Multi-Region Combined Heat and Power Economic Emission Dispatch

Suman Kumar Dey, Deba Prasad Dash, Mousumi Basu

Abstract: Multi-Region Combined Heat and Power Economic Emission Dispatch (MRCHPEED) is an important chore in operational and planning problem. The valve point impact and restricted useful zone of regular thermal generators have been contemplated. In this work, Nondominated Sorting Genetic Algorithm-II (NSGA-II) is proposed for illuminating confounded MRCHPEED problem where power and heat generations have been distributed amongst the all committed units so that fuel cost and outflow echelon have been streamlined in chorus though gratifying every single operational requirement. The research consequence of a two-region investigation framework achieved from the prescribed technique are coordinated up to those acquired from Strength Pareto Evolutionary Algorithm 2 (SPEA 2).

Index Terms- banished useful region; co-generation units; Multi-region; tie line imperatives; valve point effect.

I. INTRODUCTION

Economic dispatch (ED) allocates the generation level of all devoted turbines in a most price- effective way whilst gratifying numerous constraints in a solo structure.

In preferred, generating units are separated among several production power areas connected by using interconnections. Multi-Region Economic Dispatch (MRED) is a growth of lone place economic dispatch. MRED reveals the electricity creation stage along with communication of energy among areas for reducing cost of all sections while satisfying miscellaneous constraint. Different strategies [1]-[8] are converse to explain MRED issue.

Vestige fuel is transformed into electricity in unproductive style. The best part of electricity production desecrated during the technique of change is high temperature. Creating power from a particular fuel source, for example, flammable gas, biomass, coal progress the use of flow due to the difference in temperature along with usefulness of the renovation method is accelerated. In contrast with different variety of energy transmitter, the usefulness of energy of cogeneration is extra which creates less significant pollution. The Combined Heat and Power Economic Dispatch (CHPED) method implies power and heat creation accordingly that production billing is minimized along with satisfying miscellaneous constraint. Different proposal have already been proposed to solve CHPED issues and those are mentioned in reference section.

Revised Manuscript Received on February 12, 2020.

Suman Kumar Dey, pursuing his Ph.D. in Electrical Engineering Department of Power Engineering, Jadavpur University, Kolkata.

Deba Prasad Dash, working as Associate Professor, Department of Electrical Engineering, Government College of Engineering, Kalahandi. **Mousumi Basu**, professor Department of Power Engineering Jadavpur

University. Kolkata

Huge incorporated power system is generally comprised of divergent locales dependent on an assortment of model for instance topographical, functional, forecast and administration.

Every one of these areas has been correlated to its connecting section along with interconnections. Each locale has its capacity and heat creation and energy and heat requirement.

Limiting the complete cost for every spot through stacking of every dedicated generating units along with cogeneration and heat-only units in this way that true power equilibrium limit, heat stability imperatives, production boundary requirements, heat production limit requirements with interconnection limit requirements have been fulfilled while from a particular fuel source, for example, flammable gas, biomass, coal are going in the course of limited heat vs. true power plane is the main point of Multi-Region Combined Power Heat and Economic Dispatch (MRCHPED)

Electric power plants based on fossil-fuel release a variety of pollutants which creates air pollution in the ambiance. Declining ambiance greenhouse gasses is another challenge for different power producers. The 1990 Clean Air Act is proposed for reducing atmospheric pollution. So today's civilization wants adequate and safe electricity at the costeffective as well as minimum echelon of greenhouse gasses.

Various methods are proposed to decrease ambience greenhouse gasses [9]-[15]. Among these tactics, dispatching taking into emission consideration is preferable.

The proposed approach is an expansion of Multi-Region Combined Heat and Power Economic Dispatch (MRCHPED) trouble. It plans a wide range of committed coal-fired generating units outputs, co-generation unit outputs, heat-only unit outputs and interchange power amongst regions with forecasted active power demand and heat request with the end goal that all out cost and outflow echelon in all sections are streamlined simultaneously satisfying an assortment of requirements.

This paper suggests NSGA-II to solve complicated multiregion combined heat and power economic emission dispatch (MRCHPEED) issues. For the given system, each region comprises coal-fired generating parts, co-generation parts and heat only parts. Every locale of the framework includes generation entity, co-generation entity and heat only entity.

