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1 Introduction

Nuclear reactors play an important role in our modern society. In some coun-
tries, such as France the major part of electricity is produced from nuclear
power. Over the last decades, we have gathered a great deal of knowledge
and experience in designing nuclear reactors, but we must remember that
nuclear reactors are very complex, therefore it is important to sustain this
knowledge, and train professionals with the necessary understanding to op-
erate or build new reactors. This lecture note is intended for students and
professional with a basic understanding of nuclear power generation, but with
no prior or little knowledge of nuclear reactor physics, who either want to
gain a basic understanding of the principles of nuclear reactor theory or are
motivated to follow more advanced studies in the future.

The complexity of nuclear reactors arises from the fact that there are
several phenomena happening in a nuclear reactor at different scales, which
interplay: heat production from nuclear fission, heat transfer and fluid dy-
namics. In some context reactor physics can refer to all of these phenomena,
however traditionally reactor physics is meant to be limited to describing the
physics within the reactor core, where the nuclear fuel and the coolant can
be found and intends to describe the transport of neutrons within the core.
This text is also limited to studying the reactor core, and it intends to pro-
vide an introductory, often phenomenological description to convey the main
concepts, and to serve as a good basis for future advanced studies. Figure 1
stand here to highlight that indeed from the whole system of a nuclear power
plant, our interest is during the text only the neutron physics happening
inside the reactor vessel: within the nuclear fuel, the coolant material and
the control elements.

The aim of this lecture note and the related datalab exercises is to teach
through (hopefully) pedagogical examples which can be implemented as small
programs. It is however important to highlight that this text is a lecture note,
it does not intend to cover everything and include every important derivation,
only the ones said during the lectures. The note had two intentions: to
provide scientific figures created with python, so the students can have access
to the source code of the figures and to give a summary of the lectures in order
to aid the lecturer during teaching. However a student reading this text will
need to review further literature to grasp the subject. The following books
can provide great help:
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• Duderstadt, James J.: Nuclear reactor analysis (referred to as D&H
during the note)

• Lewis, E. E.: Fundamentals of nuclear reactor physics

• Lamarsh, John R.: Introduction to Nuclear Reactor theory

• Bell, George and Glasstone, Samuel: Nuclear Reactor Theory (referred
to as B&G during the note)

• W. Stacey: Nuclear reactor physics

• C. Demaziere: Physics of nuclear reactors (lecture notes)

• Z. Szatmary: Introduction to reactor physics (although only for Hun-
garian speakers)

In fact during the writing of these notes we have heavily relied on these
books. Mostly we have tried to follow D& H, but we have used other books,
where they provided a more illustrative explanation or derivation. Some
parts of these lecture notes will therefore show some similarities to these
books. We will however not include a reference for every single equation in
the notes, nevertheless at some point we will point out the right book for
further reading.

1.1 Nuclear reactors

As we said earlier the reader of these notes is expected to have a basic
familiarity of nuclear plants and reactors. If that is not the case, please read
for example D& H Chapter 3-II, here we just provide a brief introduction to
introduce the terminology used in this text.

As said earlier the focus of this text is on the heart of the nuclear power
plant: the reactor core. Also, the main focus of this text is going to be Light
Water Reactors (LWR), since to this reactor type is the most widespread.
The reactor core of an LWR is located in a pressure vessel and is built of
nuclear fuel, coolant channels, structural and control elements. Typically we
also require some sort of monitoring of the core, therefore usually various
instrumentation systems are placed in the core. The fuel is made of uranium
in the ceramic form of uranium-dioxide (often referred to as UOX, or UO2).
As we will see later, the uranium might be enriched: the weight fraction
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Figure 1: The part of the power plant which is of interest for the subject of this lecture
note: the reactor core.

of the fissile isotope uranium-235 is higher than in natural uranium. The
UOX material is formed into small cylindrical pellets, which are placed in
a metallic, often zirconium tube, the cladding. The tube is filled usually
with an inert gas, and sealed. This tube is called a fuel pin or fuel rod.
The fuel pins are then placed in a bundle or assembly. Western type fuel
assemblies are usually rectangular lattices, whereas eastern type assemblies
have a hexagonal lattice. Figure 2 shows the layout of a 17x17 pressurized
water reactor (PWR) assembly, which contains 25 control rod positions in
guide tubes. The fuel assemblies are arranged into a lattice (again depending
on the type of the reactor this might be rectangular or hexagonal) which
makes up the core, with a close to cylindrical shape. In some reactors the
core is surrounded by non-fuel assemblies (reflectors and shielding), or fuel
elements which have special use (for example breeding blankets). Later we
will discuss these in more detail. Table 1 summarizes the typical sizes of a
PWR reactor.
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Figure 2: A 17x17 PWR assembly lattice (darker positions highlight the control rods).

Table 1: Typical size of a PWR core

Core diameter 3-4 meters
Core height 4 meters

Assembly width 20 cm
Pin diameter 1.0 cm

Pin pitch 1.2 cm

1.2 Reactor physics

As mentioned before, the main subject of this text is reactor physics. How-
ever, even this can be split into further parts:

• Neutronics: to determine the distribution of neutrons in time, in energy,
and in space for a given geometry and material configuration.

• Depletion or burnup studies: Investigate how the material composition
changes in the reactor core over time: how much fissile material is lost,
how much transuranic elements and fission products are created.

• Experimental reactor physics: Provide measurement methods which
can be used to determine various quantities important during reactor
operation.
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In this text we will mainly focus on neutronics, and touch upon depletion.
We will first introduce the relevant part of nuclear physics in order to describe
reactions which might happen with neutrons traveling in a reactor. Then we
will discuss how a neutron looses its kinetic energy in a nuclear reactor (this
is the subject of slowing down), and in fact at the end of its life it reaches
thermal energies (this is the subject of thermalization). Then we will derive
a neutron transport equation describing the balance between the production
and loss of neutrons in the reactor. Then we will investigate how the number
of neutrons changes in the reactor over time if we increase the probability of
neutron survival (for example by removing control rods). And finally we will
leave behind the subject of neutronics, and study how the nuclear fuel evolves
due to long-term irradiation and how this affects the neutron transport.

It must however mentioned, that the book is also a good introduction to
neutron physics in general, that is a large portion of the text (on basic nuclear
physics, neutron slowing down and neutron transport, neutron activation)
is applicable even in non-multiplying media, which has practical relevance
outside of the nuclear industry.

1.3 History of reactor physics

Introducing the history of a subject before the subject has always the risk
that parts are not going to be clear. Nevertheless, we have decided to outline
first the history of reactor physics first, because it is both exciting pedagogic
to see how great minds came up with ideas which at the end let to the
widespread use of nuclear reactors.
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1895 Wilhelm Röntgen discovers X-rays while testing various types of
vacuum tubes.

1896 Henri Becquerel noticed that uranium ore emits similar radiation.
1898 Marie and Pierre Curie shows that in fact three types of radiation

is emitted. They discover radioactivity.
1911 Rutherford discovers the nucleus while investigating the scattering

of alpha-rays. But the discovery makes it difficult to explain the
mass of the nucleus.

1932 James Chadwick discovers the neutron. He uses the reaction He-4+
Be-9 → C-12 + n. Such reaction needs energetic alpha particles.
With his discovery finally the nucleus mass and beta-decay can be
explained.1

Even more important it was discovered that the neutral particle
can penetrate the nucleus therefore it became possible to convert it.
The study of nuclear reactions, modern alchemy has began (mostly
with a PoBe source, where the alpha-decaying Polonium is mixed
with Beryllium).

1934 Frederic Joliot-Curie and Irene Curie noticed after the absorption
of a neutron, a beta-decay might follow (induced radioactivity), and
the element is transmuted into an other element.

1One might wonder why Beryllium was used in such experiments. One needed a nucleus
with small charge, so α particles can get close. Hydrogen and Helium are gases, which
makes it difficult to fabricate a target, whereas Lithium is rather dangerous to work with,
therefore scientist at the time were left with Beryllium as the next candidate in the periodic
system.
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1930s Enrico Fermi’s team systematically tried to transmutation reac-
tions for several isotopes. They found that upon performing the
neutron activation experiments under water, the induced radioac-
tivity is much higher. Fermi thus started to develop the theory of
neutron slowing down and found that, the initially fast neutrons
scatter on the hydrogen atoms, and they reach thermal energy
(when the speed is comparable to that of thermal motion). They
also found that by activating uranium they can produce elements
heavier than the ones existing in nature: neptunium and pluto-
nium.

1938 Fermi receives the Nobel for this work.
1938 When Otto Hahn and Fritz Strassmann repeated the activation

experiments of uranium they observed several beta decays, which
couldn’t be explained by the transuranic element. From the reac-
tion products they managed to separate Barium. Then Lisa Meit-
ner realized that uranium had to undergo fission, and infact it is
the fission products which emit the unaccounted beta-radiation.

1933 (Note that we jumped back in time!) Leo Szilard comes up with
the idea of a chain reaction: if the product of neutron activation
produces new neutrons these neutrons could be used for further
reactions. He patented the idea of a nuclear reactor, already before
he even knew about fission. He assumed that there has to be
a reaction which results in a neutron which can self-sustain the
reaction. And with the discovery of fission this became obvious.
Also that we can produce a lot of energy in this way.
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1939 Leo Szilard becomes conscious about the possibility of building a
nuclear bomb and convinces Albert Einstein to write a letter to
President Roosevelt about the potential of a nuclear bomb, and the
threat of Germany already developing it (after all they discovered
fission). They stopped all publications on the subject. The Man-
hattan Project started, during which they realized that there are
two ways of making such a bomb: with uranium-235 or plutonium-
239. The first option needed separation from U-238 (since in nature
the weight fraction of uranium-235 is low), which proved to be dif-
ficult at that time (the separation couldn’t be based on chemistry,
had to be based on the slight difference in mass). The second option
required the neutron activation of uranium-238. To carry out such
reactions at scale, a large amount of neutrons were needed, which
couldn’t be produced with the typical neutron sources of the time.
This required a chain reactor.

1942 Chicago-pile. By placing UO2 rods (made of natural uranium)
in hole of graphite bricks the first controlled chain reaction was
achieved. It gave a proof of concept for chain reaction and also
allowed the discovery of that there are enough delayed neutrons,
thus the chain reaction can be controlled.

1944 The Hanford reactor was built for plutonium production. Chem-
ical reprocessing methods were used to separate plutonium from
uranium.

1945 Was a sad year of reactor physics.
1951 EBR-1 fast reactor was built and produced electricity.
1955 Obninsk Nuclear Power Plant, first nuclear station was built and

produced a whooping 6MW power.
And then the era of nuclear power stations started, building hundreds of

reactors both for energy production and for research.

1.4 Programming with python

Of course as the name of the course shows ”with Python” is appended to re-
actor physics. Reactor physics in practice requires a lot of computations from
numerical solutions of differential equations through handling large amount
of nuclear data till processing measured results. Our experience is that the
best way to learn reactor physics is by applying it in practice, therefore it
was decided that the lectures will be complemented with 11 datalabs, where
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students can develop simple simulations of neutron transport, perform data
analysis, and also use more advanced Monte Carlo codes. It was decided
that students will use Python and its mainstream libraries for these tasks.
The main reason is that Python has a very simple syntax, thus students can
quickly learn it. Also, it was important that the simulations we will develop
are intended to help the understanding of reactor physics, thus it would not
have been ideal if the complexities of some programming language hindered
us. We acknowledge that for advanced reactor physics, where computational
efficiency and time is crucial, Python might not be the preferred choice.

Nevertheless, in this lecture note it is not going to be apparent that
this course is a ”python” course. The only place where Python occurs in the
notes is behind the scenes: the scientific figures were created with Matplotlib,
the plotting library of Python, with the aim that the source code can be
distributed along the figures, to be transparent and to help understanding
the data behind the figures.

We strongly hope that students performing all the datalabs while reading
the lectures will become proficient users of Python. Nevertheless, we have to
emphasize that the main goal of having programming exercises during the
datalabs is to help students understand the basic theory of nuclear reactors
and neutron transport.
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2 Basics of Nuclear Physics

The main purpose of building nuclear reactors is to extract the energy from
nuclear fission events. In fission events heavy nuclei split into two or more
lighter nuclei followed by the release of energy and radiation. Fission can
occur spontaneously, however for most nuclides this is a rare event. An other
possibility is to induce fission, and the most practical approach is to bombard
the nucleus with a neutral particle which doesn’t feel the electric charge of the
nucleus. Therefore, most of the currently operating nuclear reactors utilize
the neutron induced fission of uranium-235 and of other fissile nuclides (eg.
plutonium-239):

neutron + 235U→ fission products + neutron(s) + energy

From this reaction energy is released in the form of kinetic energy of the
products (which heats up the surrounding by bouncing on other atoms) and
radiation. It is also apparent that the neutrons emerging from the reaction
can induce further fission events, hence it is possible to sustain a chain reac-
tion in the reactor core. Neutrons may however enter reactions other than
fission, or leave the reactor core without participating in any reaction rel-
evant to the chain reaction within the core. Therefore, it is important to
balance the number of neutrons initiating fission events and the number of
neutrons lost for the chain reaction. Designing the neutron economy of a
nuclear reactor is one of the primary subjects of nuclear reactor physics or
neutronics.

In order to study the neutron induced chain reaction in a given reactor
core we have to understand the physics of nuclear reactions. Since in most
of the reactor cores there is a large number of neutrons (10-100 millions per
cm3), usually the description of the average behavior of neutrons is adequate.
Thus we will deterministic equations to describe the neutron population of
the system. We will however see the most accurate study can performed
with a stochastic approach based on Monte Carlo particle transport meth-
ods. Nevertheless, both of these approaches require the knowledge of the
probabilities of neutron-nuclear reactions occurring, which is a subject of
nuclear physics

Hence it is impossible to avoid reviewing the basics of nuclear physics
which are relevant to reactor physics. This section is just a brief review of
the subject, cherry picking the most important concepts of nuclear reactions.
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The two types of such reactions are spontaneous disintegration processes (ie.
radioactive decay) and collision reactions. As we will see later both type of
reactions have an important role in the behavior of reactor cores.

Nevertheless, some of these concepts provide an excellent opportunity to
write simple data analysis scripts and programs in Python.

2.1 Nuclides and the binding energy

An atom is made of a nucleus and electrons zooming around the nucleus.
And the atomic nucleus is made of protons and neutrons. The number of
protons is denoted by the atomic number Z, or by the chemical symbol.
The proton number usually influences what chemical reactions the atom will
enter. The number of neutrons is denoted by N , and the sum of the neutron
and proton number is the mass number A = N + Z. The various neutron-
proton configurations are called nuclides, and the nuclei having the same
number of protons but different number of neutrons is called an isotope.

Generally we will refer to nuclides as A
ZX or simply AX since the element

symbol already describes the proton number. Sometimes you might even find
the notation XA. (Eg. 239

94 Pu, 239Pu, Pu239).
Nuclei can be in excited states referred to as A

ZX∗. When the excited
state is long lived (more than the fraction of seconds), we refer to them as
metastable states Am

Z X.
There is an attractive force between nucleons in the nucleus, which keeps

them together. This force presents an associated potential energy. Therefore,
the separation of the nucleons from each other requires energy. This energy

is called the binding energy (BE = |Ep| =
∞∫
−∞

Fdr). Due to this the energy

of the nucleus is less then the energy of its constituent nucleons. And this is
also true for the mass.

M(A,Z) < Nmn + Zmp

where M(A,Z) is the mass of the nucleus, mp and mn is the mass of the
proton and the neutron. In fact the mass defect can be used to define the
binding energy:

BE = ∆mc2 = [Nmn + Zmp −M(A,Z)]c2
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One has to notice that this mass defect is not unique to the nuclear force,
however the nuclear force is large enough that the defect is not negligible
(MeV whereas for eg. the electronic binding the energy is in the order of
electron volts).

We can then calculate the average binding energy per nucleon:

ε =
BE

A
=

1

A
[Nmn + Zmp −M(A,Z)]c2

Figure 3 shows the average binding energy for some nuclides. We can
notice that the 4He is a more tightly bond system than the nuclides around
it (see later α-decay). Also we can notice that the curve has a maximum at
62Ni2. We can already notice at this point that by splitting heavier nuclei,
or by fusioning lighter nuclei we can release energy.

Figure 3: Binding energy per nucleon for selected nuclides. 62Ni is the most bounded
nuclide.

The average binding energy can be approximated with the semi-empirical
Bethe–Weizsäcker formula, which is based on the liquid drop model of the
nucleus and has various, similar forms in literature with slightly different
values. Here we use one from [Anglart]

2Some textbooks note that iron-56 is the most stable nuclide and it has the highest
binding energy per nucleon. The second half of this statement is a common misconcep-
tion. The first part is might be true. For more information: https://nuclidecalendar.
github.io/days/dec16.html
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BE(A,Z) = 15.75A− 17.8A2/3− 94.8
(A/2− Z)2

A
− 0.71Z2A−1/3 + 34δA−3/4

(1)
where δ = 1 for even-even nuclei, δ = −1 for odd-odd nuclei and δ = 0

otherwise. The constants are in MeV. The relevance of this formula is that
it gives some heuristic explanation of the binding energy.

• 1st, volume term: inside the ”drop” all nucleons have more neighbors,
therefore it is bonded to more nucleons. If all nucleons would be inside
the drop they would feel the force of all other nucleons, therefore the
binding energy would increase with ∝ A

• 2nd: surface term: nucleons on the surface will have less neighbors,
therefore they experience lower binding energy. The number of such
nucleons is proportional to the surface ∝ R2 = A2/3

• 3rd: Symmetry term: due to the Pauli principle one energy level can be
occupied only by two particles (with different spins), thus a different
number of neutrons and protons result in excess energy. In fact if
there was not the repulsive interaction of protons, ideally a nucleon
would have the same number of protons and neutrons. The number of
neutrons occupying higher levels than the protons is N−Z, and also the
amount of excess energy of neutrons is proportional to N−Z. And the
distance of the energy levels is∝ 1/A. For further explanation see [John
Lilley: Nuclear Physics]. In total this energy is ∝ (N−Z)2 = (A−2Z)2.

• 4th, Coulomb term: protons will repel each other due to having the
same electric charge ∝ Z2

R
= Z2A−1/3

• 5th, pairing term: Empirical observations show that nuclei having even
number of protons or neutrons are more stable, especially if both are
even. The reason is that similar nucleons like to be in pairs (this cannot
be explained by the liquid drop model.

2.2 Nuclear reactions

As said before there are two type of nuclear reactions important in the context
of reactor physics:
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• Spontaneous disintegration reactions (ie. decay reactions)

• Collision reactions

2.2.1 Decay reactions

In decay processes the nucleus undergoes a transformation spontaneously
which results in the creation of an other nuclide. The process is accompanied
by the emission of particles. The most common decay processes in nature
are:

• α-decay: a He nucleus is emitted for heavier nuclides (when the re-
pulsive Coulomb force overcomes the attractive nuclear force) A

ZX →
A−4
Z−2Y + 4

2He +Q.

• β−-decay: a neutron in the nucleus is transformed into a proton and
an electron: A

ZX→ A
Z+1Y + e− + ν̄e +Q

• β+-decay: a proton in the nucleus is transformed into a neutron and a
positron: A

ZX→ A
Z−1Y + e+ + νe +Q

• γ-decay: when the nucleus is in an excited state it can release energy
in the form of γ photons to reach a lower energy level or the ground
state. The energy of the gamma photons is characteristic to the nuclide.
A
ZX∗ → A

ZX + γ

• neutron emission: as we will see later in the course some nuclides emit
a neutron following a β-decay. This process has a great importance in
reactor physics.

in the decay some energy in the form of kinetic energy (Q) is released. The
released energy can be calculated from the binding energy of the original
nuclide and the products.
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Exercise

226
88 Ra→ 222

86 Rn + 4
2He

The binding energies (in the datalab we will calculate the ε average
binding energies
BE(226

88 Ra) = 7.66196 · 226 = 1731.60296MeV
BE(222

86 Rn) = 7.69449 · 222 = 1708.17678MeV
BE(4

2He) = 7.073922 · 4 = 28.295688MeV
Thus the total energy released

Q = [BE(222
86 Rn) +BE(4

2He)]−BE(226
88 Ra) = 4.8695MeV

which is an enormous amount of energy. Let’s consider that 1kg of
226
88 Ra decays. The number of nuclei is
N = mNA

M
= 2.6 · 1024

where NA stands for Avogadro’s number, thus the total released energy
would be
E = NQ = 2028GJ
Of course as we will see soon, this energy is released over thousands of
years.

The fundamental law of decay is that (based on observations) the prob-
ability of the decay of a nucleus in a given time interval is constant. This
means that the chance to decay does not depend on the age of the nucleus.
In other words, if we have more nuclei, the rate of decays (or the change in
the number of nuclei in time) is proportional to the number of nuclei:

dN

dt
= −λN(t) (2)

where the decay constant λ [s−1] is characteristic to the type of nuclide and
where N(t) is the number of nuclei. However often it is more practical to
write up such equation for the number density (in #/cm3). The solution to
this equation is

N(t) = N0e
−λt (3)

with some initial number of nuclei (or number density) N0 = N(t = 0).
Therefore rate or as often called the activity is
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Figure 4: Decay of parent and daughter nuclide (Random notes a case when the decay
times are sampled from an exponential distribution). Top: T1/2,P > T1/2,D. Bottom :
T1/2,P << T1/2,D

Rate = A(t) = λN(t) = λN0e
−λt (4)

The activity has its units in s−1 = Bq, however in some older texts one
can encounter the unit Ci = 3.7 · 1010 Bq. The Ci is defined so that 1 Ci
is the activity of 1g of Radium. We can clearly see that the activity of a
sample depends both on the type of nuclides in the sample (due to the decay
constant) and also on the quantity of radionuclides in the sample.

Although these equations are deterministic, however as said before ra-
dioactive decay is a stochastic process. An other way to interpret these
equations is to consider that the probability of decay during the time inter-
val (t, t+ dt) for a given nucleus is

p(t)dt = λe−λtdt (5)

Therefore the time measured from some starting moment, when a single
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nucleus disintegrates follows an exponential distribution. Fig. 4 shows the
decay of nuclei over time both by solving the problem with a deterministic
approach (ie. by illustrating Eq. (3)) and with a stochastic approach (ie.
when decay times are sampled from an exponential distribution.

Although the life-time of a radioactive nuclei is stochastic, but we can
calculate the average life-time.

t̄ =

∞∫
0

t · p(t)dt =
1

λ
(6)

However in practice, usually a more convenient quantity, called half-life
is defined as the time while the number of nuclei (or the number density)
becomes half of its initial value:

N(T1/2) =
N0

2
= N0e

−λT1/2 (7)

from where we can express the half-life with the decay constant

T1/2 =
ln(2)

λ
(8)

However in practice we usually have more complicated situations, when
some nuclide A will decay into an other nuclide B which then decays into
a third type of nuclide C, and a chain of events happen until all the initial
nuclide is not transformed into a stable nuclide through several decay reac-
tions. Also we often have some production of initial nuclides (for example the
production of 14C in the atmosphere due to collision reactions). We will dis-
cuss such processes in more detail later when discussion the time evolution of
nuclear fuel during operation. For the moment let us only consider a simple
situation when a parent nuclide P decays into a radioactive daughter D. One
can see that the logic of solving this problem can be easily generalized for
several daughters. We just need to solve a set of coupled ordinary differential
equations, which often we can do analytically, and easily solve it numerically
(as will be shown during the datalabs). The only difficulty might be encoun-
tered that the decay constants can have very different order of magnitudes
(which might cause numerical issues).
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Exercise
Consider the decay process of a parent decaying into a daughter which
then decays into a stable product: P → D → S, where the decays are
characterized by λP and λD.
We can write up the governing differential equations:

dNP

dt
= −λPNP (t)

dND

dt
= −λDND(t) + λPNP (t)

with initial condition NP (t = 0) = NP (0) and ND(t = 0) = 0. Hence
the difference compared to (3) is that a production term appeared in
the equation describing the rate of the daughter nuclide.
The solution of this coupled system of ODE

NP (t) = NP (0)e−λP t

ND(t) =
λP

λP − λD
NP (0)(e−λDt − e−λP t)

The analytic solution of this problem is shown for different decay con-
stants in Fig. 4 for different decay constants. What is important to
notice here is that in case the daughter has a much short half-life than
the parent nuclide, then the activity of the two nuclides will be the
same (as soon as a daughter is produced it decays away). This is
called secular equilibrium.

