, as seen in Fig. 9, 
natural classes and crop classes do not mix. There are exceptions, such as 
the confusion between Planted Forest and Dense Woodland samples. 
These classes have similar time series patterns due to the coarse spatial 
resolution of MODIS. As for confusion between crop samples, we iden-
tified many problems with Millet-Cotton and Fallow-Cotton samples (see 
Table 2). Analyzing the SOM clusters, we found many mislabeled sam-
ples. Fig. 12 shows two sets of NDVI values of Millet-Cotton samples. 
Clearly, samples shown in Fig. 12a are correct, while those in Fig. 12b 
are not. The latter set of samples had a posterior probability of 20% of 
belonging to the Millet-Cotton class. They were removed from the 
training set. 

4.3. Outlier Analysis 

This subsection considers the case of outliers on the SOM maps. 
Those outliers do not necessarily result from errors in labeling, but are 
more likely to arise from variability of the ground data. Fig. 13 shows 
that most patterns of the Soy-Corn class are neighbors in the SOM map. 
However, there is an outlier neuron (Neuron 14) of the same class. 
Comparing one of the neurons of the Soy-Corn neighborhood (Neuron 
240) with Neuron 14, we find out Neuron 240 has a prior and posterior 

Table 2 
Result of class noise detection.  

Samples by class Keep Remove Flagged 

Savanna Parkland 89.67% 4.63% 5.70% 
Dense Woodland 86.70% 8.04% 5.24% 
Savanna 88.25% 9.33% 2.40% 
Rocky Savanna 86.55% 5.82% 7.62% 
Dunes 100% - - 
Fallow-Cotton - 24.76% 75.24% 
Millet-Cotton - 67.40% 32.60% 
Pasture 85.89% 11.89% 2.22% 
Planted Forest - 19.85% 80.15% 
Soy-Corn 86.70% 9.31% 3.98% 
Soy-Cotton 94.23% 4.58% 1.19% 
Soy-Fallow 58.19% 29.93% 11.87%  
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probabilities of 96% and a and 91%. By contrast, Neuron 14 has prior 
and posterior probabilities of 81% and 39% and has been flagged for 
analysis. Looking in more detail in their spatial location, we discover 
that the samples mapped to Neuron 14 come from different areas that 
samples mapped to Neuron 240. Neuron 14 samples comes from the 
Brazilian states of Tocantins and Maranhão (about 7◦S), while the 
cluster of samples close to Neuron 240 come from the state of Mato 
Grosso (about 12◦S). The climatological variations lead the agricultural 
calendar to be different in these two areas. For this reason, the spectral 
response over time of the same class is different in the two areas. Fig. 13 
displays the temporal signatures of the samples in both regions. These 
signatures show that the corn cycle is shorter in Tocantins and Maranhão 
than in Mato Grosso. This example illustrates the value of detecting and 
analysis outliers in the training set. 

Table 3 presents the percentage of samples by class that were 
removed from the input dataset after the outlier analysis. All samples 
from the Savanna Parkland, Savanna, Planted Forest, Soy-Corn, and Soy- 
Cotton classes were kept in the dataset. Other classes analyzed had 
samples removed following the analysis. The Fallow-Cotton samples has 
the most noise. Given the thresholds set to evaluate sample quality, 
24.8% of Fallow-Cotton samples were automatically removed from the 
dataset and 76.2% flagged for analysis, as shown in Table 2. After 
analysis, a further 56.2% of Fallow-Cotton samples were removed from 
the dataset, totaling 81.10% of samples removed. The input dataset 
contains 50,160 samples, whereas the filtered dataset includes 44,040. 
This means that 14% of the samples were removed due to class noise. 

4.4. Validation 

To assess our proposed methods, we did a 5-fold cross-validation test, 
comparing the original training set (50,160 samples) with the filtered set 
(44,040 samples). We used a Random Forest (RF) algorithm due to its 
robustness and proven results on handling big data (Belgiu and Dragut, 
2016). The number of trees used in our study was 2000, and the split rule 
for each node was the Gini index. The overall accuracy for the original 
dataset and the filtered dataset were respectively 94.3% and 98.4%. 
Table 4 presents producer’s and user’s accuracy for both datasets. Pro-
ducer’s accuracy improved for all classes; the largest increase occurred 
in noisy classes such as Fallow-Cotton and Millet-Cotton. The results 
corroborate our initial hypothesis that SOM-based clustering combined 
with Bayesian inference can improve the quality of large training sam-
ples of satellite image time series. 