To triumph over intricacy of binary version for trading with unremitting explore break with big proportions, Real-Coded Genetic Algorithm (RCGA) [16] is exploited. The Simulated Binary Crossover (SBX) and polynomial mutation are used here.

Published By: Blue Eyes Intelligence Engineering 2305 & Sciences Publication

Retrieval Number: C5655029320/2020©BEIESP DOI: 10.35940/ijeat.C5655.029320

The recommended method is confirmed by relating it with two-region analysis scheme. Analysis outcome attained in the course of NSGA-II procedure are matched up through the result which are attained from Strength Pareto Evolutionary Algorithm 2 (SPEA2).

II. **PROBLEM FORMULATION**

Here framework consisting of generation segment, segment related to power from a particular fuel source, for example, flammable gas, biomass, coal and heat-only segment has been taken into consideration. Figure 1 uncovers heat-power reasonable serviceable zone of a joined cycle co-age unit. The warmth and force preparations are inseparable. The heat-power practical functional zone has been encompassed by the wilderness curve ABCDEF.

Fig.1. Heat-Active power viable workable area for a cogeneration

The power output of the thermal generators and the heat output of heat-only units are bounded by their individual maximum and minimum frontiers. The power is produced by thermal generators and co-generation units and the heat is produced by co-generation units and heat-only units.

The MRCHPEED issue chooses the active power and heat creation with the goal that the complete cost and outflow of all locales is upgraded through running every dedicated generating units, units produced power from a particular fuel source, for example, flammable gas, biomass, coal and heat only units in this way where different limitation are fulfilled but units produced power from a particular fuel source, for example, flammable gas, biomass, coal are attempted in an encompassed heat in opposition to power plane. Here MRCHPEED issue is communicated as:

Objectives

A. Cost

The total price is stated as

$$C_{\rm T} = \sum_{i=1}^{N_{\rm A}} \sum_{j=1}^{N_{ti}} \left[a_{ij} + b_{ij} P_{tij} + c_{ij} P_{tij}^2 + \left| d_{ij} \times \sin \left\{ e_{ij} \times \left(P_{tij}^{\min} - P_{tij} \right) \right\} \right] + \sum_{i=1}^{N_{\rm A}} \sum_{j=1}^{N_{ci}} \left[\alpha_{ij} + \beta_{ij} P_{cij} + \gamma_{ij} P_{cij}^2 + \right]$$

$$\delta_{ij}\mathbf{H}_{cij} + \varepsilon_{ij}\mathbf{H}_{cij}^{2} + \xi_{ij}\mathbf{P}_{cij}\mathbf{H}_{cij} \right] + \sum_{i=1}^{N_{A}}\sum_{j=1}^{N_{hi}} \left[\phi_{ij} + \eta_{ij}\mathbf{H}_{hij} + \lambda_{ij}\mathbf{H}_{hij}^{2} \right]$$
(1)

٦

B. Emission

The ambience green house gases consisting of different air pollutants produced as a result of coalfired generating unit is represented one by one. On the other hand, for assessment cause, the whole secretion of these green house gases is affirmed as the summation of a quadratic and an exponential characteristic. The general discharge from thermal segments, cogeneration segments and heat-only segments in the system may be stated as

$$E_{\rm T} = \sum_{i=1}^{N_{\rm A}} \sum_{j=1}^{N_{\rm ii}} \left[\mu_{ij} + \kappa_{ij} \mathbf{P}_{iij} + \pi_{ij} \mathbf{P}_{ij}^2 + \sigma_{ij} e^{(\theta_{ij} \mathbf{P}_{ij})} \right] + \sum_{i=1}^{N_{\rm A}} \sum_{j=1}^{N_{\rm ci}} \left[\tau_{ij} \mathbf{P}_{cij} \right] + \sum_{i=1}^{N_{\rm A}} \sum_{j=1}^{N_{\rm hi}} \left[\rho_{ij} \mathbf{H}_{hij} \right]$$
(2)

Constraints

C. Power equilibrium constraints

The general real power production for every generating section and co-generation section need to be same to the region where real power utility in the company of the reflection of incoming and outgoing real power and is acknowledged in the following way:

$$\sum_{j=1}^{N_{tii}} P_{tij} + \sum_{j=1}^{N_{ci}} P_{cij} = P_{Di} + \sum_{k,k \neq i} T_{ik}, i \in \mathbb{N}_{A}$$

Where T_{ik} is the interconnection real power transmission in between section i to section k. T_{ik} is positive at the same time as energy transfer from section ito section k and T_{ik} is negative while energy transfer from section k to section i.