Decay series

As mentioned above, in practice usually we encounter longer decay chains, an
example to that are the decay series of the naturally occurring radionuclides
235U, 238U, 232Th and 237Np (however due to the relatively short half-life of
237Np - compared to the age of Earth -, only a couple of nuclides of the last
series occur in nature). Fig. 5 illustrates the Actinium series (ie. the decay
chain of 235U). One can observe that several decay events lead to the final
stable product 207Pb.
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Figure 5: 235U decay series.

γ decay

As mentioned before γ radiation is emitted during the transition between
excited states. We can consider this reaction to be similar to a decay process,
and characterize it with some decay constant λ. However, in this case due
to quantum mechanical considerations we have to introduce the uncertainty
or width Γ of the energy level of the excited state. This width is related to
the life time

∆E∆t ≥ ~→ Γ = ~λ (9)

2.3 Nuclear collision reactions

When studying nuclear collision reactions between particles we can introduce
similar notation as for chemical reactions:

a+X → Y + b (10)

However in reactions relevant in reactor physics, one of the particles is
often considered as a projectile and the other as a target (for example in the
reactor the projectile, the neutron moves around in the system, whereas the
target is often bound the a given location and changes locations only due
to temperature induced fluctuations, for example U atoms in the fuel). In
such reactions typically the outgoing particles can also be well distinguished
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in mass and type, however there are reactions (for example fission), where
more particles appear after the reaction. A simple illustration of a nuclear
collision reaction is given in Fig. 6

Figure 6: Illustration of nuclear collision events.

Such reactions are often shorthanded as

X(a, b)Y

for example the neutron capture reaction on 235
92 U can be written as:

235
92 U(n, γ)236

92 U

In general this class of reactions are often referred to as (n, γ).
Since nuclear collision reactions are usually accompanied by the release

or absorption of energy, it is often included in the notation. For the reaction
(10) one can calculate the reaction energy as

Q = [(ma +MX)− (MY +mb)]c
2 (11)

where Q is often referred to as the Q-value. If Q > 0, energy is released
and the reaction is exothermic. If Q < 0, energy is required for the reaction
to occur, the reaction is endothermic.

As said before, there is a large variety of possible nuclear reactions, how-
ever the ones which are relevant for reactor physics involve the interaction of
a neutron (as a projectile) and nuclei. These are

• Nuclear fission, (n, fission)

• Radiative capture, (n, γ)
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• Elastic scattering, (n, n) (the state of the target nucleus does not
change)

• Inelastic scattering, (n, n′) (the target nucleus becomes excited or a γ
photon is emitted promptly)

• Several other reactions such as (n, in), where i number of neutrons are
emitted from the target. (n, p) and (n, α), where a proton or an α
particle is emitted

As we will see later in light water reactors the fission, capture and elastic
scattering reactions are dominating.

2.4 Center of Mass vs LAB frame

When we think about collision reactions, most naturally we imagine these in
the laboratory or LAB frame, which means that the observer (for example
we) is at a fixed point and always at rest. This is a rather intuitive frame,
something we are used to since high school. However, the mathematical
description of collision reactions it is often simpler in the center-of-mass or
CM (sometimes CoM) frame, when the observer is at the center of mass of
the system.

Figure 7: LAB and CM frames.

Let’s consider the nucleus with mass M at location RL in the LAB frame
and a neutron with mass m at the location rL in the LAB frame as illustrated
in Fig. 7. We can then get the location of the center-of mass as

ρ =
mrL +MRL

m+M
(12)
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from which we can convert the locations from LAB to CM as

rC = rL − ρ (13)

and

RC = RL − ρ (14)

also

mrc +MRc = 0

We get similar formula for the velocities of the center of mass if we con-
sider that the velocities in the LAB are vL and VL for the neutron and the
nucleus. The center-of-mass travels with a velocity of

vCM =
mvL +MVL

m+M
(15)

And with that vC = vL − vCM and VC = VL − vCM . Using such a
reference frame is not always intuitive, however if we imagine that the target
nucleus is at rest (which is usually not the case, since the target moves due
to temperature, however this velocity is negligible for fast enough neutron
energies), so VL = 0, then the formalism further simplifies:

vCM =
m

m+M
vL (16)

vC = vL − vCM =
M

m+M
vL (17)

and

VC = −vCM = − m

m+M
vL (18)

Thus the total momentum in CM is pC = mvC+MVC = 0, which means
that the vector vC and VC are co-linear. In case of a scattering event, in
the CM the particles are traveling towards each other before, and they travel
back to back from each other after the scattering. Since in the following
sometimes we will refer to the CM frame, it was important to introduce it
at this stage. However, later we will use and review this formalism further
to study the kinematics of elastic scattering reactions.
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2.5 Neutron cross sections

The probability that a neutron interacts with a nucleus is characterized by
the quantity called nuclear cross sections. The knowledge of this probability
is essential to assess how a population of neutrons is going to be traveling in
a nuclear reactor.

2.5.1 Microscopic cross sections

Imagine a thin foil (one atomic layer thick, so no nuclei is shielded by any
other) being bombarded by a beam of neutrons which have the same speed
and which travel to the same direction. The rate of neutron-nuclear reactions
will be proportional to the intensity I of neutrons and to the number of atoms
per unit area NA, and the proportionality is given by σ

R[
#

cm2s
] = σ[cm2]I[

#

cm2s
]NA[

#

cm2
] (19)

thus3

σ =
R

INA

=
R/NA

I
=

Number of reactions per nucleus per second

Number of incident neutrons per cm2 per second
(20)

If we imagine the neutrons and the nuclei as classical particles (like solid
spheres), then the proportionality constant σ would be the cross sectional
area of a single nucleus, therefore we call it microscopic cross section. If
we consider that the radius of a nucleus has a magnitude of 10−12 cm, then
the cross sectional area would have a magnitude of 10−24 cm2. Microscopic
cross sections are measured in units of 10−24 cm2, which we call barn (often
shorthanded as b).

Nevertheless, neutrons and nuclei do not behave as classical particles,
thus one needs to take into account the quantum mechanical nature of such
reactions, so the geometrical interpretation of the cross section is not al-
ways correct. Due to resonance effects, some nuclei will have very different
microscopic cross sections very different from the geometrical cross sections.

3Some might be bothered that ## should be #2, but mathematically speaking we
could substitute # = 1, and physically speaking we have to see that in I the number #
refers to neutrons, in NA it refers to nuclei, and in R it refers to the reaction, which indeed
needs both a neutron and a nucleus.
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Figure 8: Hierarchy of reactions and cross sections.

In a similar manner we could define microscopic cross sections for the var-
ious reaction types separately (eg. σf , σe and σc for fission, elastic scattering
and capture respectively). Since this values are related to probabilities, we
can sum them up, and define further cross sections, like the sum of elastic
and inelastic scattering is the scattering cross section

σs = σe + σin

or the sum of all cross sections is the total cross section

σt = σs + σf + σc + ...

which gives the probability that any reaction occurs. The absorption
cross section can be define as

σa = σt − σs
which gives the probability that a reaction resulting in the disappearance

of the projectile neutron occurs. Note that some reactions will produce fur-
ther neutrons, but as we will see when describing neutron transport usually
we account for this by adding them separately. Fig. 8 reviews the hierarchy
of the cross sections. Note, that some textbooks consider (n,in) reactions as
scattering reactions.

27



2.5.2 Macroscopic cross sections

In practical applications, such as in a nuclear reactor, the target is thicker
than a foil (consider that a fuel pin is around a 1cm in diameter and is sur-
rounded by few mm thick cladding and few cm of coolant and/or moderator
material). In such situation most of the nuclei will be shielded by other
nuclei, and the beam intensity changes inside the target. Let’s look at an
infinitesimally think layer between [x, x + dx]. The number of reactions in
this layer is

dR = σtINdx

where N is the number density of nuclei. The change in the beam is therefore

dI

dx
=
I(x+ dx)− I(x)

dx
= −σtI(x)N

which, in case of I(x = 0) = I0 has the solution of

I(x) = I0 exp(−σtNx)

Since the quantity σtN appears often we prefer to introduce a new quan-
tity, the macroscopic cross section:

Σt = σtN = [cm2cm−3 = cm−1]

which is related to the probability of interaction in a macroscopic sample
(remember: the microscopic cross section was related to the probability of
interaction per nucleus). However, this quantity is a cross section only in
name. As we see it has inverse length units, and indeed it is rather related to
the probability that an interaction happens over a certain distance traveled
by the neutron. In fact

• exp(−Σtx) is the probability that a neutron travels a distance dx with-
out participating in any interaction.

• Σt exp(−Σtx)dx = p(x)dx is the probability that the neutron suffers
an interaction in [x, x+ dx].

One can notice that p(x) is a probability density function. Later we will
learn how to sample such probability density function to sample random path
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lengths between collisions. For the moment we can however notice that it is
possible to calculate the mean free path λ̄ from

λ̄ =

∞∫
0

xp(x)dx =
1

Σt

Similarly we could define the collision frequency for neutrons traveling
with speed v as vΣt and the mean time between interactions as 1

vΣt
.

The definition of macroscopic cross sections can be generalized to other
reactions, for example fission (Σf = Nσf ), absorption (Σa = Nσa) or scat-
tering Σs = Nσs, with which the total macroscopic cross section is

Σt = Σa + Σs

However the mean free path can be defined only for the total cross section
(note that 1

Σt
= 1∑

i
Σi
6=
∑
i

1
Σi

)

One can also calculate the macroscopic cross section of homogeneous mix-
tures:

Σmix
t =

M∑
i

Niσ
i
t for i=1,2,...M nuclides
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Exercise
Consider a control rod made of boron carbide (B4C) with natural
boron. Natural boron consists of two stable isotopes: B-11 (80.1%)
and B-10 (19.9%). Determine the total macroscopic cross-section and
the mean free path of a neutron in boron carbide if

• ρ = 2.52g/cm3

• MB = 10.8g/mol

• MC = 12g/mol

• σB-10 = 3843b, σB-11 = 5.07b, σC-12 = 5.01b

Σ =
ρNA

MB4C

∑
i

niσi

Σ =
ρNA

4MB +MC

(4σB + σC)

Σ =
ρNA

4MB +MC

(4(0.801σB−11 + 0.199σB−10) + σC) = 84.4 cm

λ =
1

Σ
= 0.11 mm

As we will see shortly, the microscopic cross section has strong dependence
on the neutron energy, therefore the macroscopic cross section also has the
same dependence. However, the number density can have strong variations
in space and in time as well (for example reactors are heterogeneous systems,
so the material composition varies between various locations, and as we will
see later, over time due to depletion the composition does change), therefore
the macroscopic cross sections often also have strong dependence on these
variables:

Σ(E, r, t) = N(r, t)σ(E)
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2.5.3 Reaction rate and flux

As stated above, the collision frequency for neutrons traveling with speed v
is

collision frequency = vΣt (21)

Now, let’s define the neutron population as

n(t) = Number of neutrons per unit volume (1/cm3) (22)

then the number of reactions over time and over unit volume would be

R(t) = Reaction rate density = n(t)vΣt (1/(cm3s)) (23)

where the quantity vn(t) appears so often in reactor physics that it is used
to describe the neutron population and is called neutron flux

φ(t) = Neutron flux = vn(t) (1/(cm2s)) (24)

As we will see later, the neutron flux and the neutron density can be intro-
duced in a more general manner when they depend on the location, neutron
energy, and even the direction the neutrons travel towards. Although the
main reason for using the neutron flux to describe the neutron population
is because it is a convenient variable, it does have a physical meaning: the
total distance traveled in a volume per second by neutrons. Note that of-
ten the reaction rate R is related to the reaction rate in 1/s units, some
textbooks therefore highlight density like quantities as R′′′, we will not fol-
low this notation, and use R regardless it is reaction rate or reaction rate
density, nevertheless we will try to be transparent in the text.

2.5.4 Characteristics of microscopic cross sections

Previously we have assumed that the beam contains mono-energetic neutrons
traveling to the same direction. This however is not the case in a nuclear
reactor. Furthermore, the microscopic cross sections do depend strongly on
the energy, and rather weakly on the direction of the neutrons. It is therefore
important to review the characteristics of cross sections. Here we focus on
the fundamental physical mechanism involved in collision events, and later
we will also review the kinematics of collision.

There are two main mechanism interesting for reactor physics:
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• Potential scattering: when a neutron does not penetrate the nucleus,
only scatters off its force field.

• Compound nucleus formation: when the neutron penetrates the nu-
cleus, and a new nucleus with A+1 is created, which then disintegrates
either by emitting gamma photons, neutrons or undergoes fission.

Potential scattering can be handled in classical terms, as we will see
later. The magnitude of the cross section for this reaction is essentially the
geometrical cross section of the nucleus, and the energy dependence is flat
over a wide range of energies as shown in Fig. 9. Later we will investigate
the kinematics of these events further to understand how neutrons loose their
energy in scattering events.

Figure 9: Elastic scattering cross section on Hydrogen-1.

In compound nucleus formation however a new nucleus is formed. The
time scale of this event is cca. 1000 times longer than it would take for the
neutron to go through the nucleus. This tells us both that indeed something
is happening there, and also this time is enough for the outcoming particles
to ”forget” what happened with them before (for example the the direction
of the incoming neutron). Compound nucleus formation happens in many
reactions: in fission, radiative capture and scattering:

A
ZX + n→ A+1

Z X∗


a : elastic scattering

b : inelastic scattering

c : radiative capture

d : fission

(25)
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In compound nucleus formation if the CM energy of the neutron plus the
binding energy ([M(A+ 1, Z)−M(A,Z)−mn]c2) of the neutron matches an
energy level of the compound nucleus then the magnitude of the cross section
increases (often with several orders of magnitude). This is shown in Fig. 10
for the capture cross section of Na-23. Then we refer to the ”resonance” of
Na-23, eventhough fundamentally the resonance corresponds to the energy
level of the compound Na-24 nucleus. Resonances have different width, which
depends on the lifetime of the energy level.

Figure 10: The levels of Na-24 and the capture cross section of Na-23.

Although the cross section of various reactions show similarities due to the
shared underlying physics, the outcome and some characteristics are different,
so we will review them one by one. All the reactions are summarized in Fig.
11.

Notice that the compound nucleus will have energy levels below the
ground state of the target nucleus. These levels cannot be directly reached
from neutron reactions, and are sometimes referred to as ”negative reso-
nances”. They have some impact on the cross sections, but the discussion of
this impact is well outside of the subject of this text book.

Radiative capture

In radiative capture when the CM energy of the neutron and the binding
energy matches an energy level of the compound nucleus will be created in
an excited state. The compound nucleus emits a cascade of γ-photons to
reach the ground state (note that in Fig. 11 only one γ is highlighted with a
curly line, but in fact several photons can be emitted).
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Figure 11: Schematic illustration of various reactions after compound nucleus formation.
(a: elastic scattering, b: inelastic scattering, c: radiative capture, d: fission)

34



At low energies the energy levels of the compound nucleus are far from
each other, however for higher energies, and especially for heavy nuclides,
the energy levels become very dense, and it is not possible with current mea-
surements to resolve them. This region we call unresolved resonance region
(URR), which usually gives a lot of headache to nuclear reactor physicist,
however at this level we will not need to worry about this. Fig. 12 shows
the capture cross section of U-238. We can observe that at lower neutron
energies (below 100 eV) the single resonances can be seen, but for higher
energies the resonances overlap. At even higher energies it seems that the
cross section becomes suddenly smooth. At these energies the resonances are
so tightly packed that they cannot be resolved experimentally at all.

Figure 12: Radiative capture cross section of U-238.

One can use the Single-level Breit-Wigner (SLBW) model to describe such
resonances, which will also predict that at low energies the cross section will
have a 1/E1/2 or 1/v behavior. You can find further details on the SLBW
model in the course books. This behavior can be understood phenomenolog-
ically: the slower the neutron is, the more time it spends around the nucleus,
thus the higher the probability of entering a reaction.

Fission

In fission the excited compound state relaxes down by emitting several (most
often 2-3) neutrons, and the compound nucleus splits into two (or seldom
three) nuclei.

The cross section is similar to that of the radiative capture reaction.
However, as shown in Fig. 13, some nuclides have a threshold for fission at
high energies. This is due to the various size of the fission barrier. If a nuclide
does not have such a threshold, and tends to undergo fission at low neutron
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energies as well, we call it fissile, and nuclides which undergo fission only due
to interaction with high energy (or fast) neutrons are called fissionable.

Figure 13: Fission and total cross section of U-238 and U-235.

Inelastic scattering

In inelastic scattering the ingoing neutron is reemitted, but after the neutron
emission the target nucleus is in an excited state, therefore γ-photons are
emitted to reach the ground state of the target nucleus. In such a reaction
the neutron can loose a lot of energy, and the kinetic energy is not conserved.
However for inelastic scattering to happen the ingoing neutron needs to have
more kinetic energy than the first energy level of the target nucleus. This
is shown for C-12 in Fig. 14. The threshold energy is usually several MeV,
thus in typical light water reactors this reaction has little role. However for
fast reactors it is often necessary to consider such reactions.

Elastic scattering

Elastic resonance scattering happens when the compound nucleus emits a
neutron, and as a result the target nucleus returns to its ground state. In
this reaction the kinetic energy of the neutron is conserved. Nevertheless
the cross section of such reactions is somewhat different as for the other re-
actions. The reason for this is that the elastic scattering cross section has
three components: the previously discussed potential scattering, the reso-
nance scattering, and the interference scattering component. The last one is

36



Figure 14: Inelastic scattering cross section of C-12.

a quantum mechanical effect, and as a result the cross section may decrease
before the resonance. This is shown in Fig. 15.

Figure 15: Resonances in the elastic scattering cross section of U-238.

2.5.5 Nuclear data libraries

It is by now obvious that decent reactor analysis can only be done if good
nuclear data is available. The various cross sections of several nuclides are
measured by several laboratories, and the data is published. The standard
format is called ENDF (evaluated nuclear data file), and all institutes publish
the data as ENDF files. These cross sections are so called point wise cross
sections: cross section evaluations at certain energies. Then the user can
interpolate between the energies to obtain the cross section at any arbitrary
energy. As we will see later, most of the reactor physics methods require data
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weighted by some function describing the energy distribution of neutrons and
integrated over energy groups. This is the task of nuclear data processing
tools (the most widespread code is called NJOY). Such codes can also convert
the ENDF files into other formats which are then used by neutron transport
codes.

There are several evaluations, which do have slight differences due to the
obvious limitation of measurements. Researchers perform uncertainty studies
often by executing the same calculation with various nuclear datasets. Some
of the important libraries are ENDF/B-VIII.0 (from the US), JEFF-3.3 (the
Joint Evaluated Fission and Fusion File).

You can access raw ENDF files from various sources, for example the
Nuclear Data Services of IAEA (https://www-nds.iaea.org/ or from the
Nuclear Data Center of KAERI (http://atom.kaeri.re.kr/).

Since in a recorded video lecture we will review how to access and plot
these files, we will not go into further detail in this lecture note.

2.6 Generalization of the scattering cross section

For scattering reactions both the energy and the direction of the particle
might change. Nevertheless the value σs(E) only quantifies the probability
that a scattering event at neutron energy E takes place. We might be however
interested in the probability that the scattering results in a certain outgoing
energy and direction. To describe this we can introduce differential cross
sections:

• σs(E → E ′) quantifies the probability that a scattering event changes
the ingoing neutron energy E to E ′ in dE ′. Thus this cross section is
in fact a distribution with unit cm2/eV, and often noted with dσ/dE

• σs(Ω → Ω′) quantifies the probability that a scattering event changes
the initial neutron direction Ω to Ω′. It is often noted with dσ/dΩ.

The name ”differential cross section” is even more obvious when we con-
sider that

σs(E) =

∞∫
0

σs(E → E ′)dE ′
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σs(Ω) =

∫
4π

σs(Ω→ Ω′)dΩ′

It is however important to highlight that the dependence of σs(Ω) on the
direction is weak, because in reactor applications the nuclei are randomly
orientated within the materials. Similarly, σs(Ω → Ω′) will usually not
depend on the incident neutron direction, it is rather the change in the
direction which is of importance, which change can be given by the cosine
of the scattering angle θ, which is in fact the dot product of the before and
after directions µ0 = ΩΩ′, therefore often one just simply uses the notation

σs(Ω→ Ω′) = σs(ΩΩ′) = σs(µ0)

By combining the differential cross sections one can define the double
differential scattering cross section

dσ2
s

dEdΩ
= σs(E → E ′,Ω→ Ω′)

from which

σs(E → E ′) =

∫
4π

σs(E → E ′,Ω→ Ω′)dΩ′

σs(E,Ω→ Ω′) =

∞∫
0

σs(E → E ′,Ω→ Ω′)dE ′

σs(E) =

∫
4π

∞∫
0

σs(E → E ′,Ω→ Ω′)dE ′dΩ′

and these concept can be generalized to the macroscopic cross sections. An-
alyzing and handling such data is not straightforward. However, there is one
situation when the handling is not difficult: elastic potential scattering in case
of isotropic scattering angle in the CM system. Some books (such as Stacey:
Nuclear reactor physics) quote the relationship µc = 0.07A2/3E(MeV ), which
indeed is close to zero below cca 0.1 MeV for light nuclei), others (such as
D&H) quote that this is applicable for neutron energies below 1MeV for light
nuclei. In this case the scattering kernel is separated as
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σs(E → E ′) = σs(E)P (E → E ′)

where P (E → E ′)dE ′ is the probability that a neutron with initial energy
E will have an energy E ′ ∈ [E ′, E ′ + dE ′]. Probability density functions
like these are often referred to as scattering kernels. In the following we will
investigate this probability density function for elastic scattering.

2.7 Scattering kernel and kinematics

As mentioned earlier, studying the kinematics of elastic neutron scattering
is simpler in the center-of-mass system. The reason is that in the laboratory
system the target nucleus recoils after the scattering event (due to momentum
is conserved), thus the energy of the neutron get smaller with the same
amount of energy what is acquired by the recoiling nucleus. However in the
CoM the energies of the neutron and the nucleus are the same, and only the
direction changes.

We have earlier introduced the Center-of-Mass and Laboratory frames.
Let us now further elaborate, and study the situation when a neutron elas-
tically scatters on a target nucleus at rest (in the laboratory). Figure 16. In
the CM system, the center-of-mass is fixed, thus the target nucleus travels
towards the collision. After collision the speed of the nucleus and the neutron
is not changed, only the direction, the nucleus and the target travel back to
back. Figure 17 shows how the two systems and the scattering angles are
related to each other.

Figure 16: Scattering in the laboratory and center-of-mass.
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Figure 17: Relation of the laboratory and center-of-mass.

After considering momentum and energy conservation and some elemen-
tary geometry, we can arrive to following important formula (for full deriva-
tion see D&H p40) relating the kinetic energy in the LAB before and after
the collision.

E ′

E
=
A2 + 2A cos θC + 1

(A+ 1)2

and by introducing

α =
(A− 1

A+ 1

)2

we can rearrange to

E ′

E
=

(1 + α) + (1− α) cos θC
2

(26)

which shows that the energy transfer from the neutron to the nucleus is
directly related to the scattering angle in CM. The θC = 180◦ heads on
collision results in a backscattered neutron with an energy αE, thus the
maximum energy the neutron can loose is (1 − α)E. In case of a hydrogen
target nucleus (α = 0), the neutron can loose all its energy. However for a
uranium-235 scatterer the neutron can loose only 1.7% of its energy.

We can also see that the neutron energy after the scattering is always
less than before. This however is a consequence of our assumption that the
target is at rest.