5. Conclusion 

Machine learning methods are now established as a useful technique 
for remote sensing image analysis. Despite the well-known fact that the 
quality of the training data is a key factor on the accuracy of the 
resulting maps, the literature on methods for detecting and removing 
class noise in SITS training sets is limited. To contribute to this limita-
tion, this paper proposed a new technique. The proposed method uses 
the SOM neural network to group similar samples in a 2D map for 
dimensionality reduction. Each sample is mapped to a neuron on the 2D 

Fig. 9. Confusion between the classes.  
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SOM map. In this way, a set of time series samples with similar patterns 
can be represented by a neuron’s weight vector, as shown in Fig. 8. The 
neurons are then labeled with their majority class. Using the SOM 
property of topological preservation property, the algorithm uses 
Bayesian inference to evaluate the classes of the neuron neighborhoods 
through the probabilities provided by the labelling processing. As a 
result, the method identifies both mislabeled samples and outliers that 
are flagged to further investigation, as shown in Fig. 13. 

The proposed refinement process of SITS training data improves the 
accuracy of the classification results. In the case study described in this 
paper, the mislabeled samples and part of the outliers identified by the 
proposed method were removed from the training set. Then, two 

classifications were performed, one using the original SITS training set 
and the other using the filtered set. The results demonstrate the positive 
impact on the overall classification accuracy. Although the class noise 
removal adds an extra cost to the entire classification process, we believe 
that it is essential to improve the accuracy of classified maps using SITS 
analysis mainly for large areas. 

One of the challenges of using machine learning techniques for 
analyzing large areas is the adequacy of sample data to the natural 
variations of classes in space and time. In our case study, each time series 
has a spatial location and a time period. Since our method associates 
different clusters of the same class in the SOM map to such space–time 
variations, it helps to deal with the problem of selecting good training 

Fig. 10. Time series of ground samples for natural vegetation classes in the Cerrado Biome.  

Fig. 11. NDVI time series samples labeled as Rocky-Savanna.  
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samples over large areas. 
Despite the usefulness of our proposed method, organizing a good 

quality training datasetremains one of the toughest problems in remote 
sensing data analysis. Natural land cover occurs in a continuum in 
spacetime. Transitions between ecosystems are rarely abrupt. Complex 

biomes such as the Brazilian Cerrado contain subtle mixtures of trees 
and grasslands which defy crisp class definitions. As from pasture and 
croplands, agricultural practices vary from region to region and from 
year to year. For this reason, our method is an aid but not a substitute for 
in-depth local understanding of ecosystem behavior. Despite recent 

Fig. 12. NDVI time series samples labeled as Millet-Cotton.  

Fig. 13. Different patterns in the Soy-Fallow class because of the agricultural calendar in different regions.  
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progress in machine learning, local knowledge continues to be irre-
placeable when using remote sensing data for land use and cover 
classification. 

Although we present in this paper a case study in land use and cover 
classification, the proposed method is generic for class noise identifi-
cation in any kind of time series reference database. Broadly, the method 
returns the probability of the time series t labeled as class k actually 
belonging to the class k, based on similarities among time series. Fig. 3 
describes, in general, the method steps for class noise reduction in time 
series reference data. 

6. Code and data availability 

The proposed method was implemented in the R package sits (Sat-
ellite Image Time Series), available on GitHub at https://github.com/e- 
sensing/sits. Besides the sample quality assessment, the sits package 
provides methods for visualization, clustering and classification of sat-
ellite image time series. The code used in this manuscript to generate the 
results presented in Section 3 is provided under the GNU General Public 
License v3.0 and is available in Santos (2020). The 50,160 samples used 
in Section 3 are also available in Santos (2020). 
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