Since we discovered that the scattering angle is directly related to the
energy transfer, we can also presume that the probability distribution P (E →
E ′) is directly related to the probability of scattering with an angle θC ∈
[θC , θC + dθC ]. Let us use the cosine of the scattering angle µC = cos θC and
consider that its distribution is given with χ(µC). We see from Eq. (26) that
a given dµC corresponds to a given dE ′, thus
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P (E → E ′)dE ′ = χ(µC)dµC

and from Eq. (26) we see that

dµC =
2dE ′

(1− α)E

therefore

P (E → E ′) =

{
2χ(µC)
(1−α)E

if αE ≤ E ′ ≤ E

0 otherwise
(27)

However, as we said before, we can safely assume below 100 keV that scat-
tering is isotropic in the CM frame. In that case, the cosine µC is uniformly
distributed between [−1, 1], therefore

χ(µC) =
1

2

and with that the scattering kernel is

P (E → E ′) =

{
1

(1−α)E
if αE ≤ E ′ ≤ E

0 otherwise
(28)

which means that the outgoing energy is also uniformly distributed between
[αE,E] as shown in Figure 18. With this the differential scattering cross
section of elastic scattering becomes.

σs(E → E ′) =

{
σs(E)

(1−α)E
if αE ≤ E ′ ≤ E

0 otherwise
(29)

and as we saw before the potential scattering cross section is only weakly
dependent on the energy.

Within this course we will not handle the case when elastic scattering is
not isotropic in the CM. Nevertheless, as said before most often the assump-
tion of isotropy in CM is valid at the neutron energies encountered in light
water reactors.

As we saw earlier, in fissile material the probability of fission events is
much higher with low energy neutrons than with fast neutrons. Therefore,
elastic scattering plays an important role in slowing down neutrons to thermal
energies also materials which efficiently slow neutrons down as we will discuss

42



Figure 18: Illustration of χ(µC) and P (E → E′).

in more detail in later sections. We refer to such materials as moderator. In
a light water reactor, the coolant water act as the moderator. Also, one
needs to highlight again is that the energy lost by the neutron will recoil
the scatterer nucleus, which leads to radiation damage. Therefore, the recoil
energy is important for damage studies, although it plays little role for reactor
physics.

It is also important to note that from our previous discussions we can
relate the scattering angles in the CM and LAB frames by

θL = tan−1
( sin θC

1
A

+ µC

)
or as it is given in some books

µL =
AµC + 1√

A2 + 2AµC + 1

which can be used to calculate the average scattering cosine in the LAB:

µ̄L =
1

2

1∫
−1

AµC + 1√
A2 + 2AµC + 1

dµC =
2

3A

which means that scattering is not isotropic in the LAB frame for light nuclei.
As the mass number A increases, the average cosine is converging to 0. This
is important to remember, since one often only remembers that scattering
is isotropic, but tends to forget that only in the CM frame. As we will see
later, this will be one of the main limitations for applying diffusion theorem
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for the movement of neutrons, since diffusion is based on the assumption that
scattering is isotropic in the LAB.

2.8 Effects of nuclear motion

Up to this point we have always assumed that the target is at rest. However,
due to thermal motion this is not the case, nevertheless the speed of thermal
motion is usually negligible compared to the neutron speed. However when
the neutron energy is comparable to the thermal energy (kT ) we need to
take into account effects due to thermal motion. Neutrons having such low
energies are referred to as thermal neutrons. Typically then the neutron
energy is below 1 eV.

An other important occasion when thermal motion plays a role is at
resonances. A resonance has a width often less then 1 eV, therefore if slight
thermal motion can have an effect on the energy dependence of the cross
section around the resonance (even if the resonance occurs above thermal
energies). This is called Doppler effect.

In this text we will not derive the formalism of nuclear motion, because it
is rather tedious, and the conclusions are more interesting than the way how
we reached it. Proper derivations can be found in D&H p45. The starting
point of these derivations is that when calculating the interaction frequency
we have to take into account the relative speed between the neutron and the
nucleus:

|v−V|σ(|v−V|)N (30)

where the neutron moves with velocity v and the nucleus moves with velocity
V. Then in the next step one needs to acknowledge, that not all nuclei move
with the same velocity, instead one needs to take into account a distribution
for the nucleus velocity and at the end one can arrive to a thermally averaged
cross section. If that is then applied on resonances one could observe the
behavior illustrated in Figure 19: the resonance broadens while its peak
decreases with increasing temperature. Therefore this is often called Doppler-
broadening. As we will see, later, although the integral under the resonance
is unchanged due to increasing temperature, still the probability of neutrons
being absorbed by the resonance increases, because while neutrons loose their
energy there is an increasing probability that they encounter the nucleus at
the resonance energy. Therefore Doppler-broadening has an important safety
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implication: with increasing temperatures the number of neutrons (therefore
the power) decreases.

Figure 19: Doppler broadening of resonances.

Another noteworthy impact of nuclear motion is for the differential scat-
tering cross section. The derivation of such scattering kernel is an enormous
task, the interested reader can find joy in reading M. M. R. Williams: The
Slowing Down and Thermalization of Neutrons (freely available from OECD
NEA). For us now again mostly the conclusion, illustrated in Figure 20 is
of interest. At thermal energies, the neutron in fact can gain energy from a
scattering event. This is called upscattering. We can see that with increasing
the energy of the incoming neutron the scattering kernel becomes the uni-
form distribution we have derived before, however for lower energy neutrons
upscattering is more and more probable. Such scattering kernel can be given
as

σs(E
′ → E) =

σs
2E ′

η2

[
erf

(
η

√
E

kT
− ρ
√
E ′

kT

)
± erf

(
η

√
E

kT
+ ρ

√
E ′

kT

)]
+

σs
2E ′

η2 exp

(
− E − E ′

kT

)[
erf

(
η

√
E ′

kT
− ρ
√

E

kT

)
∓ erf

(
η

√
E ′

kT
+ ρ

√
E

kT

)]
(31)

where

η =
A+ 1

2
√
A

and ρ =
A− 1

2
√
A

and the upper sign is for E ≤ E ′, and the lower sign is for E ≥ E ′.
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Figure 20: Thermal scattering kernel.

2.9 Impact of molecular bounds

Without going into details, it has to be mentioned that chemical bounds and
crystal structures also influence scattering kinematics of thermal neutrons.
This is relevant in reactor physics, since the scattering hydrogen atoms are
bounded in water, which is used as the coolant and moderator of LWRs.
Usually special tables are created and used that account for thermal binding
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effects. These are called S(α, β) tables. The theory behind the S(α, β)
formalism roots in quantum mechanics, and the previously mentioned book
of Williams provides a more detailed description for the interested reader.
The only implication for us will be that in Monte Carlo calculations we will
need to link to such tables when including materials like water in our problem.

2.10 Nuclear fission

Fig. 3 shows that the average binding energy per nucleon has a maximum at
Ni-62. Therefore fusing lighter nuclei or splitting (fissioning) heavier nuclei
can lead to tighter bound nuclei, and the difference of binding energy is
released in the form of energy. The main goal of building nuclear reactors
is to extract the energy released during the fissioning of heavy nuclei. The
reason that heavier nuclei undergo fission spontaneously only with a low
probability is that the short range nuclear forces give rise to a potential
energy barrier (or fission barrier), which usually has a height of 6-9 MeV.

In order to overcome this barrier first some energy needs to be supplied
to the nucleus:

1. by an energetic particle, for example a γ photon (photofission)

2. by capturing a neutron to cover the energy with the binding energy of
the neutron

3. by combining 1. and 2.: capturing a fast neutron

4. seldom fission can happen due to quantum mechanical tunneling (spon-
taneous fission)

Nuclides which can fission by capturing slow neutrons are called fissile
(eg. U235, Pu239), wheras nuclices which have too high fission barriers
therefore undergo fission only with fast neutrons are called fissionable (eg.
U238, Pu240). Recall, that for these nuclides the fission cross section presets
a threshold energy, below which the probability of fission is almost negligible
and the cross section is several orders of magnitude lower (eg. the fission
cross section of U-238 in Fig. 13).

It is however possible that after the neutron absorption of a nucleus the
compound nucleus decays to its ground state, thus the neutron is lost for the
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chain reaction. The relative balance of capture and fission can be described
by the

capture-to-fission ration =
σc
σf

(32)

of a given nuclide. This ratio of course does depend on the energy of the
incoming neutron.

A typical fission reaction look as

n+ 235
92 U → 236

92 U
∗ → fission reaction products

where the reaction products cover a wide variety of particles and carry
cca 200 MeV energy:

• charged and energetic fission products (nuclei with medium mass num-
ber), which quickly slow down in the surrounding media (while picking
up electrons), and loosing their energy.

• several neutrons with large kinetic energy

• γ photons

• β particles and neutrinos from the decay of fission products

The fission products has a distribution given by the fission yield (ie. prob-
ability) of the nuclide created in fission. In fission the nucleus is usually split
asymmetrically, therefore the fission yield curve has two distinct peaks as
shown in Fig. 21. With lower probability the nucleus can split into three
fission products (ternary fission), when a third, light nuclide (eg. H-3) is cre-
ated. In the top figure we can see a small ”island” of light nuclides which are
the result of ternary fission. The fission yield depends both on the ingoing
neutron energy (and is usually tabulated separately for thermal and for fast
neutrons) and on the target nuclide.

Since the fission products are typically neutron rich, they undergo β-
decay, thus around 4-5% of the energy is released in the form of radioactive
decay with a time delay. A reactor core needs to be designed to be so that this
decay heat can be removed from the system after the reactor is shutdown.
The distribution of energy and where it is absorbed is given by the table
below.
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Figure 21: Top: fission yield of U-235. Bottom: fission yield of U-235 and Pu-239 (both
for thermal neutrons)

Out of these events the short range events typically deposit the energy
within the region the fission happened (ie. in the rod), therefore we need
continuous cooling of the rods. Some of the energy is deposited farther
from the source location (in the coolant, or in the shielding). As mentioned
before the delayed component due to the radioactive decay of fission products
requires the fuel to be cooled after the fission chain reaction is stopped in
the reactor.

From the fission event several neutrons can be emitted, as we already
discussed briefly, and soon will discuss in more detail, these neutrons make it
possible to create a self-sustaining chain reactions, with the neutrons being
chain carriers. Most of these neutrons are emitted almost instantaneously
(within 10−14 s which is negligible compared to the time scales of neutron
reactions), and are called prompt. But a small portion of neutrons (cca 0.6
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Table 2: Distribution of energy in fission.

Product Energy (%) Range Time delay
Fission product 80 short prompt

Fast neutron 3 medium prompt
Fission γ 4 medium prompt
β decay 4 short delayed

neutrinos 5 long delayed
Non fission reactions 4 delayed

%) is emitted with a time delay.
The number of emitted neutrons (often noted with the greek letter ν, and

the average number as ν̄) varies between 0 and 6, with the most probable
event being the emission of 2-3 neutrons as shown in Fig. 22 for U-235.
This distribution depends both on the nuclide and on the neutron energy.
However, as one can see in the lower figure, the nubar is essentially constant
for energies and nuclides relevant in light water reactors.

The energy distribution of the prompt fission neutron can be described
by the semi-empirical Watt-spectrum

χ(E) = C1 · exp(− E
C2

) · sinh(
√
C3 · E) (33)

where C1 = 0.453, C2 = 0.965 and C3 = 2.29 for U-235. χ(E)dE is the
probability that the neutron after birth will have an energy between [E,E+
dE]. The most probable neutron energy is cca. 0.85 MeV, and the average
energy is 2 MeV. One can also observe from Fig. 23 that birth neutron
energies above 5 MeV are less probable, therefore in the future we can neglect
some reactions, such as (n, in) reactions which only happen with high energy
neutrons). The birth energy spectrum is rather independent from the ingoing
neutron energy, and is similar for most of the nuclides. For very detailed
calculations one can take into account an event-by-event sampling of the
birth energy (for example by taking into account that neutrons emitted from
the same fission event have slightly correlated energies), but for us this simple
model suffices.

As mentioned earlier some neutrons are emitted with a delay. An example
of such delayed neutron emission is shown in Fig. 24. I-137 is a fission product
with a relatively high fission yield, after β− decay it can disintegrate into
the metastable state of Xe-137, which then is followed by the emission of
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Figure 22: Top: Number of emitted neutrons in the thermal fission of U-235. Bottom:
Nubar of U-235 and Pu-239 vs the ingoing neutron energy.

Figure 23: Top: The fission birth energy spectrum of neutrons for U235.

a neutron. The time delay is characterized by the half-life of the original
β− decay (24 sec). We refer to the fission product which decays into the
neutron emitting daughter as delayed neutron precursor. There are tens of
such precursors however in calculations they are usually grouped together
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Figure 24: Example of delayed neutron emission: decay of I-137.

into classes with similar half-lifes. Each of these groups can be characterized
with

• λi the decay constant of the ith precursor group

• βi fraction of all fission neutrons emitted per fission by the ith precursor
group

The total fraction of delayed neutrons is

β =
∑
i

βi

and in some textbooks and data sources you can find the average number
of delayed neutrons per fission to be given as

νd = νβ

The delayed neutron groups is available for various nuclides, and since the
fission yields are different for nuclides, the groups and the total fraction of
delayed neutrons are also different. For plutonium isotopes the total fraction
is generally lower. As we will see later when discussing transient events in
nuclear reactors, the delayed neutrons although contributing with a low frac-
tion have an enormous impact on the time response of the reactor. Delayed
neutrons also have a slightly lower energies at birth than prompt neutrons.
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Table 3: Delayed neutron fractions of U235

Group T1/2(s) βi · 105

1 55.7 21
2 22.7 142
3 6.2 128
4 2.3 257
5 0.615 75
6 0.23 27

Fission fuels: effective number of neutrons

We have already mentioned that certain nuclides are fissile, while others are
fissionable. The only fissile isotope available in nature is U235, which is
0.711 w% of natural uranium. As we saw will see shortly it is possible to
use moderators with low absorption cross section (eg. heavy water) which
allow for using natural uranium to build reactor cores, however more often
uranium is enriched to contain a larger fraction of U235 than the natural
abundance.

Figure 25: Effective number of neutrons for U-235 and Pu-239.

An other possibility is to breed fissile nuclides from fissionable (or due to
this reason often called fertile nuclides). One such reaction leading to the
creation of fissile material in traditional LWR reactors is

238U
(n,γ)−−−→ 239U

β−(23.5m)−−−−−−→ 239Np
β−(2.3d)−−−−−→ 239Pu (34)

If one wants to design a reactor which breeds more fissile material than
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what was initially placed into it (ie. a breeder reactor) at least 1 neutron is
needed to sustain the chain reaction, and one 1 is needed for breeding (while
the rest can be lost due to other parasitic capture reactions. We can define
the effective number of neutrons

η(E) = ν(E)
σf (E)

σa(E)
(35)

which gives the average number of neutrons produced per neutron absorbed
in the fuel. If the fuel consists of more nuclides (what is usually the case) we
can similarly define

η =

∑
j νjΣ

j
f∑

j Σj
a

The dependence of this quantity on the neutron energy is shown in Fig.
25. We can see that with increasing neutron energy the effective number of
neutrons also increases. In order to achieve a self-sustaining chain reaction
in a breeder reactor one needs

η̄ − 1− parasitic− leakage ≥ 1 (36)

where the loss term is always positive, thus the minimum criterion for break-
even breeding η̄ ≥ 2. We can already see that in light water reactors this is
very difficult to achieve.
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3 Fission chain reaction and the energy dis-

tribution of neutrons

The requirement to design a self-sustaining nuclear reactor is to achieve a
balance in the production and loss of neutrons. This is often referred to as
neutron economy. As we will see later, the adequate way to study the neu-
tron economy is by developing and solving the neutron transport equation.
However, first in this chapter we will define the basic quantities of interest
describing fission chain reactions, such as the multiplication factor. Then we
will investigate the energy distribution of neutrons in traditional light water
reactors and give a rather phenomenological description of the neutron trans-
port process by studying the elements of the neutron cycle from the birth of
a neutron to its eventual death.

3.1 Fission chain reaction

As we discussed earlier the main principle of nuclear reactors that neutrons
emerging from fission events are utilized to trigger further fission events, thus
giving rise to a chain reaction. If one wants to have a steady chain reaction
it needs to be sure that from each fission event on average only 1 neutron
is going to cause a following fission event, and the rest of the neutrons are
either captured in the reactor materials, or they leak out of the reactor.
One common way to describe the fission chain reaction is by defining the
multiplication factor k :

k =
Number of neutrons in i+1 th generation

Number of neutrons in ith generation
(37)

where we define neutron generations: once a neutron triggers fission the
new neutrons are considered to be in the next generation. If we follow several
neutrons and the same time, and count the number of neutrons they give rise
to, we can calculate k. Similarly we could have talked about the number of
fission events instead.

The multiplication factor k can be

• k < 1: the system is subcritical (the number of neutrons decreases from
generation to generation, the chain dies out)

• k = 1: the system is critical (the number of neutrons is the same in
each generation and stays always the same)
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• k > 1: the system is supercritical (the number of neutrons increases
from generation to generation)

When operating the reactor, we usually wish to operate in critical con-
ditions, when the number of neutrons, thus the fission rate, thus the power
of the reactor is constant. Nevertheless, the reactor must be able to be su-
percritical (to increase the power to the required level) and subcritical (to
decrease the power or to completely shut down the reactor) as well. Thus
one needs to be able to control the reactor.

Nevertheless this often quoted life-cycle point of view definition of the
multiplication factor Eq. 37 can be misleading, and is also impractical. The
fact is, that it is difficult to follow ”one given” generation of neutrons. In
fact, in a reactor several ”neutron trees” develop at the same time, therefore
it is difficult to tag them to decide which generation do they belong too.
Also, Fig. 26 illustrates a simple case: a neutron has probability p to enter
fission, and it is lost from the chain otherwise, and in a fission nu neutrons
can be generated. A tree with critical conditions might die out, or grow
exponentially, and in fact it will be only for the average of several trees that
we can obtain the same number of neutrons in the succeeding generations.
Of course, in a real nuclear reactor the number of neutrons are very high (109

neutron/cm3), so we will in fact only see the average behavior. Lastly, what
might be misleading here is that the time between the birth and death of a
neutron is random (since it depends on the random path distance between
collision, and on the number of scattering a neutron enters etc), thus neutrons
of the same generation are not aligned so well in time as shown in Fig. 37.
To summarize, care should be taken when thinking of the neutron transport
in generations.

A slightly better and more practical way to define the multiplication
factor is through production and loss rates, through the neutron balance
(of course such rates also have some fluctuations, so here average rates are
meant).

k =
Rate of neutron production

Rate of neutron loss (absorption plus leakage)
=
P (t)

L(t)
(38)

where the time can be explicitly considered for the rates (eg. fuel evolution
affects production rate, as we will see in later chapters). We will see later,
that in fact we will to define the multiplication factor through reaction rates
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Figure 26: Illustration of random critical trees.

when developing equations to describe neutron transport. We can define the
neutron lifetime as

` =
N(t)

L(t)
(39)

where N(t) is the total neutron population at time t. Note that `L(t) is the
number of lost neutrons during time `, thus in case ` is the mean lifetime of
neutrons, all neutrons at time t get lost over this time, while of course new
neutrons are also generated.

Simple kinetics

If we could somehow measure the exact number of neutrons at time t, then
the change in N(t) would be

dN

dt
= Production − Loss = P (t)− L(t)

which can be rearranged with (38) and (38)
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dN

dt
= P (t)− L(t) =

(P (t)

L(t)
− 1
)
L(t) =

k − 1

`
N(t) (40)

This equation we will see later can be derived more rigorously from the
neutron diffusion equation. The solution of the equation is simply

N(t) = N(0) exp

[(
k − 1

`

)
t

]
(41)

where the value of k will determine the number of neutrons overtime. In Fig.
27 one can see that for a supercritical system the average number of neutrons
increases in time, for a critical system it stays constant and for subcritical
system it decreases. This is in agreement with our previous definitions.

Figure 27: Number of neutrons over time.

As a note we can mention here that the average neutron lifetime ` is
around 10−4s, thus in a slightly supercritical system with k = 1.001 the
number of neutrons would increase by a factor of 22026 in a second. Such
a small variation in the multiplication factor is very common in reactors,
but such an increase would clearly not be controllable. But as we will see
later, the presence of delayed neutrons does significantly increase the average
lifetime of neutrons, and it makes the time behavior of reactors manageable.

2 factor formula

Let us make a thought experiment in order to study the k-effective. Consider
a homogeneous mixture of some nuclear fuel (uranium) and other cooling
and structural materials. For our neutron trees in Figure 26 we considered
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that the neutron branch either dies out or initiates a fission event producing
other neutrons. There are more way to die (or become irrelevant for the
chain reaction) for a neutron. As illustrated in Figure 28, there in fact, in
a finite core the neutron either gets absorbed or leaves the system before
interacting with it. Let’s consider that the probability of non-leakage is PNL.
Then the neutron can be absorbed by a fuel nucleus or by some other nucleus
(this is called parasitic capture. Let’s denote the conditional probability of
the neutron being absorbed in fuel if it is absorbed with PAF . Finally, the
conditional probability if the neutron is absorbed in the fuel then it will
initiate a fission event is Pf . After fission a number (ν) of neutrons emerge.

Figure 28: Probabilistic approach of understanding the multiplication factor.

If Ni neutrons started in a given generation, then it is easy to see that in
the next generation the number of neutrons will be

Ni+1 = νPNLPAFPfNi

therefore

k =
Ni+1

Ni

= νPNLPAFPf

In order to assign actual physical quantities to these probabilities we have
to remind ourselves that the cross sections of neutron-nucleus interactions
characterized the probability of the event occurring. With little reasoning
we can see that

59



f ≡ PAF =
ΣF
a

Σa

where we introduced a new notation commonly used in the literature for the
thermal utilization. Similarly

η ≡ νPf = ν
ΣF
f

ΣF
a

where we found a quantity we have already looked upon, the thermal fission
factor or reproduction factor.

The non-leakage probability is more difficult to obtain, since it depends
on the geometry of the core. Nevertheless, since f and η depend on the
material properties only, often the infinite multiplication factor

k∞ = ηf

is introduced to describe the multiplication of an infinite system (where
neutrons cannot leak out).

This simple model however does not account for the fact that in a thermal
reactor the neutrons can have a wide range of energies, since they are born
with energies in the order of MeV, however the fission reactions happen in
the order of eV. Also, neutron cross sections have a strong dependence from
the energy, as we saw earlier often with sudden jumps in the cross section. In
order to refine our simple 2 factor model we will need to study the spectrum
of neutrons.

3.2 Neutron spectrum: Slowing down and thermaliza-
tion

With our previous studies we already have the intuition that neutrons can
travel at very different speed in the reactor. They are born with relatively
high (order of magnitude MeV) energies from fission, then they loose their en-
ergy in scattering reactions until they reach the thermal energies, when they
can even gain energy from the nuclei of the medium. The energy distribution
of the neutrons is called neutron spectrum, and is defined as

Φ(E) = v(E)n(E)
[ n

cm2 · s · eV

]
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where v(E) is the speed of neutrons and n(E)dE is the number of neutrons in
the energy interval [E,E+dE]. The main goal of this section is to determine
Φ(E).

We can also recall that we have previously defined the reaction rate, and
similarly we can define the spectral reaction rate quantities, eg. for some
reactioni

Ri(E) = Σi(E)Φ(E)

thus the total reaction rate is

Ri =

∫ ∞
0

Σi(E)Φ(E)dE

In this section we will try to make a rough, quantitative analysis of the
spectrum with the intention of introducing physical quantities relevant for
the discussion of neutron slowing down and our goal will be to sketch the
shape of the energy distribution. However we will neglect several aspects, for
example space-dependent slowing down, and assume that the slowing down
takes place in an infinite medium without spatial dependence.

Besides our curiosity, there is an other practical reason to calculate the
neutron spectrum in a reactor: as we will see later, for the numerical treat-
ment of neutron transport it is not possible to use the cross sections in their
continuous form, instead we have to calculate weighted averages of the cross
section, where the weighting function is going to be the spectrum.

The difficulties to estimate the neutron spectrum arise from the fact that
at various energies the phenomena at play to govern the transport of neutrons
is different. Commonly, we separate three energy regions, which can be
characterized with the following phenomena:

• Thermalization (0-1 eV): Upscattering due to thermal motion; Chem-
ical binding and crystalline effects.

• Slowing down or moderation (1-105eV): Elastic scattering from free
nuclei at rest, isotropic in CM; Resolved resonances

• Fast fission: Elastic scattering anisotropic in CM; inelastic scattering;
Unresolved resonances

First we will introduce moderation (the slowing down of neutrons) in
a rather heuristic way, and then we will study the spectrum at different
energies.
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3.2.1 Moderation and moderators

We can recall from the study of elastic scattering that the ratio of the neutron
energy before (Ei) and after scattering (Ef ) is constant for a given CM
scattering angle θC :

Ef
Ei

=
(1 + α) + (1− α) cos θC

2
(42)

where α = (A− 1)2/(A+ 1)2, which means that the change of the logarithm
of the energy is constant. We can define the average logarithmic decrement

ξ =

Ei∫
0

ln
(Ei
Ef

)
P (Ei → Ef )dEf = 1 +

α

1− α
logα ≈ 2

A+ 2/3
(43)

where we introduced the scattering kernel from our previous studies, and the
last approximation holds for not too small A.

In case of a homogeneous mixture of nuclides we can weight with the
scattering cross section:

ξ̄ =

∑
i ξiΣsi∑
i Σsi

The value of ξ characterizes how many scattering reactions are needed
to slow down the neutrons. The larger the value of ξ the less scattering
is needed. Materials which is can efficiently slow down neutrons we call
moderators. The average number of collisions to slow a neutron from fast
energies to thermal energies can be calculated with

1

ξ
ln(2MeV/0.025eV ) =

18.2

ξ

The ability of slowing down neutrons can be characterized with moder-
ating power ξΣs: the logarithmic energy loss per distance traveled by the
neutron. However, when assessing how good a moderator is, we have to con-
sider also how much neutrons are absorbed by the moderator, therefore we
can define the moderating ratio

ξΣs/Σa
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Table 4: Moderating properties of various materials

Moderator A α ξ 18.2/ξ ξΣs(cm−1) ξΣs/Σa

H 1 0 1.0 18 1.3 61
D 2 0.111 0.725 25 0.08 2538

Be-9 9 0.64 0.2 87 0.15 125
C-12 12 0.716 0.158 115 0.061 190
U-238 238 0.983 0.0084 2172 0.04 0.16

As we see from Table 4, the best moderators the ones containing low mass
nuclei. However we can also notice, that even though hydrogen is the lightest,
it is not the best moderator, when considering absorption as well. This is
the reason that for a reactor moderated with light water one needs to enrich
uranium in order to make it critical. However if a reactor is moderated
with heavy water (such as the CANDU reactors) or graphite (such as the
MAGNOX reactors), criticality can be achieved with natural uranium as
well. There is obviously a compromise whether we spend our efforts on
enriching the fuel, or producing heavy water.

Lethargy

When discussing slowing down it is often more natural to use an other vari-
able than energy, the lethargy, which often feels intimidating for novice re-
actor physicist. Although we promise we will not overuse it in this course,
but since the reader will find this variable in other books, it is necessary
to introduce it. The lethargy gives the logarithmic energy loss compared to
some fix energy E0:

u = ln(E0/E)

E = E0 exp(−u)

where E0 is typically the energy of the source or a sufficiently high energy
(eg. 10 MeV) in case of fission sources). We can notice that ξ is the average
increase of lethargy in a collision. The neutron flux therefore can be written
as

Φ(u)du = Φ(u)dE/E = Φ(E)dE
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Φ(u) = Φ(E)E

Figure 29 makes it even more apparent why working with the lethargy
is more natural in slowing down. We can see that the collision density (as
discussed soon) is constant. We can also notice that the lethargy is increasing
during slowing down: as neutrons get slower they get more ”lethargic”.

Figure 29: Schematic illustration of energy and lethargy change during slowing down.

3.2.2 Neutron spectrum

We will discuss the neutron spectrum in the three regions (thermal, moderate,
fast) separately.

Fast and thermal region

For the fast region we consider that the source of neutrons are the fission
events, and little reactions happen to them, therefore the spectrum in this
region can be well approximated with the Watt-spectrum. As we will see
later in more realistic Monte Carlo calculation, although the shape indeed
resembles the fission birth spectrum, but it is not entirely smooth.
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For thermal energies, where neutrons can both loose or gain energy in
scattering events, we can assume that the neutron spectrum follows the
Maxwell-distribution

φ(E) ∝ E exp
(
− E

kT

)
although it has to be mentioned that in reality due to absorbing events taking
place at these energies, the real neutron spectrum is slightly shifted to higher
energies, this is called spectral hardening.

Slowing down region

We will consider the slowing down in an infinite, homogeneous geometry and
assume that the neutron source is spatially uniform. First, we will develop
an equation describing the slowing down.

Let us notice that

• Σt(E)Φ(E)dE is the number of collisions per unit time within [E,E +
dE] which removes neutrons from the energy interval.

• S(E)dE is the number of neutrons emitted per unit time within [E,E+
dE]

•
∞∫
0

Φ(E ′)Σ(E ′ → E)dE ′dE is the number of neutrons per unit time

reaching [E,E + dE] through scattering

In case of steady state, we can assume that the source terms (the source
and the in-scattering events) are in balance with the loss term (the total
number of collisions removing neutrons from our energy interval):

∞∫
0

Φ(E ′)Σ(E ′ → E)dE ′ + S(E) = Σt(E)Φ(E) (44)

is the slowing down equation which as we will see in the next chapter could
be derived directly from the general neutron transport equation.
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Let us consider that inelastic scattering can be neglected for energies
below 100 keV and elastic scattering can be considered isotropic in CM, and
recall the scattering kernel for elastic scattering:4

Σs(E
′ → E) =

{
Σs(E′)

(1−α)E′
if αE ′ ≤ E ≤ E ′

0 otherwise
(45)

In case of a mixture of various nuclides the scattering kernel would be the sum
of the scattering kernels of each nuclide. However, in practice usually there
is one type of nuclide which has much better moderating properties than the
others, thus we can neglect the contribution of the others. By substituting
this kernel into the slowing down equation we arrive to

E/α∫
E

Φ(E ′)
Σs(E

′)

(1− α)E ′
dE ′ + S(E) = Σt(E)Φ(E) (46)

which looks fairly innocent, but in practice can be easily tackled only in a
couple of situations:

1. Slowing down without absorption (Σa = 0→ Σt = Σs)

2. Slowing down on hydrogen nuclei with absorption

3. Slowing down on arbitrary nuclide but with energy independent cross
sections

Of course in practice the most important case would be to solve the
equation for arbitrary nuclides and energy dependent cross sections, however
for that case no analytic solution is available. In this lecture note we are
going to discuss 1. and 2., since they will provide enough insight about the
neutron spectrum in this region.

Slowing down without absorber

4Note, that previously we used the (E → E′) notation, since we were curious which
energies are reached from our initial energy E, now we swapped the notation of initial
and final energy, because we are more interested in which energies contribute to our final
energy, and it is more convenient to develop the equation for variable E. Nevertheless the
meaning is still the same: Einitial → Efinal
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As we noticed earlier the energy lost during scattering is decreasing during
slowing down, however the average increase of lethargy is independent of
the lethargy. Thus the number of collisions per time and unit energy in the
energy bin [E,E+dE], the collision density F (E) = Σt(E)Φ(E) is increasing
with decreasing E. However the number of collisions per unit time per unit
lethargy is independent of u. Thus

F (u) = Σt(u)Φ(u) = Σt(E)Φ(E)E = c

if we substitute Σt(E)Φ(E) = c/E in Eq. (46), we will find that indeed it
is a solution if Σt = Σs and at energies below the energies of the source (ie.
when S(E)=0).

We can obtain c by noticing that the number of neutrons per unit time
whose energy passes above a given lethargy is the same as the number of
neutrons emitted per unit time since there is no absorption. The number of
neutrons emitted per unit time is simply the integral of the source neutron
spectrum.

S =

∞∫
ES

S(E)dE

where ES is the energy below which the source does not emit neutrons.
And the number of neutrons passing lethargy u per unit time is cξ, since

all the neutrons will pass lethargy u which suffered a collision between u and
u− ξ, therefore we can conclude that5

cξ = S

Φ(E) =
S

ξEΣs(E)
=

S

ξEΣt(E)

therefore if we combine our comments on the thermal and fast regions with
our recent findings, we can illustrated our idealized neutron spectrum in
Figure 30. Notice that we have plotted both Φ(E) and the lethargic spectrum

5Notice that c = F (u), the collision density. The collision density is defined so that

F (u)du gives the number of collisions within [u,u+du] therefore
u∫

u−ξ
F (u)du is the number

of neutrons passing lethargy u. Therefore S = F (u)ξ = cξ
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EΦ(E). As we will see later, indeed this rough sketch explains the main
features of our actual neutron spectra in thermal systems rather well.

It also needs to be highlighted again, that these results are valid only
at energy regions below the source energy. This is often called asymptotic
region. It is also important to point out that the scattering cross section can
be considered independent of energy in the slowing down region, therefore
Φ(E) ∝ 1/E.

Figure 30: Idealized neutron spectrum.

In the discussions of slowing down an other quantity is often introduces,
the slowing down density, which in our case is

q(E) = q(u) = ξΣtΦ(u)

,
which gives the number of neutrons per unit time passing a certain

lethargy (or energy). It is possible to give a more formal mathematical ex-
pression defining this quantity, and the interested reader is referred to D&H
(p321). However, we will your in our rather simplistic discussions.

Slowing down on Hydrogen in the presence of absorbers
Let us consider a case more relevant for reactor physics: a homogeneous

mixture of hydrogen and heavy absorber nuclei (eg. uranium nuclei). We can
notice from Table 4 that slowing down on the heavy nuclei can be neglected
compared to the slowing down on hydrogen, thus in Eq. (45) it is enough to
consider hydrogen (for which α = 0) However, resonance absorption might
occur when a neutron interacts with a heavy nucleus.
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With some laborious derivation (see for example Stacey’s book) one can
arrive to

Φ(E) =
ΣU
A(E1) + ΣH

S (E1)

ΣU
A(E) + ΣH

S (E)
· E1φ(E1)

E
· exp

[
−
∫ E1

E

1

E ′
ΣU
A(E ′)

ΣU
A(E ′) + ΣH

S (E ′)
dE ′
]

(47)
which gives a relation of the flux at E, to the flux at a higher energy E1.
First of all we can note that the lethargic flux at any energy is proportional
to the lethargic flux at an other energy Φ(E)E ∝ φ(E1)E1. And the pro-
portionality is given by two factors: the first one is the ratio of the cross
sections (absorption of uranium and scattering of hydrogen) at the respec-
tive energies; the second, exponential term which includes an integral from
E to E1. The integral will always be positive therefore the exponential will
be between 0 and 1, hence can be interpreted as a probability.

We can consider three cases for E and E1:
1. The two energies are between resonances (Er1 < E < E1 < Er2). Then

the cross sections are close to constant, hence the first term ≈ 1. And due to
the scattering cross section of hydrogen is much larger than the absorption
cross section of uranium, the exponent also becomes ≈ 1. Therefore, we can
conclude that

φ(E) ≈ E1φ(E1)

E

thus the lethargic flux is constant, and this is exactly what we have observed
previously for the case when only scattering was considered.

2. When the energy is at a resonance Er = E < E1, the absorption
cross section is much higher than the scattering. therefore the first term will
become much smaller than 1. Since we know that the exponent is between 0
and 1, it will not influence our qualitative finding that

φ(E)E � φ(E1)E1

the flux is greatly decreased at the resonance energy as illustrated in Figure 31
for the notable resonance of U-238 at 6.67 eV. Neutrons that are scattered
into the energy range of the resonance are absorbed, but those neutrons that
scatter from energies above the resonances to energies below the resonances
are not affected. However, due to the reduction in the flux, rate of resonance
absorption also decreases, this is called energy self-shielding.
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Figure 31: Resonance self-shielding.

Figure 32: PWR neutron spectrum (Φ(E) and EΦ(E)).

3. When the energies are separated by a resonance E < Er < E1, the
first term is again close to unity, however the exponent is slightly less than 1
depending on the resonance width, which implies that the neutron flux is
lower at the low energy side of the resonance compared to the high energy
side. This is called resonance shielding.

Figure 32 illustrates the spectrum and the lethargic spectrum for a PWR
calculation. We can recognize the above mentioned regions: Maxwell-distribution
at thermal energies, the source Watt-distribution at fast energies with some
influence from inelastic scattering, the close to 1/E trend in the slowing down
region with the self-shielding effects.

3.2.3 Resonance escape probability

The probability appearing in Eq. (47) if integrated over several resonances
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p(ES → E) = exp

(
−

ES∫
E

Σa(E
′)

E ′Σt(E ′)
dE ′

)
is called resonance escape probability, because it gives the ratio of neu-

trons which were not absorbed by the resonances while slowing down from
ES to E.

S −
Es∫
E

Σa(E
′)Φ(E ′)dE ′

S
= p(ES → E)

Let’s recall the phenomena of Doppler-broadening (ie. that the height
of the resonance decreases while the width of the resonance increases with
temperature), although the area under the resonance is constant, neutrons
slowing down in discrete steps will have a higher probability to interact with
the resonance, therefore the resonance escape probability p decreases as the
temperature increases. This, as we will see later when discussing feedback
mechanisms, has an important implication on reactor safety: with increas-
ing power, therefore increasing temperature the negative feedback of the
Doppler-effect reduces the power.

3.3 Neutron cycle: 4 factor formula

We have previously developed a simple 2factor model to estimate the multi-
plication factor k. Since then however we have studied the neutron spectrum,
and discussed how neutrons are slowing down, and if they escape the reso-
nance region then might reach thermal energies and cause fission, therefore
we can give a more appropriate model for the neutron cycle that is when
neutrons are born in fission, slow down, and might initiate fission thus giving
birth to a new generation of neutrons as being illustrated in Figure 33.

Up to now we have considered homogeneous reactors, but in order to
accommodate that in actual reactors the fuel and the moderating material is
well separated (for an LWR in the form of fuel rods and coolant channels),
we will consider a space and energy dependent flux φ(r, E) in the following.

At the beginning of the cycle neutrons are born at high energies. As we
have previously noted, certain nuclides such as U-238 have a threshold for
fission with high energy neutrons, thus in fact some of the neutrons are born
due to fast fission. This is characterized by the fast fission factor,
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Figure 33: Schematic representation of the neutron cycle.

ε =

∫
VF

∫∞
0
ν(E)Σf (r, E)φ(r, E)dV dE∫

VF

∫ ∼5kT

0
ν(E)Σf (r, E)φ(r, E)dV dE

which characterizes the ratio of the number of neutrons born in fission (due to
both thermal and fast neutrons) and the number of neutrons born in fission
induced by thermal neutrons.

Then, after birth the neutrons will slow down mainly due to elastic scat-
tering events. The resonance escape probability

p = 1−
∫
VF

∫∞
∼5kT

Σa(r, E)φ(r, E)dV dE∫
VF

∫∞
0
ν(E)Σf (r, E)φ(r, E)dV dE

characterizes the probability that neutrons while traveling through the ep-
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ithermal region will not be absorbed by the resonances of the absorber nuclei.
When the neutrons reach the thermal region, due to the 1/v-behavior of

the cross sections they will be absorbed either in the fuel or due to parasitic
capture of other materials (eg. coolant or structural elements. As we saw
earlier, the thermal utilization factor

f =

∫
VF

∫ ∼5kT

0
Σa(r, E)φ(r, E)dV dE∫

Vtotal

∫ ∼5kT

0
Σa(r, E)φ(r, E)dV dE

characterizes the ratio of the number of thermal neutrons absorbed in the
fuel and the number of thermal neutrons absorbed in other materials.

Finally, neutrons which are absorbed by the fuel might induce fission
from which new neutrons emerge or are captured by the nuclei. The thermal
fission factor

η =

∫
VF

∫ ∼5kT

0
ν(E)Σf (r, E)φ(r, E)dV dE∫

VF

∫ ∼5kT

0
Σa(r, E)φ(r, E)dV dE

gives the average number of fission neutrons emitted per thermal neutron
absorbed in the fuel.

By multiplying these values we can calculate the infinite multiplication
factor through the 4-factor formula

k∞ = ηfpε

In order to compute the k-effective, one needs to take into account the
leakage, which is often given denoted separately for fast and thermal neu-
trons: PFNL, PTNL. However, it has to be highlighted again, that the deter-
mination of the non-leakage probabilities is rather complicated.

Today, the 4-factor formula is rather an educational tool to summarize
the various processes in fission chain reactions, or to illustrate the impact of
changing some parameter of the reactor (eq. temperature), and in practice
it has little use. Nevertheless, before computers could have been used for
elaborate calculations, this formula was the basis of reactor physics: the
factors were determined from measurements, and then the formula was used
to determine the multiplication factor.

However, as we will see in the next Chapter, today we can use more
elaborate methods to estimate the multiplication factor.
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4 Neutron transport and diffusion

In this section we are going to derive an equation describing neutron trans-
port in general. This equation is the basis of reactor physics, and can be
approximated in several ways to study only certain parts of neutron physics.

Several course books introduces neutron transport immediately by jump-
ing into neutron diffusion and considering that neutrons move around in ma-
terials or in a reactor as gas molecules would. In this case one assumes that
neutrons tend to diffuse from regions of high neutron density to regions of
low neutron density (which is qualitatively usually true, but the quantitative
relation ship between flux and current density is where the approximation
comes in). One reason for this approach is that solving the neutron trans-
port equation is intimidating, or in most realistic cases it is even impossible,
whereas handling the diffusion formalism is more straightforward.

However, deriving the exact neutron transport equation is actually sim-
pler than deriving the diffusion equation, and since it describes reality better,
it is actually worth to start from here, and later turn our attention towards
diffusion which is an approximations of neutron transport theory. There-
fore after deriving the general transport equation we will simplify it to reach
the diffusion theory, which we will use to have a basic understanding of the
spatial distribution of neutrons in a reactor core.

The main goal of neutron transport, and thus this chapter is to tracking
the population of neutrons at any point of the reactor, thus determine the
neutron population

n(r, E,Ω, t) = ? (48)

and to develop a balance equation for the population

∂n(r, E,Ω, t)

∂t
= ? = gains− losses (49)

The main focus of neutron transport is to figure out how to solve for the
neutron population density n(r, E,Ω, t). If we know this, we will know the
location and velocity of all neutrons at all time. To achieve this, we will
need to know the reaction rates which can take remove and add neutrons to
the system. For all reactions there is an associated change in energy (except
forward scattering which is basically a ”miss”), change in momentum and
direction.
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The balance equation is not going to be difficult. We have only couple of
reactions which result in ”gain” reactions. And when it is about losses, it is
really just the total cross section which will come to play, since essentially all
reactions result in a loss of a neutron at the certain phase space. Besides this
we will have streaming terms: neutrons without reaction might come into our
infinitesimal volume and might leave it, and we will be interested in the net
outcome of these streaming movements. Nevertheless, as we will soon see,
even though the equations developed are rather intuitive and straightforward,
their solutions are challenging.

4.1 Basic quantities: neutron density, flux and current

In order to describe the population of neutrons in a reactor we will need
to introduce several quantities (some of which we have already introduced,
although not in their most generic form). In the following we summarize the
related chapter of D&H (p122), and the reader is definitely encouraged to
read that for further details.

Figure 34: Illustration of neutron population density.

Let us define the expected number of neutrons in dr3 about r, energy dE
about E moving in direction Ω in solid angle dΩ at time t as the angular
neutron population density

n(r, E,Ω, t)dr3dEdΩ (50)
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Similarly we could define the scalar neutron population density after elimi-
nating certain variables

N(r, t) =

∫ ∞
0

N(r, E, t)dE =

∫ ∞
0

∫
4π

n(r, E,Ω, t)dΩdE

which is illustrated in Figure 34.
Then we can recall, that the actual physical quantity we can directly

measure in a reactor is the reaction rate density (similar reaction rates can
be defined for the energy integrated population density, or for the angular
density):

R(r, E, t)dr3dE = v(E)Σ(E)N(r, E, t)dr3dE (51)

where, due to convenience we usually introduce the neutron flux (again, we
can analogously define scalar and angular quantities)

φ(r, E,Ω, t) = v(E)n(r, E,Ω, t) (52)

Φ(r, E, t) = v(E)N(r, E, t)

Φ(r, t) = vN(r, t)

where the relationship between the angular and scalar flux is

Φ(r, t) =

∫ ∞
0

Φ(r, E, t)dE =

∫ ∞
0

∫
4π

φ(r, E,Ω, t)dΩdE

Note that the neutron flux often has a ”bad reputation”, and the reason
is that it is because it is not like other flux quantities we are used to from
physics, since the neutron flux is a scalar quantity (even the angular flux is
scalar, to cause some headache), whereas fluxes in eg. heat conduction are
vectors. And although the neutron flux does have a physical interpretation
(total distance traveled in a volume per second by neutrons going into a
certain direction with a certain energy), it is due to mathematical convenience
that we prefer to work with it.

We can however introduce a quantity, the neutron current which rather
corresponds to the conventional flux quantities. We can define the angular
neutron current density
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j(r, E,Ω, t) = Ωφ(r, E,Ω, t) (53)

and with that we can give the expected number of neutrons passing through
an area dS per unit time with energy E in dE and direction Ω in dΩ at time
t:

j(r, E,Ω, t)dSdEdΩ

And again we can eliminate variables by integration

J(r, t) =

∫ ∞
0

J(r, E, t)dE =

∫ ∞
0

∫
4π

j(r, E,Ω, t)dΩdE

Note that J(r, t)dS is the net rate of neutrons passing through a surface
area dS. The flux and the current density are similar, however the current
density is a vector. That said the main difference is that the current density is
the net rate the neutrons pass through a surface oriented in a given direction,
whereas the flux is the total rate at which neutrons pass through unit area
regardless its orientation. So J is more convenient to describe flow and
leakage, whereas Φ is more convenient to describe reaction rate.

We can define the partial current density (total rates neutrons flow from
left to right or right to left) as shown in Figure 35

J±(r, t) =

∫ ∞
0

∫
2π±

esj(r, E,Ω, t)dΩdE → esJ(r, t) = [J+(r, t)− J−(r, t)]

Thinking about the current and partial currents will come handy at
boundaries, where we for example want to satisfy the condition that there is
no flow from one side of the boundary.

As a final note we can mention that for isotropy the angular density is
independent of Ω

n(r, E,Ω, t) =
1

4π
N(r, E, t)

4.2 Neutron transport equation

Let us consider that we selected a beam of neutrons at the location r in dV,
at energy (E,E + dE), and traveling to direction dΩ around Ω. At time t.
The number of neutrons in the beam is n(r, E,Ω, t)dV dEdΩ.

77



Figure 35: Illustration of partial current.

What happens with this beam after time dt? A fraction of the beam will
be at r+vΩdt. Another fraction will undergo reactions, and will be lost from
the beam. In the meantime other neutrons enter the beam from reactions of
other beams. The beam loses neutrons due to scattering out, fission, capture
(ie. all the reactions described by the total macroscopic cross section)6.
And the beam gains neutrons from fission, in-scattering, or possibly from an
external source. Let say the number of such source neutrons is

Q(r, E,Ω, t)dV dEdΩdt

then we can summarize the transport with an equation(
n(r + vΩdt, E,Ω, t+ dt)− n(r, E,Ω, t)

)
dV dEdΩ = (54)

= −Σt(r, E)φ(r, E,Ω, t)dV dEdΩdt+Q(r, E,Ω, t)dV dEdΩdt

Let us divide with dt, and assume that dt→ 0, then the left side becomes
a total derivative (it is the derivative with respect to time as it would appear
to an observer moving with the packet of neutrons). Let’s play with that a
bit.

6Two other reactions might happen with neutrons, which we can safely neglect: a
neutron might beta-decay with a half-life of 12 minutes, which as we will see is much longer
than the lifetime of neutrons in a reactor; and in theory neutron-neutron interaction might
happen, but these have so long mean free path that we can ignore it, if we couldn’t, the
developed transport equation would have non linear components, similarly as the equations
describing gas transport
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dn

dt
=
n(r + vΩdt, E,Ω, t+ dt)− n(r, E,Ω, t)

dt
(55)

=
n(r + vΩdt, E,Ω, t+ dt)− n(r, E,Ω, t) + n(r, E,Ω, t+ dt)− n(r, E,Ω, t+ dt)

dt

=
∂n

∂t
+ vΩ∇n

where for simplicity the arguments of the functions were not written, also
note that the speed depends on energy v(E). The partial derivative is the
change of rate at a fixed position, whereas the total derivative is the change
of rate within the packet or beam which is moving. The difference is often
called streaming. From the point of view of an observer traveling with the
beam, there would be no contribution from streaming. With that the most
generic neutron transport equation describing the flux will be.

1

v

∂φ(r, E,Ω, t)

∂t
= −Ω∇φ(r, E,Ω, t)− Σt(r, E)φ(r, E,Ω, t) +Q(r, E,Ω, t)

(56)
This equation is called neutron transport equation, or often referred to

as Boltzmann-equation7. In order to expend the source Q, we will include
the possible sources of neutrons as reaction rates

Q(r, E,Ω, t) = S(r, E,Ω, t)+ (57)

+

∫
4π

∫ ∞
0

Σs(r, E
′)F (E ′,Ω′ → E,Ω)φ(r, E ′,Ω′, t)dΩ′dE ′

+
χ(E)

4π

∫
4π

∫ ∞
0

ν(E ′)Σf (r, E
′)φ(r, E ′,Ω′, t)dΩ′dE ′

We could include other terms (such as inelastic scattering, or photo-
fission), however for LWR applications the role of these reactions is negli-
gible. Of course, there are some initial and boundary conditions. At a free

7The reader might notice that Ludwig Boltzmann was not alive when the neutron was
discovered, nevertheless he developed similar equations for the kinetic theory of gases,
hence the neutron transport equation is also named after him
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surface (where a neutron return after crossing), characterized by the outward
normal n, there is no flux for the incoming direction:

φ(rb, E,Ω, t) = 0 for nΩ < 0 (58)

Note, there are more heuristic derivations of the transport equation.
Those mostly differ by the derivation of this streaming term (the other terms
are already heuristic enough). Here we have followed the derivation from the
B&G book. Let us just briefly mention the other type of derivations: in
that case there is a gain term due to neutrons streaming into our volume V
(bounded by surface S), and a loss term due to neutrons streaming out. We
can handle these as a net leakage with the concept of angular current density
j(r, E ′,Ω′, t). The rate at which neutrons leak out is:

j(r, E ′,Ω′, t)dS = Ωφ(r, E ′,Ω′, t)dS

hence the contribution over the whole surface is

=

∫
S

Ωφ(r, E ′,Ω′, t)dS =

∫
V

Ω∇φ(r, E ′,Ω′, t)dV

Notice, that in these derivations one would write up the volume integrals
first, and then when all term is a volume integral, drop them. See D&H
p111.

4.2.1 Possible solutions to the transport equation

The neutron transport equation is an exact description of the neutron dis-
tribution, which yields the angular flux as a solution, which is all the infor-
mation (or often even more) what we need to study reactors. Let’s consider
that all the geometry (spatial dependence of the cross sections), and the cross
section information is available. Nevertheless, still we find ourselves in some
trouble, because

• we have seven independent variables.

• the spatial dependence of the cross sections is complicated

• the energy dependence of cross sections is complicated (resonances,
thresholds)
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In order to solve such an equation, we would need computers, but even so
it is too difficult. So, the task is usually, to simplify the transport equation
based on reasonable approximations. However this is a topic for more ad-
vanced courses. For the moment we would just summarize how the variables
could be handled.

Since computers are useful for solving linear algebra, and not calculus,
usually the task is to convert this equation into a linear algebra problem. For
this we will need to discretize the variables and have a discrete representa-
tion of derivatives and integrals. For this one can use discrete ordinates or
function expansion.

Let’s consider that the general problem is stated as

F
(
f(x), df/dx, d2f/dx2, ...,

∫
f(x′)dx′, ...

)
= 0 (59)

Then tackling this with discrete ordinates would mean:

• Discretizing the function f(x)→ f(xi) ≡ fi, i = 1, ..., N

• Replacing the function with a vector f(x)→ (f1, f2, ..., fN)

• Derivatives become finite differences: df/dx|x=xi = ∆fi/∆xi

• Integrals become numerical quadratures:
∫ b
a
f(x)dx =

∑
iwifi

Whereas tackling with function expansion would mean:

• Expanding the function f(x) =
∑

l flpl(x)

• Replacing the function with a vector f(x)→ (f1, f2, ..., fN)

• Once the expansion coefficients are calculated we can reconstruct the
function without interpolation.

• If we substitute back this form, we can perform the integration, deriva-
tion etc. to arrive to an algebraic equation.

An example of function expansion is to use Legendre polynomials if the
variable ranges between -1 and +1. (eg. for µ = cosϑ).

Let’s summarize based on these methods how we can handle the variables
in the neutron transport equation:
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1. The direction Ω

• can be function expanded with Legendre polynomials. This method
is often referred to as PN equations. Usually only low order solu-
tions are used.

• can be discretized (we select certain rays). This method is often
referred to as SN equations.

2. Energy

• The cross sections and the spectrum has a strong dependence on
energy, over a large span (from a fraction of eV to 10 MeV).

• Thus energy is discretized into energy groups

• We replace the continuous cross sections with spectrum weighted

cross sections: Σg =

∫ Eg−1
Eg

Σ(E)ϕ(E)∫ Eg−1
Eg

ϕ(E)
. Note that in order to do

so, one needs a knowledge of the neutron spectrum. Therefore
calculations are usually split into parts, first solving the slowing
down equation on the fuel cell level (pin or assembly), and using
the group cross sections in further calculations.

3. Space is handled with a spatial mesh.

4. Time is discretized.

Note that it might be a bit counter intuitive that for the weighted cross
section the integral bounderies are Eg − Eg−1. As we saw earlier when neu-
trons slow down in energy, therefore it is sometimes more convenient to use
a reverse labeling as shown in Figure 36. Since this used in most practical
applications and other textbooks, we have also using this.

Figure 36: Indexing of energy groups.

If we were doing a brute force calculation, with 100x100x100 space points,
10 energy groups, 10 directions, we would obtain 108 equations for each time
step, which is difficult to handle even with today’s computers. Therefore
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some physical insight is often needed to eliminate variables. For a example
critical system is time independent, thus the time variable can be omit-
ted. The geometry often shows some symmetry, therefore the number of
dimensions can be reduced. Or as we will see later, we can apply the diffu-
sion approximation to eliminate angular dependence. Altogether, numerical
methods solving the neutron transport are the subject of more advanced
computational reactor physics discussions.

4.3 Neutron diffusion

We had derived before the exact transport equation:

1

v(E)

∂φ(r, E,Ω, t)

∂t
= −Ω∇φ(r, E,Ω, t)−Σt(r, E)φ(r, E,Ω, t)+S(r, E,Ω, t)+

(60)

+

∫
4π

∫ ∞
0

Σs(r, E
′)F (E ′,Ω′ → E,Ω)φ(r, E ′,Ω′, t)dΩ′dE ′

+
χ(E)

4π

∫
4π

∫ ∞
0

ν(E ′)Σf (r, E
′)φ(r, E ′,Ω′, t)dΩ′dE ′

Now we will try to reduce this into something easier to handle. It would
be convenient to get rid of Ω variable, since we usually are less interested
in the direction. For example we could integrate around all angles, assume
that everything only weakly depends on the angle. We can also assume that
the media is isotropic (so F (E ′,Ω′ → E,Ω) = F (E ′ → E,Ω′Ω). We would
arrive to

1

v

∂Φ(r, E, t)

∂t
= −∇J(r, E, t)− Σt(r, E)Φ(r, E, t) + S(r, E, t)+ (61)

+

∫ ∞
0

Σs(r, E
′)F (E ′ → E)Φ(r, E ′, t)dE ′

+χ(E)

∫ ∞
0

ν(E ′)Σf (r, E
′)Φ(r, E ′, t)dE ′

This is called the neutron continuity equation. However, notice that we
have not completely eliminated the direction, since it appears in J. The way
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eliminating it will in fact be the diffusion approximation, however for the
moment we will only try to make this equation a bit more simple.

Let us handle energy. We can do is to discretize energy and assume that
neutrons can travel only with discrete energies. Our options are:

• forget about energy, and assume that all neutrons travel with the same
speed. This is the 1-group approach.

• Assume that neutrons are either traveling either with thermal or fast
energies. This is the 2-group approach

• Assume that neutrons can have various discrete energies. This is the
multi-group approach.

Again we can mention that the cross sections (and the birth energy spec-
trum) for the energy groups can be defined as

Σg =

∫ Eg−1

Eg
Σ(E)ϕ(E)∫ Eg−1

Eg
ϕ(E)

(62)

Out of these methods the 2-group method is usually used in industrial
applications. For the moment we will select the 1-group approach. This
rather has an academic relevance: we will be able to solve the diffusion
equation analytically, and draw some conclusions on the spatial distribution
of neutrons. In case of 1-group, a lot of the quantities and functions will
become simpler. Since in case all the neutrons travel with the same speed:

• then all fission neutrons born in the same energy group: χ(E) = 1

• all scattering happens within the same group: F (E ′ → E) = 1

• therefore we do not care about the scattering cross section Σs either.
Remember that Σt = Σs+Σa = Σs+Σf +Σc, therefore Σs−Σt = −Σa

If we take into account all these we reach a more manageable equation
(note that now even the speed v is an average value):

1

v

∂Φ(r, t)

∂t
= −∇J(r, t)− Σa(r)Φ(r, t) + S(r, t) + ν̄Σf (r)Φ(r, t) (63)
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It is time to tackle is the divergence of the current. Here we will assume
that neutrons in the system behave like a gas (or like chemicals in solutions),
and we apply Fick’s law. So the neutrons flow from neutron dense locations
to locations with less neutrons (and they follow a random walk, with no
directional preference in scattering events).

J = −D∇Φ (64)

Of course it is fair to ask what is this diffusion coefficient? If we would
do a more thorough derivation (see D&H for example) from the transport
equation, we could arrive to

D =
1

3(Σt + µ0Σs)
=

1

3Σtr

(65)

where we have introduced the transport cross section Σtr. Of course we have
seen earlier that scattering is anisotropic in the LAB system, especially on
light nuclei, therefore the diffusion approximation is not always a terribly
good approximation. Nevertheless, it can be patched up with various trans-
port corrections, but this is outside of the scope of this topic. With applying
Fick’s law we arrive to

1

v

∂Φ(r, t)

∂t
= ∇D(r)∇Φ(r, t)− Σa(r)Φ(r, t) + S(r, t) + ν̄Σf (r)Φ(r, t) (66)

where we have considered that the diffusion coefficient D(r) might depend
on the location.

For simplicity, let’s assume, that our whole reactor is homogeneous which
in practice is not the case - besides for molten salt reactors- because we knew
that it is made of heterogeneous structures, such as fuel rods surrounded with
coolant. Just think about the fission cross section, which has jumps at the
fuel coolant boundaries. But in practical calculations we often spatially ho-
mogenize regions. In a homogeneous reactor the cross sections don’t depend
on the location.

1

v

∂Φ(r, t)

∂t
= D∇2Φ(r, t)− ΣaΦ(r, t) + S(r, t) + ν̄ΣfΦ(r, t) (67)

And finally let us handle the time dependence. Of course there are sev-
eral cases of interest: in a non-multiplying system (Σf = 0) the last term
disappears and in case of a constant source we observe a steady state flux.
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For a multiplying system without a source we can renormalize the fission
source term by dividing it with k. For a supercritical system k > 1, the
normalization depresses the fission neutron production rate. For a subcritical
system k < 1, the normalization increases the fission neutron production rate.
Thus after the normalization we would obtain a steady state problem

0 = D∇2Φ(r)− ΣaΦ(r) +
1

k
ν̄ΣfΦ(r) (68)

as we will see in a moment this steady state, 1-group diffusion equation can
be used to investigate the shape of the flux in various geometries, and to find
conditions for criticality.

4.3.1 Limitations of diffusion theory and other comments

We have pointed out that the diffusion theory has certain limitations, let us
summarize these:

• The anisotropy of flux will depend on location. If we are far from ab-
sorbers (control rods) and from locations where the spatial dependence
of the flux is strong, then we can assume that the flux just weakly
depends on the direction.

• Time dependence: we neglected the time derivative. If we wouldn’t
have done it, then the diffusion coefficient would have an ω/v ”time
absorption cross section”. But for most processes in a reactor we can
neglect this.

• The anisotropy of the scattering kernel: we have seen that for light nu-
clei the LAB scattering is anisotropic even for isotropic CM scattering.

Note that the diffusion theory and the diffusion coefficient can be derived
directly from transport theory by the expansion of the scattering kernel and
the flux with spherical harmonics (the derivation is outside of the lecture,
but you can find it in D&H):

φ(r, E,Ω, t) =
1

4π
φ(r, E, t) +

3

4π
ΩJ(r, E, t) + ...

and

Σs(r, E
′ → E,ΩΩ′) =

1

4π
Σs0(r, E ′ →, E) +

3

4π
Σs1(r, E ′ →, E)ΩΩ′
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4.3.2 Diffusion length

We can rearrange the diffusion equation by introducing various constants
(see the Lewis book), for example by introducing

ν̄Σf = Σa
ν̄Σf

Σa

= k∞Σa

and the diffusion length

L =

√
D

Σa

one arrives to

0 = ∇2Φ(r)− k∞ − 1

L2
Φ(r) +

S(r)

D
(69)

The diffusion length L (and the diffusion area L2) have physical inter-
pretations. (See Lewis p154). The average length of one single section in
the zigzag would be Σt. But the diffusion length is proportional to the root
mean square distance diffused by a neutron between birth and absorption as
illustrated in Figure 37.

Figure 37: Illustration of the diffusion length.

4.3.3 Solution to the diffusion equation in simple geometries

Let us briefly solve the diffusion equation for three simple, homogeneous
geometries. In D&H you can find the derivation for other geometries as well.
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1D multiplying slab

If we rearrange the equation we arrive to the Helmholtz-equation

− ∇
2Φ

Φ
=

1
k
ν̄Σf − Σa

D
(70)

Or by introducing a new constant which depends on the materials of the
reactor.

∇2Φ +B2
mΦ = 0 (71)

Our trial solution is Φ(x) = A cosBx+C sinEx. We know that the flux is
symmetric, so dΦ/dx|x=0 = 0, which leaves the cosine term. Let’s substitute
that to the original equation

− −AB
2cosBx

AcosBx
= B2 =

1
k
ν̄Σf − Σa

D
(72)

Clearly now we have used a B2 which only depends on the geometry.
Let’s call it B2

g , the geometry buckling factor. We can determine it from the
boundary condition. Let’s consider that the flux disappears at edges of the
slab at x = a and x = −a (so the size of the reactor is 2a)

Bga =
π

2
→ Bg =

π

2a

Of course, at the edge of the reactor the flux should not become zero
if the slab is surrounded with vacuum as this is highlighted in Figure 38 A
more meaningful boundary condition could be introduced through the partial
currents. From Fick’s law we could derive (see D&H)

J±x =
1

4
Φ∓ 1

2
D
d

dx
Φ

And we know that for a vacuum boundary J−x (a) = 0, from which we
find that the flux should become zero at a + 2D (and based on transport
equation even more accurate results could be obtained). This doesn’t mean
that the flux is physically zero at this location, since if the slab is surrounded
by vacuum, the flux after the edge is going to be constant. It means that
mathematically speaking if the flux would be extrapolated it should disappear
at a+2D. In the following we will always assume ”extrapolated boundaries”,
so we don’t need to worry about this.
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Figure 38: Vacuum boundaries in transport and diffusion theory. One can observe that
we need to ”extrapolate” the boundary for diffusion.

Figure 39: Mathematically correct solutions to the diffusion equation in a slab. n = 0
is the fundamental mode.

Note that the Helmoltz equation produces valid solutions at Bg,na =
π
2

+ nπ, so Bg,n = (2n+1)π
2a

. However those will not be physical, so we keep
the n = 0 fundamental mode, as shown in Figure 39, and for this course we
don’t care about the other modes.

For a critical reactor k = 1, the constant B2
m becomes

B2
m =

ν̄Σf − Σa

D

and as mentioned earlier it only depends on the materials of the reactor.
Therefore, we will call it the material buckling factor. It is clear that the
condition of criticality is
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B2
g = B2

m (73)

But it is also apparent, that in case we know the the material and the
geometry buckling, we can figure out the k:

k =
ν̄Σf

DB2
g + Σa

=
gains

losses
(74)

and this results is aligned with our previous, intuitive definition of the mul-
tiplication factor, since it is a ratio of the gains and losses of neutrons.

We can use this result to perform some basic investigations. What hap-
pens if

• we introduce more absorber and increase Σa? Then k goes down.

• we increase the size of the reactor? Then Bg decreases, thus k increases.

• we increase the temperature T? This is a bit more complicated ques-
tion, in general we can say that the density goes down, so the number
density goes down, so the macroscopic cross sections decrease. Reac-
tor might expand, although usually, this will play only a small role.
The diffusion coefficient D increases (since in the denominator, the
macroscopic cross sections go down): the atoms are more spread out,
so neutrons can move around more easily. But as a summary, we can-
not answer the question, since it depends on the exact composition of
materials.

One might ask also, where is the power in these solutions? We see that
the constant describing the magnitude of the flux A disappeared. Indeed,
criticality doesn’t depend on the power. That is just a normalization factor.
We can have even (almost) zero power reactors (few watts). We can obtain
the normalization factor A from the power:

P =

∫
V

dr3wfΣfφ(r) (75)

where wf is the useful energy released in fission.
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2D Cylindric reactor

Let’s assume that the flux is symmetric in ϕ, then the Laplace operator
becomes

1

r

∂

∂r
(r
∂

∂r
) +

∂2

∂z2

Then, we will separate the variables:

Φ(r, z) = R(r)Z(z)

after substituting these in the diffusion equation we arrive to

Z(z)
1

r

∂

∂r
(r
∂

∂r
R(r)) +R(r)

∂2

∂z2
Z(z) = −B2Φ(r, z)

where we can divide by Φ(r, z):

1

R(r)

1

r

∂

∂r
(r
∂

∂r
R(r)) +

1

Z(z)

∂2

∂z2
Z(z) = −B2

where we obtain the sum of some function f(r) and g(z), which is constant
for all r and z. This is only possible if the two terms are also constant:

1

R(r)

1

r

∂

∂r
(r
∂

∂r
R(r)) = −B2

r

and

1

Z(z)

∂2

∂z2
Z(z) = −B2

z

and with that

B2
r +B2

z = B2

The equation for the the axial dimension is exactly what we just had for
the 1D slab, and in the general solution with the same thinking we can keep
only the cosine

Z(z) = c1 cosBzz

.
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and by considering that the height of the reactor is H (extrapolated), we
arrive to

Z(z) = c1cos(
π

H
z)

For the radial dimension we need to consult our math books, and find that
the function which could fulfill this equation is the Bessel function J0(Brr). In
fact, similarly as before here also the first and second kind Bessel functions
would be solutions, but we drop the second kind to get positive values at
r = 0 as it is shown in Figure 40.

R(r) = c2J0(
2.405

R
r)

and with that the final solution is

Φ(r, z) = c cos(
π

H
z)J0(

2.405

R
r)

Figure 40: Illustration of the Bessel-functions and the radial flux profile of a cylinder.

1D non-multiplying slab

Let us review a case when the material is not multiplying. Then we can obtain
a steady case only if there is a source placed in the geometry. Consider a slab,
with a planar source placed at the center. The diffusion equation reduces to
the one-dimensional form

d2φ

dx2
− 1

L2
φ = −S(x)

D
= −S0

D
δ(x)
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where the diffusion length L =
√
D/Σa is introduced. Note that in case

x 6= 0, the equation is even simpler:

d2φ

dx2
− 1

L2
φ = 0

We will try to solve this homogeneous equation first, and then use some
boundary conditions to get the generic solution.

One boundary condition will be

−Ddφ
dx
|+ε +D

dφ

dx
|−ε = Jx(0

+)− Jx(0−) = S0

and due to the symmetry of the geometry

Jx(0
+) = −Jx(0−) = J(0)

thus the first boundary condition is

limx→0+ −D
dφ

dx
=
S0

2
thus the net current at the origin at either side must be half of the source
strength.

Since we have a second order derivative we need and other boundary
condition as well: we will use the condition of finite flux as x→∞:

limx→∞φ(x) <∞
We solve for the positive side, and then infer symmetry for the negative

side. The general solution is

φ(x) = A · exp
(
− x

L

)
+B · exp

(x
L

)
where due to the second BC B = 0. And due to the first BC

limx→0+ −D

(
− A

L
· exp

(
− x

L

))
=
AD

L
=
S0

2
→ A =

S0L

2D

thus the solution is (illustrated in Fig. 41).

φ(x) =
S0L

2D
· exp

(
− |x|

L

)
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Figure 41: Solution to the flux in a nonmultiplying slab.

4.4 Reflected geometries

In practice the reactor is of course not surrounded with vacuum, but typically
with some material which can scatter neutrons. This can mean, that the
reactor core is surrounded with water, but in fast reactors often the core is
surrounded with so called reflector assemblies (since the coolant would not
reflect neutrons). The main reason of doing so is to reduce the leakage of
neutrons.

One could derive the flux shape for a reflected geometry. We will omit
the derivation in the notes (see D&H p211), just highlight that the criticality
condition B2

g = B2
m does not hold anymore. The flux shape is shown in

Fig. 42 (top), the drop of the flux inside the reflector region will depend on
the properties of the material. In case the absorption cross section of the
material is high the flux quickly goes to zero (of course in that case we do
not talk about a reflector anymore, rather an absorber or shield.

However, this is a geometry for which our academic tool, the 1-group
method gives a rather bad approximation. Namely, that reflected geometries
besides reducing leakage also serve to flatten the flux and the power distribu-
tion. As a result of this one could observe a peaking of the thermal flux close
to the boundary between the core and the reflector as shown in the bottom
of Figure 42. However, one needs to apply at least 2-group theory to analyze
this effect.

Since reflectors reduce leakage, the fissile core can have a smaller size to
achieve criticality. This is called the reflector savings

δ = abare − areflector (76)
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Figure 42: Spatial distribution of the neutron flux in a reflected slab. Top 1-group
diffusion theory. Bottom Monte Carlo particle transport results.

which can be derived as a function of the reflector savings (D&H p214). Fig-
ure 43 illustrates this. The figure indicates how much the critical size can
be decreased when the reflector is added. As one would expect intuitively,
the function saturates (at around b = 3Lr), which means that after a cer-
tain reflector thickness the critical size of the core cannot be reduced, since
neutrons will not reach to and scattered back from such a far distance.

4.5 2 and Multi group diffusion

As we saw from the reflected geometry, the 1-group diffusion theory cannot
adequately capture all physical phenomena, thus in practice at least 2, but
often more groups are used. Within this course we do not intend to solve the
2-group problem analytically, or to implement multi-group numerical solvers,
we will only draft the idea behind multigroup methods by developing a 2-
group equation.
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Figure 43: Reflector savings.

In 2-group theory the energy boundaries are selected so that there is no
upscattering from the thermal to the fast group. The typical boundaries
are E2 = 0, E1 = 1eV , E0 = 10MeV . In such group structure, we can
assume that all the fission event contribute as a source only to the fast group,
therefore χt = 0 and χf = 1.

Let us summarize the gain and loss term in each of the groups (index
f refers to the fast group, and t refers to the thermal group; when double
indexes are encountered such as in Σf,t, the first term refers to the physical
process, such as fission in this example, and the second to the energy group,
such as thermal in this example).

group Gains Losses
fast 1

k
νtΣf,tΦt + 1

k
νfΣf,fΦf Σa,fΦf + Σs,f→tΦf +DfB

2
gΦf

thermal Σs,f→tΦf Σa,tΦt +DtB
2
gΦt

The sources of neutrons in the fast group are both from thermal and
fast fission. The sources is of neutrons in the thermal group are only from
downscattering from the fast group. Both energy groups lose neutrons due
to absorption and leakage, however the downscattering appears as a loss in
the fast group.

With these source and loss terms it is possible to develop a coupled set
of balance equation for each groups.

1

k
νtΣf,tΦt +

1

k
νfΣf,fΦf = Σa,fΦf + Σs,f→tΦf +DfB

2
gΦf (77)

Σs,f→tΦf = Σa,tΦt +DtB
2
gΦt

By rearranging the second, we get an expression for the thermal flux
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Φt =
Σs,f→tΦf

Σa,t +DtB2
g

(78)

which can be substituted into the first one

1

k
νtΣf,t

Σs,f→tΦf

Σa,t +DtB2
g

+
1

k
νfΣf,fΦf = Σa,fΦf + Σs,f→tΦf +DfB

2
gΦf (79)

Then after dividing by Φf , one can rearrange for k.

k =
νtΣf,t

Σs,f→t

Σa,t+DtB2
g

+ νfΣf,f

Σa,f + Σs,f→t +DfB2
g

=
gains

losses
(80)

And notice that similarly as before, we could identify the terms as gains
and losses.

Figure 44: Change in the axial flux shape due to control rod insertion.

4.6 Control rods

It is noteworthy to mention that certain elements in the reactor, such as
control rods, can drastically change the spatial distribution of neutrons in
the core, and also have an impact on the multiplication factor of the system.
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Figure 44 illustrates the influence of a control rod insertion on the axial flux.
We can see that the peak of the flux will shift to deeper regions of the core.
The impact of the rod on the reactivity

ρ =
k − 1

k

can be given by the control rod worth, which describes the change in the
k-effective ∆k due to the insertion of the control rod.

4.7 Calculation scheme

As a final note to our discussion on neutron transport, it is important to
highlight that in this chapter we have barely scratched the surface. There is
no numerical solution to the transport problem which can be applied directly
at each levels of the reactor core besides Monte Carlo methods. Therefore
the problem is typically split into tasks as illustrated with an oversimplified
scheme in Figure 45. First the continuous cross section data is processed to
obtain group-wise data. Then this is used to tackle the slowing down and
thermalization problem at a pin or lattice level to obtain few group cross
sections. Finally that is used in core level diffusion solvers. There can be
of course other task to include depending the application, such as depletion
calculations, or transient calculations, which are the topics of the following
chapters.

Figure 45: Schematic illustration of the reactor calculation process.
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5 Time dependence in reactor physics

Up to now we have considered the reactor to be at a steady state, when the
number of neutrons does not change in time. This is however not always
the case: even during normal reactor operation the power might need to be
adjusted, which requires the momentary increase or decrease of the multi-
plication factor of the core, which then results in the increase or decrease of
the neutron population. This chapter first discusses the the time-behavior of
reactors with the help of the point kinetic model.

Then we continue our discussions with subcritical systems driven by a
neutron source. Although such systems are in fact steady, but due to the low
number of neutrons, the statistical fluctuations of the neutron population
and the time correlation of single neutron detections due to the stochastic
nature of neutron transport become relevant.

In a nuclear reactor due to fission the concentration of fissile nuclei is
decreasing, while the concentration of fission products is increasing. These
changes are not relevant on short time scales, thus in our previous discussions
it was not necessary to take them into account. Nevertheless, the due to this
change the macroscopic cross sections Σ(r, E, t) are in fact time dependent.
Therefore our last subject of time-dependent processes will be the depletion
of fuel.

5.1 Nuclear Reactor Kinetics

Up to this point, we have only considered the case of a critical reactor, i. e.
a system in which the neutron production in fission is just right to keep the
chain reaction going. The neutron diffusion equation may be solved for such
a system to describe the neutron production, transport and absorption in the
core, as well as possible leakage of neutrons from the core. The neutron flux in
such a system of course depends on both space and time — neutrons are after
all particles moving throughout the core, inducing fission at various locations.
Nonetheless, if we assume a critical reactor, the neutron production balances
the absorption and fission such that there is no overall change in the neutron
population in the core. That is, the neutron flux in this assumed critical
core is time-independent. In this chapter, we will make a step towards a
more realistic description of the time-dependent system that a nuclear reactor
really is. To do that, we study reactor kinetics.

Studying the time-dependence of the reactor behaviour is important for
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a number of reasons. The reactor core is not an isolated system, but is for
example connected to turbines generating electricity. Should the load on
these turbines be perturbed, the steam demand will also be altered, affecting
for instance the temperature or pressure in the reactor vessel. In a water-
moderated core, these parameters will have an impact on the moderation rate
and therefore also on the energy distribution of neutrons in the core. Because
the cross sections vary with neutron energy, there will be an impact on the
neutron production and loss in the core — the system will be perturbed from
its critical state. Another effect is the long-term change in fuel composition:
after more and more fissions in the fuel, its composition will change in a way
such that the neutron balance that held true in the initial critical core no
longer does. Effects such as these require the operator to take action to keep
the system critical. As we shall see in this chapter, the time dependence of
the system is absolutely vital for such control to be possible.

In subsequent chapters, we will return to some of the more concrete exam-
ples of time dependence in a nuclear reactor: sources of feedback, depletion
and poisoning. In this chapter, the focus will be on extending the neutron
diffusion equation to a time dependent system. It is first important to point
out one key assumption that will hold throughout this chapter: that the spa-
tial dependence of the neutron flux is fixed at the fundamental mode. That
is, we assume that localised fluctuations in the neutron flux will die away
rather quickly, yielding a fixed spatial distribution of the neutrons. This
assumption is referred to as the point-kinetics approximation (although the
spatial dependence of the flux is not described as a point, but rather a fixed
distribution). We then assume that any time dependence in the flux will
simply scale the neutron flux up or down while keeping the spatial shape
fixed.

5.1.1 Reactor with only prompt neutrons

In the treatment of the neutron diffusion equation up to this point, it has
been assumed that the neutron source (i. e. the number of neutrons produced
per second per volume) from fission in the reactor is given by:

Sf(~r, t) = νΣfvn(~r, t), (81)

where ν is the average neutron multiplicity (i. e. the average number of
prompt neutrons released in the fission event), Σf is the average macroscopic
fission cross section, v is the average neutron velocity and n(~r, t) is the space-
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and time-dependent neutron density. The neutron multiplicity, macroscopic
cross section and neutron velocity have been averaged over the nuclei in the
fuel as well as the neutron energy, yielding a one-speed description of the
source. Here, I have emphasised the word prompt because it is important for
the purpose of this chapter.

By recognising that the one-speed neutron flux φ(~r, t) = vn(~r, t), Eq. 81
may be incorporated into the neutron diffusion equation (we now drop the
overline notation denoting one-speed averaged, since we will be using those
throughout the chapter):

1

v

∂φ

∂t
= νΣfφ(~r, t) +∇ ·D∇φ(~r, t)− Σaφ(~r, t), (82)

where D is the diffusion coefficient and Σa is the one-speed macroscopic
absorption cross section. Here, we should make an important note: of course
the above equation can be modified if there are additional sources of neutrons
in the system (such as when starting up the system), or when considering
non-multiplying materials. Adding and/or removing the corresponding terms
in the above equation would result in different sets of differential equations
for the neutron population, which may be solved. In this chapter, we will
however focus on the results for the system described above. Now, if we come
back to the assumption behind the point kinetics approximation, the spatial
dependence of the neutron flux in the core is fixed and may be written ψ1(~r)
(the subscript denotes that this is the fundamental spatial mode of the flux).
As stated earlier, the time dependence of the flux lies in a time-dependent
scaling of this flux. That is, the flux φ(~r, t) is written as a product of a
time-dependent part and a space-dependent part:

φ(~r, t) = vn(t)ψ1(~r), (83)

where we have used the definition of neutron flux as the product of the
neutron velocity and the neutron density. Inserting this into the diffusion
equation Eq. 82 yields:

1

v
vψ1(~r)

∂n

∂t
= νΣfvn(t)ψ1(~r) + vn(t)∇ ·D∇ψ1(~r)− Σavn(t)ψ1(~r). (84)

Because the time- and space-dependences are nicely separated, ∇ ·D∇ψ1 =
D∇2ψ1. This is a measure of the curvature of the spatial dependence of the
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flux, and because we are here only concerned with the fundamental spatial
mode, this can be rewritten in terms of the geometric buckling B2

g ≡ B2
1 :

B2
1 ≡ B2

g = − 1

ψ1

∇2ψ1. (85)

Inserting this into Eq. 84 yields:

dn

dt
= νΣfvn(t)− vn(t)DB2

g − Σavn(t) = (νΣf −DB2
g − Σa)vn(t). (86)

Introducing three new variables L, l and k:

L ≡ Diffusion length ≡
√
D

Σa

(87)

l ≡ Mean neutron lifetime ≡ 1

vΣa(1 + L2B2
g)

(88)

k ≡ Multiplication factor ≡ νΣf/Σa

1 + L2B2
g

(89)

The diffusion length L can be viewed as a measure of how far (on average) a
neutron in a system travels between it’s birth and it’s absorption. The mean
neutron lifetime l can be viewed as the time (on average) between the birth
of a neutron and it’s absorption. In a thermal reactor, l ' 10−4 seconds,
whereas in a fast reactor l ' 10−7 seconds [L&B page 332] Finally, the
multiplication factor k is the number of neutrons produced in fission divided
by the number of neutrons lost through absorption or leakage. It is worth
noting that k = k∞/(1 + L2B2

g), where k∞ is the multiplication factor in an
infinite core and the denominator corrects for leakage from the boundary of
the core. Using these relationships together with Eq. 84 yields

dn

dt
=

(
k − 1

l

)
n(t), (90)

which is a differential equation with the following solution for n(t):

n(t) = n0 exp

[(
k − 1

l

)
t

]
= n0 exp[−t/T ]. (91)

That is, the time-dependence of the neutron flux in the core is characterised
by an exponential with a time constant 1/

(
k−1
l

)
≡ T . This time constant
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T is called the reactor period. This constant characterises the time scale on
which the neutron flux in the reactor changes given a certain deviation of
k from one. That is, if the system leaves its critical state (at k = 1), the
time scale at which the resulting change of flux (and correspondingly, power)
happens is characterised by the time T . A small T means that even a small
deviation of k from one will result in a rapid change in the neutron flux (and
core power). A large T on the other hand means that a small deviation of k
from one will result in slow changes in the flux (and core power). Combining
this with Eq. 83 yields a final expression for the neutron flux in the core:

φ(~r, t) = vn0 exp[t/T ]ψ1(~r). (92)

Here, it is again worth to note that the space-dependent factor ψ1(~r) deter-
mines the shape of the flux, and the time-dependent factor determines the
amplitude of the flux. We will for the rest of this chapter only focus on the
time-dependent part, which gives us the overall neutron population/neutron
flux/power of the system. Because the reactor period T gives us a measure
of the time available to control the reactor, it is now interesting to determine
T for an example reactor using the equations above:
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Exercise
Consider a thermal nuclear reactor which is critical at time t = 0. If
the neutron multiplication factor k is increased from 1 to 1.001, what
is the increase in the neutron flux?
In a thermal reactor, the mean neutron lifetime l ' 10−4 seconds (as
stated above). Using the expression for the reactor period T defined
above:

T =
l

k − 1
=

10−4

1.001− 1
= 0.1 seconds

Using this value in Eq. 91 yields a relative increase in the neutron
population n(t) after the change in k:

n(t)

n0

= exp[t/0.1]

Since the neutron flux is proportional to the neutron population, this
ratio also gives the relative increase in the neutron flux. Should this
(small) increase in k happen over a time of 1 second, the neutron flux
(and therefore also the power of the reactor) would increase by a factor
of 22,000! Clearly this is a very large increase in power even for a small
perturbation of the multiplicity factor k. You can yourself perform the
same calculation for a fast reactor with a mean neutron lifetime of
l ' 10−7 seconds.

As you see in the above exercise, a system such as the one we have
described so far will be very difficult to control, with large changes in neutron
flux and power even for small perturbations of the system. Luckily, there is
a factor which we so far have not accounted for, which does make the system
controllable: delayed neutrons. As the name suggests, these are neutrons
that for some reason are delayed in time. It is important to note that this
delay refers to the generation of neutrons in the reactor, and that we have so
far not included any time-dependence in the fission neutron source. That is,
when describing the neutron diffusion equation, we have assumed neutrons
to originate in fission according to the source term νΣfφ(~r, t) (see Eqs. 81
and 82). In this source term, there is no reference to any time distribution of
the generated neutrons — all of them are promptly produced in the moment
of fission. However, this is not the whole truth, and as we shall see this has
very important consequences for the operation of nuclear reactors.
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5.1.2 Reactor with prompt and delayed neutrons

As you may remember from our discussions of radioactive decay, an atomic
nucleus may decay through several mechanisms such as α decay, β decay and
fission. A decay mechanism which is relatively rare, but nonetheless very im-
portant for nuclear reactor operations, is neutron emission. Occurring in
some neutron-rich nuclei, neutron emission means that an excited nucleus
emits a neutron to form a nucleus with one fewer neutrons. In the context of
reactor operations, it is more relevant to talk about β-delayed neutron emis-
sion. Since neutron emission requires a neutron-rich nuclei, we are talking
about β− decays. Consider a beta-unstable nucleus (Z,N) being produced
as a fission product in the reactor. This nucleus, which we from now on call
the precursor may decay through β− decay with a certain half life. After the
beta decay, an unstable daughter nucleus (Z + 1, N − 1) is formed. Some
of these daughter nuclei may then decay by neutron emission — a process
which occurs directly after the β− decay. Therefore, the time scale is defined
by the half life of the precursor β− decay.

To date, a large number of delayed-neutron precursors have been dis-
covered [e.g. https://doi.org/10.1016/j.nds.2020.09.001]. In order to com-
plement our prompt-neutron source with these delayed neutrons, we could
therefore proceed to calculate the emission rate of each source of delayed
neutrons. After all, different precursors will have different β− half lives, and
therefore introduce different time dependencies in the overall delayed-neutron
source. However, there are at least two problems with this approach: i) there
is a very large number of precursors and ii) not all precursors are known. In-
stead, what is typically done is “lumping together” various delayed-neutron
precursors that have similar half-lives, after which an “average” half life is de-
termined. The different precursors will of course have different fission yields
(i. e. be produced to different extents in the reactor), and this is taken into
account by an “effective fraction” β (the number of emitted delayed neutrons
relative to the total neutron emission from fission). One should remember
that fission yields will depend on the fuel composition (i.e. which fissioning
nuclei are present in the fuel) and the energies of the neutrons inducing fis-
sion, so the effective yield will depend on the fuel composition and neutron
energy in the reactor. Table 5 lists the properties of six-group (i. e. the pre-
cursors have been “lumped together” based on six characteristic half lives)
delayed neutrons in 235U. It is worth noting that the six-group representation
is not the only possibility — for instance eight-group delayed neutrons may
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Table 5: Six-group delayed neutrons from 235U. The total delayed-neutron
fraction β =

∑
βi = 0.0065 = 0.65%. Data taken from [L&B table 3.5]

Group Half life [s] Fraction βi
1 55.72 0.000215
2 22.72 0.001424
3 6.22 0.001274
4 2.30 0.002568
5 0.610 0.000748
6 0.230 0.000273

be used [https://arxiv.org/pdf/2102.01165.pdf].
In Table 5, we note that delayed neutrons make up only approximately

0.7% of the total neutron population in the core. This is certainly a small
number, but let’s consider what they contribute with to the time-dependence
of the neutron population. Again, we stress that by defining six groups of
delayed neutrons, we move away from a well-defined physical meaning of
those six groups. That is, each group contains contributions from various
delayed-neutron precursor nuclei. Therefore, a particular group does not
represent a particular nucleus (although some nuclei may dominate in the
different groups). Understanding this, we first define the precursor density
Ci for each delayed-neutron group. Ci is the number of precursors in group i
per volume whose decay always results in the emission of a delayed neutron.
That is, we consider only the precursors that for sure will give us a delayed
neutron (this is of course a subset of the actual number of precursors, since
there may be other decay modes). The number of decays Di per second per
volume of these Ci precursors is given by:

Di(~r, t) = λiCi(~r, t) (93)

At the same time, precursors are produced in fission. The number of pro-
duced precursors Pi per second per volume is:

Pi(~r, t) = βiνΣfφ(~r, t), (94)

which in many ways reminds us of the prompt-fission neutron source in Eq.
81, albeit with an additional term βi to denote that only a fraction of all
neutrons produced will be delayed. The overall rate of change in the precursor
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density Ci is therefore given by:

∂Ci
∂t

= βiνΣfφ(~r, t)− λiCi(~r, t). (95)

Since each decay of Ci results in an emitted neutron, we may rewrite
our original source term Eq. 81, now including both prompt and delayed
neutrons:

Sf(~r, t) = (1− β)νΣfφ(~r, t) +
6∑
i=1

λiCi(~r, t), (96)

where (1 − β) of course is the fraction of all neutrons that are not delayed
(i. e. are prompt). We now proceed through the same steps as in Sec. 5.1.1
to get a description of the time dependence of the neutron population, only
now we include the delayed neutrons. First, we introduce the new source
term (Eq. 96) into the diffusion equation, yielding:

1

v

∂φ

∂t
= (1− β)νΣfφ(~r, t) +

6∑
i=1

λiCi(~r, t) +∇ ·D∇φ(~r, t)− Σaφ(~r, t), (97)

If we again consider our assumption that the space- and time-distribution
of the neutron density (and flux) in the core may be separated into a product
of a space-dependent part (determining the shape of the distribution) and a
time-dependent part (determining the amplitude of the distribution), Eq. 97
yields (compare Eq. 86:

dn

dt
= (1− β)νΣfvn(t) +

6∑
i=1

λiCi(t)− vn(t)DB2
g − Σavn(t). (98)

When using the same definitions of k and l as earlier, we arrive at:

dn

dt
=

(
k(1− β)− 1

l

)
n(t) +

6∑
i=1

λiCi(t). (99)

If the neutron distribution throughout the core is separable in time and
space, we may also do the same for the precursor densities Ci:

Ci(~r, t) = Ci(t)ψ1(~r). (100)
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Inserting this into Eq. 95, we end up with:

dCi
dt

= βiνΣfvn(t)− λiCi(t) = βi
k

l
n(t)− λiCi(t). (101)

Eqs. 99 and 101 are generalisations of our results from Sec. 5.1.1. They
are known as the point kinetics equations. They describe the effect of in-
cluding delayed neutrons into the reactor. At this point one could think of
determining the reactor period T as was done for the prompt system, to
see the effect of delayed neutrons. However, when we compare Eq. 90 (the
differential equation for n(t) with only prompt neutrons) with Eqs. 99 and
101, we see that the delayed neutrons yield a system of coupled differential
equations, which is more difficult to solve. We therefore need a few addi-
tional steps before we can determine the reactor period in this more realistic
system. We begin by defining a parameter Λ — the mean neutron generation
time:

Λ ≡ l

k
. (102)

Because l is the mean neutron lifetime (the average time between the birth
and absorption of a neutron) and k is the ratio between the number of neu-
trons produced in fission and the number of neutrons lost in absorption or
leakage, Λ is the average time between the birth of a neutron and its ab-
sorption inducing fission (k is the fraction of the neutrons used for inducing
fission).

We also define the reactivity ρ:

ρ(t) ≡ k(t)− 1

k(t)
, (103)

where you’ll notice the time dependence in both ρ and k — we are now
talking about a time-dependent system, not one which is steady state at
k = 1. The reactivity ρ is a measure of the deviation of the multiplicity
factor k from k = 1. That is, ρ tells us how far from criticality the system is.
It is a parameter that can, in part, be controlled by the reactor operator, for
instance insertion of control rods will provide a negative reactivity insertion
into the system. It is worth noting that −∞ < ρ ≤ 1: when ρ = 1, k = ∞,
when ρ = −∞, k = 0 and when ρ = 0, k = 1. By using Λ and ρ we may
re-write the point kinetics equations into a more compact form:

dn

dt
=

(
ρ− β

Λ

)
n(t) +

6∑
i=1

λiCi(t). (104)
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dCi
dt

=
βi
Λ
n(t)− λiCi(t). (105)

Before we attempt to solve the point kinetics equations, it is important to
discuss their limitations. When deriving them, we have made some important
assumptions:

• We have not considered any dependence on neutron energy — instead,
we have always averaged over neutron energy to get the one-speed
diffusion equation. In reality, nuclear cross sections depend on energy.
Delayed neutrons are typically emitted with lower energies than prompt
neutrons, affecting the reaction probabilities.

• We have assumed that the spatial shape of the neutron population is
independent of time. In reality, the fuel composition will vary with time
to different degrees in the core, resulting in a change in the spatial part
of the flux.

• We have neglected the fuel composition. If the fuel for instance con-
tains several isotopes of plutonium, each with different delayed-neutron
fractions, the number of required delayed neutron groups will increase.

• We have neglected the effects of feedback. There are a number of factors
which influence the reactivity in a core — an increase in the reactivity
will lead to an increased neutron flux, which will increase the power
and thus the temperature in the core. The temperature will affect the
reaction rates in the reactor, and therefore the reactivity itself.

While it is important to identify limitations such as these, it should be
pointed out that the point kinetics equations can be used in a wider set-
ting than the one based on our assumptions. The point kinetics equations
may for instance be derived for a more realistic system resulting in new ex-
pressions for the parameters β, Λ and ρ. The equations are therefore similar
to the simplified case we have considered, motivating the use of Eqs. 104
and 105 in the context of this course. Therefore, we now proceed to solve
the point kinetics equations for some important cases.

109



5.1.3 Solutions to the point kinetics equations

One effective group of delayed neutrons

In our derivation of the point kinetics equation, we assumed six groups of
delayed neutrons. To make a first attempt at actually solving these equations,
we take one step back. Imagine that we lump together the six groups into
one “effective” group of delayed neutrons. The delayed neutron fraction β
is then simply the sum over the six groups. The average decay constant
(corresponding to the half life) may be determined by first determining the
average lifetime 〈t〉:

〈t〉 =

∫∞
0

(
t
∑6

i=1 βiλi exp[−λit]
)
dt∫∞

0

(∑6
i=1 βiλi exp[−λit]

)
dt
, (106)

which is a standard expected value for the variable t. Note that the functions
averaged over are the delayed-neutron emission rates βiλi exp[−λit]. Solving
this equation yields an expression for 〈t〉, which is the inverse of 〈λ〉, the
average decay constant:

〈λ〉 =
1

〈t〉
=

1
1
β

∑6
i=1

βi
λi

, (107)

where β is the sum of all βi. Now we may write the point kinetics equations
for this case, similar to Eqs. 104 and 105:

dn

dt
=

(
ρ− β

Λ

)
n(t) + 〈λ〉C(t). (108)

dC

dt
=
β

Λ
n(t)− 〈λ〉C(t). (109)

We now consider the case where the reactor is in a steady state prior to
t = 0. That is, it is critical and at t = 0 the reactivity changes. Given the
steady state condition (i. e. all time-derivatives become zero) at t < 0 and
the two equations above:(

ρ(t < 0)− β
Λ

)
n(t < 0) + 〈λ〉C(t < 0) = 0 (110)

β

Λ
n(t < 0)− 〈λ〉C(t < 0) = 0. (111)
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Considering that ρ(t < 0) = 0 (i. e. the reactor is critical), we may combine
these two equations to yield initial conditions for n and C:

2〈λ〉C(t < 0) =

[
β

Λ
− ρ

Λ
+
β

Λ

]
n(t < 0)⇒ C(t < 0) =

β

λΛ
n(t < 0) (112)

The resulting initial conditions are that at t = 0, the neutron population
is unchanged, giving n0 ≡ n(t = 0) = n(t < 0). The same thing goes for
the precursor density, so C0 ≡ C(t = 0) = C(t < 0). We may postulate
exponential solutions for n(t) and C(t):

n(t) = A exp[st] (113)

C(t) = B exp[st] (114)

A and B are yet to be determined. If we insert these equations into Eqs. 108
and 109, we get:

sA =

[
ρ− β

Λ

]
A+ λB (115)

sB =
β

Λ
A− λB (116)

We can eliminate A and B by combining these equations. The result is:[
s−

(
ρ− β

Λ

)]
[s+ λ]− λβ

Λ
= 0, (117)

which is the same as

Λs2 + (λΛ + β − ρ)− ρλ = 0, (118)

which we recognise as a quadratic equation in terms of s. The solutions for
s follow the same pattern as any quadratic equation:

s1,2 =
−(λΛ + β − ρ)±

√
(λΛ + β − ρ)2 + 4Λλρ

2Λ
(119)

Since there are two roots for s, the general expressions for n and C are:

n(t) = A1 exp[s1t] + A2 exp[s2t] (120)

C(t) = B1 exp[s1t] +B2 exp[s2t] (121)

Although we haven’t determined the values of A1, A2, B1 and B2, we may
still examine some example cases by inserting different values of ρ into Eq.
119:

111



• For a critical system (ρ = 0), s1 = 0 and s2 = −
(
λ+ β

Λ

)
. The neutron

and precursor densities will change as:

n(t) = A1 + A2 exp

[
−
(
λ+

β

Λ

)
t

]

C(t) = B1 +B2 exp

[
−
(
λ+

β

Λ

)
t

]
That is, as t→∞, they will approach constant values.

• For a subcritical system (ρ < 0), s1 < 0 and s2 < 0. The neutron and
precursor densities will both be sums of negative exponentials. That
is, as t → ∞, they will approach n = 0 and C = 0. The system will
shut down.

• For a supercritical system (ρ > 0), s1 > 0 and s2 < 0. The neutron and
precursor densities will both be sums of one positive and one negative
exponential. As t → ∞, the negative exponentials will approach zero
whereas the positive exponentials continue to grow. Therefore both n
and C will grow exponentially.

We can think of the time constants s1 and s2 as characterising the time
behaviour of the system with prompt neutrons and (one-group) delayed neu-
trons. We can notice the similarity to our earlier definition of the reactor
period, which is the time scale on which changes in the neutron population in
the reactor occurs. In fact, because s2 is always negative, the corresponding
exponential term will always die off. On longer time scales, the system will
be characterised by an exponential with time constant s1. Because this is
the time constant that determines largely determines the time-dependence,
it’s inverse is commonly known as the stable reactor period.

If we consider the roots of s1,2 in this one-group solution (Eq. 119), we see
that they depend on a number of reactor-specific parameters (Λ, λ and β), as
well as the reactivity ρ (this is also a reactor parameter, but is at least in part
controllable by the operator). In the three examples above, we investigated
s1,2 for different values of ρ (critical, subcritical and supercritical). It is
therefore interesting to make this study more systematic. To do this, we
need to rewrite Eq. 117 using the definition of Λ from Eq. 102:[

s−
(

(ρ− β)k

l

)]
[s+ λ]− λβk

l
= 0⇒ (122)
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s− λβk

l(s+ λ)
=

(ρ− β)k

l
⇒ (123)

sl

k
− λβ

s+ λ
= ρ− β ⇒ (124)

sl

1/(1− ρ)
− λβ

s+ λ
= ρ− β, (125)

where we have rewritten k in terms of ρ using Eq. 103. Continuing:

sl(1− ρ)− λβ

s+ λ
= ρ− β ⇒ (126)

sl + β

(
1− λ

s+ λ

)
= ρ(1 + sl)⇒ (127)

sl +
β

s+ λ
(s+ λ− λ) = ρ(1 + sl)⇒ (128)

ρ(s) =
sl

sl + 1
+

1

1 + sl

(
sβ

s+ λ

)
, (129)

which describes the relationship between ρ and s for one effective group of
delayed neutrons. This is known as the inhour equation. The roots to the
inhour equation are the values of s when ρ(s) = ρ0, where ρ0 is the change
in reactivity. Since l, β and λ are more or less fixed parameters, we may
solve this equation for a given reactivity change ρ0 to find the roots s1 and
s2 (ρ(s1) = ρ(s2) = ρ0). We may also plot the relationship for any s, as is
shown in Fig. 46 for a thermal reactor characterised by l = 10−4 s, β = 0.0065
and λ = 0.08 s−1. The solutions to the equation for a reactivity change of
ρ0 = 0.001 are shown. Clearly, s1 > 0 and s2 < 0. In fact, the root s2

(characterising the effect of the delayed neutrons) will always be negative.
The root s1 is positive for positive reactivities and negative for negative
reactivities. This means that irrespective of whether the reactivity change
ρ0 is positive or negative, one component (characterised by s2) in the time
dependence of the system will always go to zero with time, whereas the other
component (characterised by s1) will either grow or decay. The combination
of these two components will determine the overall change in the neutron
population (and flux, and power).

From Fig. 46, it is clear that a positive reactivity insertion will yield an
increase in the neutron density. This increase will be a combination of the
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Figure 46: The inhour equation for one effective group of delayed neutrons. The
horizontal black line shows a reactivity change ρ0 of 0.001. The two solutions, at s1 and
s2, are shown.

exponential with a positive s1 and the exponential with a negative s2. For a
negative reactivity insertion, both roots are negative, leading to a decrease
in the neutron density (governed by two exponentials with different time
constants). Fig. 47 shows the (numerical) solution to the point kinetics
equations for one group of delayed neutrons (Eqs. 108 and 109 in terms of
the relative increase in the neutron density after a positive reactivity increase
of 0.001. In addition, the increse in the neutron density when considering
only prompt neutrons (i. e. the solution to Eq. 90). Clearly, the delayed
neutrons have a dramatic effect on the behaviour of the reactor: when only
including prompt neutrons we observe the swift exponential growth shown
in the Exercise above.

Finally, we can also illustrate the connection between the reactivity change,
the precursor density and the neutron density. After all, Eqs. 108 and 109
are coupled differential equations so they must be solved simultaneously. Fig.
48 shows a numerical solution to these equations, both for the neutron and
the precursor density. One can see that the decay constant of the precursor
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Figure 47: The relative change in the neutron density after a positive reactivity change
of 0.001. The red line shows the solution when only including prompt neutrons (i. e.
Eq. 90 and the black line shows the solution when including one effective group of delayed
neutrons (i. e. Eqs. 108 and 109). The dramatic increase in reactor period when including
delayed neutrons is visible.

C is the same as the slower decay constant in the neutron density n, show-
ing how delayed neutrons contribute to the overall time dependence of the
neutron density in the core.

Six groups of delayed neutrons

We may now extend the results from the previous section to the more real-
istic case of six groups of delayed neutrons. In fact, if we introduce all six
groups into the calculations above, the results will be rather similar, with
the exception that we now have a sum of seven exponentials instead of two
in the final expressions for n(t) and C(t). For example, the time-dependence
of the neutron population with six delayed-neutron groups is:

n(t) =
7∑
i=1

Ai exp[sit], (130)
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Figure 48: The relative change in the neutron and precursor density after a positive
(top) and negative (bottom) reactivity change of ±0.001. There is a rapid initial change
in the neutron density (attributed to prompt neutrons), whereas the precursor density C
changes at a slower rate due to the associated longer half life. As a result, delayed neutrons
emitted in the decay of precursors will contribute to the chain reaction at a much later
stage, giving the slower exponential component in the neutron density.

This case is evidently more complex than the one-group treatment, but we
can nonetheless gain some insight by looking at the inhour equation for six
groups of delayed neutrons. In a similar manner, this will become

ρ(s) =
sl

sl + 1
+

1

1 + sl

6∑
i=1

sβi
s+ λi

. (131)

Using the data in Table 5 (remember that the decay constant is directly
related to the half life) and l = 10−4 seconds we may plot the six-group
inhour equation, as shown in Fig. 49. Clearly, there are seven roots to this
equation, where only s1 can be positive and the others are always negative.
Again, the stable reactor period is given as T = 1/s1. The asymptotic
behaviour of the inhour equation appears at s = −λ1, s = −λ2, ..., s = −λ6,
s = −1/l.
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Figure 49: The inhour equation for six groups of delayed neutrons. The horizontal
black line shows a reactivity change ρ0 of 0.001. Two of the seven solutions, at s1 and s7,
are shown. The horizontal axis is in a “symmetrical logarithm” scale.

Although it is quite difficult to solve Eq. 130 to get n(t) for a certain re-
activity change ρ0. Nonetheless, the methodology we have used allows us to
get a description of the time-behaviour of n(t), which gives us some bound-
aries for safe reactor operation. In that context, we are finally interested in
estimating the stable reactor period T in a system with six groups of delayed
neutrons. This is, as stated above, given by the inverse of s1, which is the
only positive root of ρ(s) = ρ0. To get this, we resort to numerical tools
for root finding. Fig. 50 shows the stable reactor period when including six
groups of delayed neutrons as a function of the reactivity change ρ0 given the
approximate prompt-neutron lifetime in a thermal reactor: l = 10−4 seconds.
From this plot, we may directly read off the stable reactor period for a posi-
tive reactivity change of ρ0 = 0.001 (corresponding to a change in k from 1
to 1.001, as was investigated for the prompt system): T ' 55 seconds. This
is a remarkable increase compared to the value of 0.1 seconds we obtained
when not including delayed neutrons. That is, even though the delayed neu-
trons make up less than 1% of the total neutron population, they are vital
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for controlled operation of a nuclear reactor! For comparison, Fig. 50 also
includes the reactor period when only including prompt neutrons, as defined
in Sec. 5.1.1. Clearly, the delayed neutrons increase the reactor period.

Figure 50: The reactor period T as a function of the (positive) reactivity change ρ0 in
a thermal reactor characterised by a prompt neutron lifetime of 10−4 seconds. The two
lines show the period when only including prompt neutrons and when also including six
groups of delayed neutrons.

We have now obtained a method to calculate the time behaviour of an
operating nuclear reactor. We have seen that delayed neutrons introduce
slower variations in the neutron population in the core, which in fact allow
an operator to respond to various changes in the reactivity in the core. Of
course, the description we have arrived at also allows us to understand how
the system responds to reactivity changes not controlled by the operator.
Therefore, understanding the time behaviour of the system allows us to de-
termine safety margins for reactor operation, and to construct a reactor that
can operate safely. It is finally worth to discuss some concrete consequences
of the results of this chapter.
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5.1.4 Concrete examples

Reactor shutdown

Even without discussing concrete measures used to control the reactivity in
the core (such as control rods), the plot of the six-group inhour equation
in Fig. 49 tells us something interesting about the shutdown of a nuclear
reactor. To shut down a reactor, negative reactivity should be inserted (i. e.
ρ0 < 0). In such a case, all roots s1−7 to the inhour equation are negative,
meaning that the neutron population will go towards zero (which we want).
The root with the highest value will be s1, and as mentioned previously the
asymptotic behaviour of the inhour equation occurs at s = −λ1, s = −λ2,
..., s = −λ6, s = −1/l. This means that even if ρ → −∞, s1 → −λ1. This
characterises the longest time-dependence in the core, which is then given by
a period of 1/λ1. Using the value for the half life of group 1 from Table 5,
calculating λ1, 1/λ1 ≈ 80 seconds. This will determine the fastest time scale
on which the reactor can be shut off.

Prompt criticality

Considering the point kinetics equation Eq. 104, we see that the first term is
negative for all ρ < β. That is, to make the system critical (i. e. dn/dt = 0),
the delayed neutrons are needed to balance the equation. However, what
would happen if ρ = β? Then the first term would become zero, and the
other terms (the delayed neutrons) are not needed to make the system critical.
That is, the system is critical on prompt neutrons alone — we have reached
a state called prompt criticality. In such a case, we would again arrive at the
situation where the reactor period becomes quite short. This is seen in Fig.
50, where the reactor period in the system with delayed neutrons starts to
approach the one in the prompt-neutron only system for ρ0 > β (β = 0.0065
in the system considered). Therefore, positive reactivity insertions are typi-
cally limited to ρ0 < β. In fact, counting reactivity in units of β is often done,
where a reactivity change of β is one dollar. Some reactors are in fact able
to operate in a pulsing mode, where the system is brought to a critical state
after which reactivity is inserted (by removing control rods) to yield a rapid
pulse of output power [https://www.youtube.com/watch?v=qCH3Yiyw3yc].
The reactivity increase will in such cases be balanced by a reactivity decrease
provided by the temperature increase in the fuel [1].
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5.2 Subcritical multiplication

When starting a nuclear reactor, the core is sub-critical with some margin,
and the reactor does not produce any power. To start it, the reactor operator
must remove control rods until the reactor reaches criticality. It is important
here that the operator knows when criticality is reached, so that a safe dou-
bling time is achieved. Since the reactor is at zero power, it is not possible
to measure the doubling time by measuring the heat output. The key ob-
servable that can be measured at this point is the neutron flux. And as we
have seen previously, the neutrons are tightly coupled to the multiplication
in the system. The neutrons can originate from several different processes in
a sub-critical system:

• Through spontaneous fission. The source is predominately U-235 in
fresh fuel, with additions from Plutonium and Curium isotopes in used
fuel. Each isotope has its own average neutron multiplicity for sponta-
neous fission, but typically around 2-3 neutrons are emitted per fission.

• Through (α, n) reactions. Heavy isotopes such as uranium and plu-
tonium alpha decays, and when the alpha particle interacts with light
elements such as oxygen, the alpha particle can be absorbed, with a
neutron emission following. For reactors, the most common fuel is UO2,
hence there is a lot of oxygen present. This reaction sends out a single
neutron.

• Through induced fission. Neutrons emitted by spontaneous processes
can induce both fast and thermal fission in the sub-critical reactor,
which creates further neutrons.

If the rate of spontaneous fission neutrons and (α, n) is S, then these will
create an average k · S induced fission neutrons, which in turn creates k2 · S
neutrons e.t.c. Since the reactor is sub-critical, the total neutron emission
rate N is given by

N = S + k · S + k2 · S + ... =
S

1− k
(132)

Thus, the total neutron emission will depend both on the neutron source
and the criticality, and more information is needed to be able to determine
both parameters than only the total neutron count.

120



Besides sub-critical cores, there are other times when sub-critical multi-
plication is of interest to measure. To give a few examples, when measuring
nuclear material in bulk form to verify its properties, the multiplication pro-
vides information about the material composition, which can be used for
example to verify enrichment. When nuclear fuel assemblies are stored out-
side of the reactor, they should never reach criticality, but each assembly
in itself is a system where sub-critical multiplication happens. As a final
example, in accelerator-driven systems, the reactor core has some margin
to criticality, and an external accelerator system provides the neutrons to
sustain the nuclear reaction. Equation 132 shows that near criticality, a rel-
atively modest source is sufficient to create a much larger neutron flux due
to multiplication. However, the core itself is always sub-critical, and the
external source is required to sustain the fission chain reaction.

5.2.1 1/M plots

If the reactivity worth of a control rod is know, one method to determine the
criticality is to measure the neutron flux, withdraw a control to add a know
reactivity to the core, and measure again. This method is called the 1/M
method. Such a procedure alters the neutron flux by changing the criticality,
but the source term is not changed. Hence, only one parameter changes in
equation 132.

If S is the number of source neutrons, a control rod is withdrawn to get
a new k = k1, and a new total neutron emission N1 following equation 132.
This is illustrated in figure 51.

Now, the multiplication M is defined from equation 132 as M = 1/(1−k),
and we then have:

S

N
=

1

M
= 1− k (133)

Note that 1/M is linear in k. If we measure 1/M for a few different
control rod positions, we can make a plot such as the one in figure 52

By extrapolating the line formed by the 1/M measurements, it is possible
to determine the criticality insertion necessary for first criticality.

Note that in this method S is not explicitly calculated, so we do not
get a number for the neutron source. However, the 1/M method does not
actually need S, only the relative change in neutron flux due to control rod
withdrawal, which is measurable. Hence, even if we multiply equation 133
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Figure 51: The effect on the neutron population when withdrawing control
rods.

Figure 52: 1/M plotted for a few control rod positions, and extrapolated
first criticality.
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Figure 53: The detected neutron signal when interrogating the core using a
pulsed neutron source.

by some constant, this will not change where the equation is 0, i.e. where
criticality is obtained.

5.2.2 The Area method

One method for determining the criticality is the so-called Area Method.
In this method, a pulsed neutron source is used to interrogate the core.
The neutron source will provide repeated, short bursts of additional source
neutrons, which will induce fissions in the core. The detected neutron signal
following one such pulse is shown in figure 53

The number of prompt neutrons contained in the peak, Ap, is given by
equation 134, where S is the source strength, and β is the delayed neutron
fraction.

Ap =
S

1− (1− β)k
(134)

If the pulse neutron generator is kept active for sufficiently long, the
delayed neutron fraction will reach an equilibrium, and the total number of
neutrons Ad + Ad, or the area in figure 53 is then given by equation 135.
Note that the delayed neutrons are typically emitted long after the pulse.
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However, for a constant pulsed source strength, the delayed neutrons from
one pulse that occur after the measurement (after t = 100 in figure 53) is
the same as the delayed neutrons from earlier pulses occurring within the
measurement time. Hence, in equilibrium, the delayed fraction in figure 53
is actually the same as the total delayed neutron emission due to the pulse,
if the measurement time is the same as the time between pulses.

Ap + Ad =
S

1− k
(135)

Thus, we can get the ratio of the total area to the prompt peak area as
equation 136. Note that the source strength S cancels.

Ap + Ad
Ap

=
1− (1− β)k

1− k
(136)

And this equation simplifies to:

Ap
Ad

= − ρ
β

(137)

There is one more feature of interest in figure 53, the exponential decay of
the prompt neutrons, seen after the peak. Since it is exponentially decaying,
its time evolution can be described by:

dn(t)

dt
= −α · n(t) (138)

α depends on the prompt neutron multiplication and mean neutron life
time in the reactor. It can be shown that α can be expressed by:

α = −ρ− β
Λ

(139)

Equation 139 can be rearranged into equation 140, where the right hand
side contains the ratio ρ/β determined by equation 137, and alpha can be
determined by fitting an exponential to the decay of figure 53. If β is also
known, the neutron mean lifetime Λ can be solved for.

Λ

β
=

1

α
(
ρ

β
− 1) (140)
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5.2.3 Rossi-alpha distributions

For a sub-critical system with multiplication, the source neutrons (from spon-
taneous fissions and (α,n) reactions) are created independently of each other,
while induced fission neutrons follow a short while after a spontaneous neu-
tron emission. Thus, by measuring the timing of the neutrons, it is possible
to determine how many neutrons are uncorrelated, i.e. the source strength,
and how many are correlated, i.e. the induced fission rate. One way to do
this is to create a so-called Rossi-alpha distribution from the time interval
between detected neutrons.

To create a Rossi-alpha distribution, first a time-window must be defined,
to determine the maximum time between neutrons that is of interest. This
time window needs to be sufficiently long that all correlated neutrons occur
within this time window, while still short enough that not all detected neu-
trons need to be compared to each other. Next, a histogram is created over
the time difference between two detected neutrons, as long as the time dif-
ference is shorter than the time window. An example of how the Rossi-alpha
times that are put in the histogram is constructed is shown in figure 54.

For uncorrelated neutrons, the time difference between the detection of
the neutrons is random, hence each time difference is equally likely. Thus,
uncorrelated neutrons will form a flat histogram. The correlated neutrons
will however more likely have a short time difference, and in practice, will
exponentially decay. For a system with multiplication, there are in fact two
types of correlated neutrons. Neutrons originating fromt he same fission
event, or from a subsequent induced fast fission, occur very close in time,
and will thus correlate with a small time difference. For neutrons in a fission
chain where the neutrons thermalize before causing a fission, the neutrons
are correlated but have longer times in between them. These two correlations
define a fast and a slow die-away time, where the Rossi-alpha distribution can
then be described by H(t) in equation 141. Here A depends the spontaneous
rate, Rfast and τfast describes the correlated rate and decay time for the
neutrons from the same event, and Rslow and τslow describes the correlated
rate and decay time for the neutrons from fission chains. Figure 55 shows an
example Rossi-alpha plot.

H(t) = A+Rfast · e−t/τfast +Rslow · e−t/τslow (141)

By investigating the slow die-away time, information is gained on the
multiplication of the material. However, the fast component depends mainly
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Figure 54: Creating a Rossi-Alpha distribution from neutron detection tim-
ings. The neutron (1) is selected as the initial neutron, and neutrons (2-3)
are then detected within the selected time window of 200 µs. The time dif-
ferences between (1-2) and (1-3) are added to the histogram. Next, (2) is
selected as the initial neutron, and the process is repeated for all neutrons
within the time window after (2).
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Figure 55: A Rossi-Alpha plot for a system with multiplication. The fast
component is due to neutrons originating in the same fission event (or in a
subsequent fast fission), the slow component is due to fission chains.

on the properties of the source, and some effort is required to separate these
two components.

In the Rossi-Alpha distribution, every neutron is essentially considered to
be a starting neutron, much as the source in the area method, and the subse-
quent induced fission neutrons behaves just as in the area method, with the
same exponential decay. Hence, the exponential decay of the slow component
can approximately be described using equation 138 and 139. Note however
that only neutron from spontaneous fissions can act as a measurable start-
ing signal, since they may emit enough neutrons to both be detected and to
induce fission. Neutrons from (α,n) reactions are always uncorrelated, since
they are single neutrons. If such neutrons are detected, they cannot have
induced fission, and if they induced fission, they are absorbed and cannot be
detected.

5.3 Feedbacks

In the previous lectures, we used the four-factor formula to calculate the
criticality k, and the reactivity ρ. However, to understand the behaviour of
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the reactor, it is of interest to investigate how these parameters change as
a function of other reactor parameters, such as fuel or coolant temperature,
or reactor power. When the reactor is producing power, changes in the
criticality (due to for example control rod movement) will change the power,
which changes the temperatures, which in turn affect factors in the four-factor
formula, and thus affect the criticality. This feedback defines the dynamics
of the reactor.

One convenient approximation that can be used when k does not signif-
icantly differ from 1 (which is the usual case when the reactor is running)
is:

dρ = dk2/2 ≈ dk/k = d(lnk) (142)

If we apply this approximation to the four-factor formula, the logarithm
results in that the multiplied factors are added, which separates the factors.

dk

k
=
dε

ε
+
dp

p
+
df

f
+
dη

η
(143)

For light water reactors, using water as both moderator and coolant, the
temperature feedbacks are dominating, and we will look at those in more
depth.

5.3.1 Fuel temperature coefficient

Out of the factors in the four factor formula, the resonance escape probability
p is the one most strongly affected by the temperature. As described in
previous chapters, this is due to the Doppler broadening of the resonance
peaks, which means that neutrons are more likely to be captured in U-238 as
the temperature increase, which lowers the reactivity. To describe the fuel
temperature feedback, we introduce a fuel temperature coefficient αf that
relates the changes in fuel temperature Tf : to changes in the reactivity:

αf =
1

k

∂k

∂Tf
≈ 1

p

∂p

∂Tf
(144)

And using the resonance integral to calculate the probability of resonance
capture I, αf can be calculated as:

αf = − ln

(
1

p

)
1

I

∂I

∂Tf
(145)
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For a reactor at full power, we can approximate αf to be constant over
a moderate temperature change, and the change in reactivity ∆ρ due to a
temperature change of ∆Tf is simply

∆ρ = αf∆Tf (146)

5.3.2 Moderator temperature coefficient

For a liquid moderator, when the moderator temperature increases, its den-
sity decreases, which decreases the moderation of the neutrons. Conse-
quently, resonance capture increases since the neutrons have on average more
energy, and the thermal utilization factor f also increases, since absorption
in the moderator decreases. If βm is the volumetric coefficient of thermal
expansion at constant pressure for the moderator, it can be shown that the
moderator temperature coefficient can be approximated as:

αm = −βm[ln(1/p)− (1− f)] (147)

Note that in equation 147, the contribution due to p and f have opposite
signs. For a light water reactor, p is the largest contributor to αm for all
normal operations, thus αm is negative. For solid-moderated reactors, such
as the graphite moderated reactors in Chernobyl, the thermal expansion of
the moderator is less pronounced, and the factor f may dominate αm, which
then becomes positive at certain temperatures. For such reactors, an increase
in power leads to an increase in temperature, which increases f and thus αm,
which further increases the power, which allows a runaway power increase.

For boiling water reactors, additional heat in the reactor will result in
the production of more steam, which take up more space than the water
in the core. As a consequence, the moderator density changes significantly
with the power, and the moderator temperature feedback is high for such
reactors. In a pressurized water reactor, extra heat will only decrease the
moderator density slightly, and it is instead the fuel temperature feedback
which provides the largest change with temperature.

5.3.3 Excess reactivity margins

The previous sections have shown that for light water reactors, αf and αm are
negative, and will suppress a change in power. Thus, when starting a reactor
from a room-temperature state, controllable poisons (control rods, soluble
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boron or both) must continuously be withdrawn to increase the power, to
compensate for the effect of the feedbacks. To further illustrate this effect,
parameters called the power defect and the temperature defect can be intro-
duced, together with a parameter called shutdown margin.

The shutdown margin is the reactivity difference between a core that
has all control rods inserted (and is at maximum boron concentration for
a pressurized water reactor), and a critical, cold core. Thus, the shutdown
margin is an excess negative reactivity available to ensure that there is always
sufficient controllable poisons to shut down the reactor, regardless of how it
operates.

The temperature defect is defined as the reactivity insertion needed bring
the core from room-temperature (Troom) to near operating temperature
(Thot), while still producing little power. Since the feedbacks in general
changes with temperature, the power defect Dp can be written:

Dt =

∫ Thot

Troom

αf (T ) +

∫ Thot

Troom

αm(T )dT (148)

Note that the reactor is usually brought to the hot temperature rather
slowly, hence the moderator and fuel temperature will be essentially the same
during the entire process, and the two integrals can be merged.

The power defect is defined as the reactivity insertion required to bring
the core from a hot, zero-power state to a power-producing state. In this case,
the fuel and moderator temperate will be different throughout the process,
and have different operating temperatures Tf and Tm.

Dp =

∫ Tf

Thot

αf (T ) +

∫ Tm

Thot

αm(T )dT (149)

In addition to these three margins and defects, the consumption of U235
(and build-up of plutonium) also affects the reactor core. As fissile mass is
depleted over time, the thermal fission factor η decreases, and to maintain
criticality more controllable poisons need to be removed. Hence, to oper-
ate the reactor for extended periods of time, additional criticality margin is
needed, as compared to just the start-up process.

In total, the shutdown margin, temperature and power defect, and fuel
burnup determines how much controllable reactor poisons are needed to op-
erate the core. On one hand, the more controllable poisons are required, the
easier it is to control the reactor, since large changes in poison inventory is
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required to make small changes in the reactor power. On the other hand,
using too much controllable poisons is costly and can be complex to design,
which may reduce reliability, and thus affect safety. When designing the
reactor, these two factors must be balanced.

5.4 Depletion: evolution of fuel

During the operation of a nuclear reactor the nuclear fuel evolves. This evolu-
tion has some technological reasons (corrosion, swelling of the fuel pellets due
to gaseous fission products, radiation damage), and reactor physics reasons.
In this course we are going to focus only on the reactor physics aspects of
this evolution. From our previous studies we already know that the processes
leading to a change in the nuclide inventory of the fuel are the following:

• Due to fission events the amount of fissile nuclei decreases. Thus the
reactivity of the fuel decreases.

• Due to fission events, fission products appear in the fuel with medium
mass number. Some of these nuclides have high absorption cross sec-
tions (they are considered to be reactor poison.

• Due to neutron capture of uranium nuclei transuranic elements are
created, some of these nuclei are fissile.

Altogether these processes leading to the evolution of fuel are called bur-
nup or depletion. During depletion the reactivity of the fuel is decreasing
due to the loss of fissile material, which needs to be compensated for (eg. by
decreasing the boron content in a PWR fuel, or by removing control rods).
When the fuel depletion reaches a level that the core cannot be critical any-
more the fuel elements are replaced with fresh fuel. Due to safety reasons the
core load is designed so, that when the fuel is fully depleted its amortization
due to technological reasons still does not present any significant risk.

5.4.1 Depletion chains

As we saw before there are several neutron collision reactions (eg. fission,
capture, (n,in) reactions), and several decay reactions which will transform
a nuclide into an other nuclide. Similarly, as we saw before for decay series
(Fig. 5, we can develop depletion chains, however these are fairly complex if
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every possible reaction is taken into account. The top of Fig. 56 shows all the
(n,γ) and (n,2n) reactions, and all alpha and beta decay paths for an initial
load of U238, whereas the lower figure shows some of the most important
paths for the uranium depletion chain.

Figure 56: Illustration of depletion chains.

If we wanted to make a very accurate analysis of the evolution of fuel
during irradiation we should consider every possible pathway. However, for
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practical applications we can simplify depletion chains. For example, we
can neglect the decay of uranium isotopes (and the neutron reactions on the
daughters of these isotopes) due to the long half-lives. That said, we can
consider different depletion chains for uranium fueled and thorium fueled
reactors. (In thorium fuel reactors the Th232 nuclide is first converted into
fissile U233, however they do not have yet a widespread use so in the following
we do not discuss this).

5.4.2 Bateman-equations

In the following we will write up a rather general equation describing the
depletion. However, first we will use some simple examples to review the
basic concepts.

One nuclide with source and decay

Now let’s consider an example where we are interested in the time evolution
of a radioactive nuclide with concentration N which is constantly created
(for example from a neutron reaction for which the cross section is given by
Σ on a parent nuclide), and for which N(t = 0) = 0. We can consider that
we have a lot of parent nuclei, therefore the change in its number is negligible
(therefore the production rate is constant) This example is a very fair model
for cases when a small target (for example a foil) is being irradiated, but it
could be applicable for a fission product.

The change of amount (or density) of the nuclide N :

dN

dt
= −λN + Σφ︸︷︷︸

production rate

(150)

N(t) =
Σφ

λ
[1− exp(−λt)] ⇒ A(t) = Σφ[1− exp(−λt)] (151)

where we can define the saturation activity (or saturation concentration) as
t→∞:

A(t→∞) = As = Σφ (152)

We see that infinity the activity and the concentration would saturate at a
constant level (if the parent nuclide is not lost). How quickly we reach this
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saturation level depends on the half-life of the nuclide (the longer lived the
nuclide is the longer it takes to reach saturation). If the irradiation takes
place only for a finite time tirr after which the material is left to ”cool”, then
the new differential equation to describe the change is simply

dNafter

dt
= −λNafter (153)

where ”after” refers to ”after irradiation”. The initial condition of this differ-
ential equation is Nafter(0) = N(tirr. The solution is simply the exponential
decay:

A(tcool > tirr = ΣΦ[1− exp(−λtirr)] · exp(−λtcool) (154)

Figure 57: Change of nuclide concentration during and after irradiation.

Fig. 57 shows a simple sketch of the change of the nuclide in this sim-
plified model. Even though the model is simplified, the general trends are
important here to remember, because in fact we see similar trends in nuclear
fuel irradiations (where the amount of parent nuclide, such as uranium is
several orders of magnitude higher than the amount of the fission products).

Only one nuclide: lost to nuclear reaction

First let’s consider a very simple situation when only one fuel isotope is
present (eg. Uranium-235 N5). For this isotope the decay is negligible, so we
can assume that the only loss is due to the neutron absorption of the isotope
(described by σa5), and there is no production of this isotope.
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dN5(r, t)

dt
= −σa5φ(r, t)N5(r, t) (155)

for which the solution would be

N5(r, t) = N5(r, 0) exp
[
− σa5

t∫
0

φ(r, t′)dt′
]

(156)

or by introducing the fluence

Φ(r, t) =

t∫
0

φ(r, t′)dt′ (157)

the solution is

N5(r, t) = N5(r, 0) exp
[
− σa5Φ(r, t)

]
(158)

However, this seemingly simple looking solution is not that innocent,
since the flux φ(r, t) of course depends on the fuel density N5(r, t). Since
in practice the change of nuclides is rather slow, two approximations can be
used to overcome this problem:

• constant flux φ(r, t) = φ(r). During the time interval of interest the
flux is constant. Thus the solution becomes
N5(r, t) = N5(r, 0) exp

[
− σa5φ(r)t

]
• constant power P (r, t) = wN5(r, t)σa5φ(r, t) = P (r) with w being the

energy released per fission.

The interested reader can further review D& H, however for the current
discussion it is enough if we accept, that we can in one way or the other drop
the time dependence.

Similarly, due to practical reasons we can argue, that in the following we
can neglect the spatial dependence, as in practice we would integrate the flux
over a volume. If one seeks to resolve the nuclide concentration spatially, the
one would perform a depletion analysis in several smaller volumes where a
homogeneous material would be considered.
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General formalism

In order to mathematically describe the evolution of fuel under irradiation
we can extend or theory from radioactive decay. Remember, we developed
a coupled set of ordinary differential equations to describe the evolution of
radioactive parents and their daughters. We could write up similar equa-
tions by including further source and loss terms (such as fission and neutron
reactions).

Let’s consider the change of nuclide i over time. The nuclide can be
created due to the decay of other nuclides j, and due to the neutron reactions
on other nuclides j. These are the production terms. Note, that in case
nuclide i is created from a fission event, then σj→i contains both the fission
cross section of j and the fission yield that nuclide i is created from the fission
of j. The nuclide can be lost due to its own radioactive decay and due to
absorption reactions which will produce other nuclides. These loss terms are
essentially production terms for other nuclides.

dNi

dt
=
∑
j 6=i

(λj→i + σj→iφ)Nj − λiNi − σiφNi (159)

where all the cross sections σ are 1-group cross sections obtained by weighting
the cross sections σ(E) by the neutron spectrum. Therefore the σφN terms
are reaction rates.

One can see that upon formulating such a differential equation for all
the nuclides one gets a coupled set of equations which can be arranged as a
matrix equation

Ṅ = AN (160)

where N is the nuclide vector and A is a matrix.

Numerical solution strategies

We saw that in the general form of the Bateman equations we have considered
the flux φ to be independent of time and space. Of course, this is not the case
in reality. Therefore what is usually being done is that a 0D solution of the
Bateman-equations is coupled to a solution of the neutron transport equation
(for example with Monte Carlo methods). First the transport equation is
solved to obtain the neutron spectrum, and the 1G cross sections. Then for
a certain timestep the Bateman-equations are solved to obtain the nuclide
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inventory. For the updated inventory the transport calculation is performed
again to update both the spectrum and the flux (eg. the flux might change
if the power is kept constant). And this sequence of depletion and transport
calculations is repeated until the final time step.

One also needs to mention that constructing a matrix A is not trivial, as
it was probably apparent from Fig. 56. One often needs to make educated
simplifications of the depletion chain.

Units of burnup

The burnup or depletion level of a fuel can be measured in various ways.
One way is to give the fluence defined by Eq. (157) (often in neutron/kbarn
units). Sometimes (typically for research reactors running on highly enriched
uranium) it is given in the percentage of lost U-235.

For energy producing reactors it is more common to give the amount of
energy produced by the fuel per unit mass of initial uranium (or heavy metal
for MOX fuel). The units are MWdays/kgU , and the typical burnup of a
PWR fuel assembly is around around 50 MWdays/kgU at the end of its life.
This unit is very practical, nevertheless there is a no straightforward way
to convert the fluence and the enrichment into such burnup units since, this
value is proportional to

t∫
0

Σfφ(t′)dt′

since the macroscopic fission cross section Σf also covers the fissile plutonium
nuclei which are produced during the reactor operation and which contribute
to the energy production.

5.4.3 Conversion ratio

As mentioned earlier, during irradiation fissile nuclei is created due to neutron
capture in fertile nuclei. In order to quantify how much fissile material is
produced one can define the breeding ration

BR =
Fissile material produced

Fissile material destroyed

which then defines the type of the reactor.

137



• BR ≥ 1: breeder reactor

• BR ≈ 1: iso-breeder or self-breeder reactor

• BR ≤ 1: converter or burner reactor

It is however not entirely straightforward to determine the breeding ra-
tio of a nuclear reactor. Clearly, such quantity can be based on reaction
rates (differential form) or the produced and destroyed mass of the mate-
rial integrated over cycle (integral form). It is also notable that for fast
breeder reactors several nuclides become ”fissile”, which further complicates
the definition of such ratio. Here, we just mention that the topic has a wide
literature, however we do not intend to take a closer look.

5.4.4 Reactor poisoning: Xenon

As an example, we will look at the analytic solutions of the time behavior of
Xe135. The motivation of this example is twofold: it gives a valuable lesson
on how to perform simplifications when analyzing nuclide pathways, and it
highlights the importance of Xenon-135 on the operation of thermal nuclear
reactors. Xe-135 has a huge neutron capture cross section (depending on
reactor conditions - the neutron spectrum - it is 2-3 million barns). It is
produced from fission and also from the decay of I-135 which is a daughter
of Te-135 also produced from fission. We can see the important pathways in
Fig. 58. What we are interested is how the Xe and I concentrations change
during operation and after shutdown of the reactor.

We can further simplify the path for Xe-135 since we can notice that
Te-135 quickly decays into I-135, thus we can neglect Te-135 altogether and
assume that only I-135 is produced from fission. Whereas Xe-135 is produced
from fission and from the decay I-135, and it is lost due to its decay with
T1/2=9.17h and consumed by absorption.

Then the system can be expressed with the coupled ODE:

dNI

dt
= YIΣfϕ− λINI

and

dNXe

dt
= YXeΣfϕ+ λINI − λXeNXe − σXeNXeϕ
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Figure 58: Production of Xenon-135.

with conditions NI(0) = NXe(0) = 0. (Notice that Σf depends on the
number density of the fissile material, however we can consider that on this
time scale it doesn’t change with time).

Solving the first equation is rather simple:

NI(t) =
YIΣfϕ

λI
− YIΣfϕ

λI
e−λI t

with that the differential equation describing the change of Xenon becomes

dNXe

dt
= YXeΣfϕ+ YIΣfϕ− YIΣfϕe

−λI t − λXeNXe − σXeNXeϕ

and the solution becomes

NXe(t) = cet(−σXeϕ−λXe)+
YXeΣfϕ

σXeϕ+ λXe
− YIΣfϕ

σXeϕ− λI + λXe
e−λI t+

YIΣfϕ

σXeϕ+ λXe

where
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c =
YIΣfϕ

σXeϕ− λI + λXe
− (YI + YXe)Σfϕ

σXeϕ+ λXe

The saturation concentrations, when the production and loss terms are
in balance (dN/dt = 0) are

NI(∞) =
YIΣfϕ

λI

and

NXe(∞) =
(YXe + YI)Σfϕ

λXe + σXeϕ

We can observe some things: λXe is around 10−5 1/s, similar order of
magnitude as σXeϕ if the flux is around 1013 n/cm-2s (as in a normal reactor).
Notice, that for low (≤ 1012) fluxes (eg. a training reactor) the σXeϕ can be
neglected (since it is much smaller than λXe, and the saturation concentration
is proportional to the flux. If the flux is high (≥ 1014) (eg. in a research
reactor), the λXe can be neglected (since it is much smaller than σXeϕ, and
then the saturation concentration is independent from the flux. In reality the
flux is usually somewhere in between, the concentration is not proportional
anymore to the flux, but still grows with it.

Let’s see what happens after the concentrations saturated and we shut-
down the reactor. The ODEs simplify to (note, flux is zero)

dNI

dt
= −λINI

and

dNXe

dt
= λINI − λXeNXe

with conditions NI(0) = NI(∞) NXe(0) = NXe(∞)
where the notation might be a bit confusing, nevertheless the infinite values
refers to the previously obtained functions.

Then

NI(t) = NI(∞)e−λI t
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NXe(t) = ce−λXet − λI
λI − λXe

NI(∞)e−λI t

where

c = NXe(∞) +
λI

λI − λXe
NI(∞)

thus

NXe(t) = NXe(∞)e−λXet +
λI

λI − λXe
NI(∞)(e−λXet − e−λI t)

The left side of Figure 59 shows the change in the Xenon concentration
after shutdown. First, the concentration increases: no Xe is lost anymore
due to absorption, and since the half life of I-135 is shorter, it builds more
Xe-135 than what the decay of Xe-135 removes. After couple of hours, a
large part of I-135 is lost, thus the decay of Xe-135 dominates, and the Xe
concentration starts to drop. Depending on flux, it might take more than a
day to reach the same Xe concentration as right after shutdown. Sometimes,
the amount of Xe is quantified with the Xenon-poisoning factor : Σa,Xe/Σa,U ,
which shows a similar trend in the right side of Figure 59, but the numeric
values are more practical.

Figure 59: Change of Xenon-135 concentration after shutdown and xenon poisoning
during operation..

Due to Xenon-poisoning, the reactivity of the core decreases after shut-
down. Thus, if the operators are not able to pull out enough control rods, it
might not be possible to restart the reactor safely. This was partly the cause
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beind the Chernobyl accident8. One has to also mention that Xe-poisoning
might have strong spatial effects.

5.4.5 Burnable absorbers

Sometimes introducing a reactor poison into the core is intentional. This
is the case when burnable absorbers (for example boron or gadolinium) are
mixed to the fuel. While the excess positive reactivity of the fuel is depleted,
the negative reactivity of the burnable absorbers is decreasing. However,
since burnable absorbers are usually only introduces in some of the fuel rods,
their use may lead to non-uniform neutron flux distribution.

8For further details https://nuclidecalendar.github.io/days/dec13.html
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6 Appendix

6.1 Solid angle

When describing the movement of neutrons, it is often not only the speed of
neutrons but also the velocity v of neutrons which is of interest. Nevertheless,
instead of handling the velocity directly, it is rather the energy E and the
direction unit vector Ω:

Ω =
v

|v|
= ex sin θ cosφ+ ey sin θ sinφ+ ez cos θ (161)

where we introduce the spherical space coordinates, the polar angle θ and
the azimuthal angle φ.

Figure 60: Representation of direction and solid angle.

Thus when integrating a function over velocity, we can substitute

∫
f(v)d3v =

∞∫
0

v2dv

2π∫
0

dφ

π∫
0

sin θf(v)dθ (162)

and we can further define that

∫
4π

dΩ =

2π∫
0

dφ

π∫
0

sin θdθ (163)
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and we can notice that in fact the differential dΩ is a solid angle (an area
illustrated with the small patch in Figure 60)

dΩ = sin θdθdφ

We will frequently encounter integrals over this small solid angle.

6.2 Monte Carlo methods

Monte Carlo methods provide a direct solution to the transport equation,
since it allows for faithful simulation of neutron trajectories while they move
around in matter. Of course it still means that we need to implement the
correct physics (for example scattering kernel), and have the right cross sec-
tions, but we do not need to discretize space, angle or energy. Thus, the
geometry can be arbitrarily complex and handled in 3D.

The idea is that one tracks neutrons as from birth to death, and ran-
domly samples the collisions and the locations of the collisions the neutron
enters. If one could simulate every neutron than the accuracy would be the
same as performing a measurement. Nevertheless, due to the lack in compu-
tational power, usually we are not able to simulate every neutron, therefore
our results (k-eff, reaction rates, flux) will be average over the population of
neutrons sampled. An other source of accuracy in this methods comes from
the uncertainty in the measured cross section data, which propagates into
the Monte Carlo simulations.

Covering Monte Carlo particle transport could be in itself a full course,
so here we cover only some very basic ideas we will be using. In order to
faithfully simulate neutrons, we will need

• To implement physics (for example scattering kernels)

• Sample coordinates, angles, reactions, energies. So in general: sample
probability density functions

• Track neutrons and perform coordinate transformations.

Therefore, in this Appendix we briefly review pseudo random numbers,
and probability density functions sampling.
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6.2.1 Random numbers

In order to sample probability density functions, we need random numbers.
What is random? Something which lacks pattern and predictability. It
doesn’t make sense to discuss the randomness of a single number or event,
only for a sequence of number of events. There are several methods to decide
whether a sequence of numbers can be considered random.

One could use measurement of random fluctuations of nature to generate
random numbers. But this needs the data to be tabulated. Similarly we
could use irrational numbers, such as π as shown in Fig. 61. In several
applications in fact such tabulated data is being used.

Figure 61: The digits of π, each digit 0-9 is assigned to a different color.

However, it is often more practical to use a computer to generate random
numbers. Now of course a computer is deterministic, so these will only be
pseudo random numbers. The great advantages is, that if using the same
seed, we can get the same sequence, which is useful for tests and debugging.

For example a simple algorithm to generate pseudo random numbers can
be Xn+1 = k middle digit of X2

n. But algorithms like that will have a pe-
riod (once the middle digits repeat we will reproduce the same sequence of
numbers over and over again). A slightly improved algorithm:

Xn+1 = (aXn + c)%m

for example with a = 1664525, c = 1013904223, m = 232. This will produce
longer periods.
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event probability
A 0.6
B 0.3
C 0.1

Nevertheless, we don’t need to worry about about pseudo random num-
bers, since for our applications the basic pseudo random number generators
of numpy will be perfect.

6.2.2 discrete distributions

Consider we have three events with the following probabilities:
In order to sample random events from this distrubution we can follow

the algorithm in Fig. 62, which can be generalized for cases when there are
more possible events. We perform the cumulative sum of probabilities, and
get event j if

∑j−1
i=1 pi ≤ r <

∑j
i=1 pi

Figure 62: Algorithm to sample discrete events.

In neutron transport, such discrete events will be important when we need
to decide which reaction is going to happen with a neutron (with a probability
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Σi/Σt, or when we want to sample the number of neutrons emitted in a fission
event.

6.2.3 Sampling continuous distributions

Let’s consider that the distribution of a random value x is described by a
probability density function p(x), and the related cumulative distribution
function is F (x) =

∫ x
−∞ p(t)dt as shown in Fig. 63

Figure 63: Illustration of a probability density function and the related cumulative
distribution function.

The cumulative distribution function is going to take values between 0
and 1. So if one can have uniformly distributed random numbers between 0
and 1, it is possible to convert the random number r to get a random value
x:

x = F−1(r)

This method can be applied however only, when it possible to easily inte-
grate the probability density function. This is for example the case in neutron
transport when we need to sample random distances between collisions, since
as we saw before, the distribution of the distance between collisions follows
an exponential distribution.

However, if the given distribution is less well-behaving, and it is difficult
to obtain the cumulative distribution function, we still have several options,
from which here we review only one, the so called rejection sampling. We
draw a random number, convert it to be between a and b, we draw an other
one to create a y value based on the maximum of the pdf. If we are under the
curve we accept the value, otherwise we reject it, and draw a new number.
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The algorithm is summarized in Fig. 64 Such a method will be useful, when
for example sampling the birth neutron spectrum.

Figure 64: Algorithm of rejection based sampling.

6.2.4 Coordinates after scattering

During elastic scattering we derived that both the energy and the direction
of the neutron is going to change, and we saw that there is a connection
between the two. Usually we will sample the new energy from the scattering
kernel, and use it to figure out the scattering angle. However, then we still
need to update the direction of the neutron. For transforming the directions
we can use the following formulae (from https://docs.openmc.org/en/v0.

10.0/methods/physics.html), which is based on coordinate transformation
considerations not derived here.

u′ = µu+

√
1− µ2(uw cosφ− v sinφ)√

1− w2
(164)
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v′ = µv +

√
1− µ2(vw cosφ+ u sinφ)√

1− w2
(165)

w′ = µw −
√

1− µ2
√

1− w2 cosφ (166)
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