D. Interconnection power capacity constraints

Power transmission through interconnection T_{xy} from section x to section y should lie within the interconnection real power transfer capacity boundary.

$$-T_{xy}^{\max} \le T_{xy} \le T_{xy}^{\max}$$
(3)

Where T_{ik}^{max} the active power flow is limit from region *i* to region k and - T_{ik}^{max} is the active power flow limit from region k to region i.

E. Capability frontiers of thermal generators

$$\mathbf{P}_{tij}^{\min} \leq \mathbf{P}_{tij} \leq \mathbf{P}_{tij}^{\max}, \, i \in \mathbf{N}_{A} \text{ and } j \in \mathbf{N}_{ti}$$
(4)

Retrieval Number: C5655029320/2020©BEIESP DOI: 10.35940/ijeat.C5655.029320

2306 & Sciences Publication

F. Restricted effective region of coal-fired generating units

The physically possible functional section of the j^{th} generation unit in the section i with restricted achievable vicinity is affirmed as:

$$P_{ij}^{mn} \le P_{ij} \le P_{ij,1}^{l}$$

$$P_{ij,m-1}^{u} \le P_{ij} \le P_{ij,m}^{l}; m = 2,3,...,n_{ij}$$

$$P_{ij,n_{ij}}^{u} \le P_{ij} \le P_{ij}^{max}$$
(6)

Where *m* signifies the quantity of restricted achievable vicinity. $P_{ij,m-1}^{u}$ is the maximum limit of (m-1)th proscribed workable area of *j* th thermal generator in region *i*. $P_{ij,m}^{l}$ is the minimum limit of *m* th proscribed workable area of *j* th thermal generator in region *i*. Total number of proscribed workable areas of *j* th thermal generator in region *i* is n_{ii} .

G. Heat equilibrium constraints

$$\sum_{j=1}^{N_{ci}} \mathbf{H}_{cij} + \sum_{j=1}^{N_{hi}} \mathbf{H}_{hij} = \mathbf{H}_{Di} + \sum_{k,k \neq i} \mathbf{H}_{ik}, \quad i \in \mathbf{N}_{\mathbf{A}}$$
(7)

Where H_{ik} is the temperature transfer through interconnection from section *i* to section *k*. H_{ik} is positive when temperature depart from section *i* to section *k* and H_{ik} is negative while temperature depart from section *k* to section *i*.

H. Tie line heat capacity constraints

Temperature transfer through interconnection H_{ik} from region *i* to region *k* should be within the tie line heat transfer capacity limits.

$$-\operatorname{H}_{ik}^{\max} \le \operatorname{H}_{ik} \le \operatorname{H}_{ik}^{\max}$$
(8)

Where H_{ik}^{\max} is the heat transfer capability in between section *i* to section *k* and $-H_{ik}^{\max}$ is the heat transfer capability in between section *k* to region *i*.

I. Capability frontiers of cogeneration units

Heat and power outputs of the units produced power from a particular fuel source, for example, flammable gas, biomass and coal are undividable and one output interrupt with other $P_c^{\min}(H_c)$, $P_c^{\max}(H_c)$, $H_c^{\min}(P_c)$ and $H_c^{\max}(P_c)$ are the linear primary constraints which render the possible effective part of the cogeneration segments.

J. Fabrication frontiers of heat-only units

$$\mathbf{H}_{hij}^{\min} \leq \mathbf{H}_{hij} \leq \mathbf{H}_{hij}^{\max}, i \in \mathbf{N}_{A} \text{ and } j \in \mathbf{N}_{hij}$$

(11)

III. NONDOMINATED SORTING GENETIC ALGORITHM-II

N. Srinivas and K. Deb [7] recognized an algorithm based on genetic technique abbreviated as "NSGA" to compete with multifaceted optimization issues. Nondomination is used as grading criteria of result, and fitness distribution is used for diversification control in the investigated section. Like NSGA is incredibly responsive to fitness distribution factors, Deb et al. [8] established nondomoinated sorting genetic algorithm-II (NSGA-II), which produces advance consistent way out quickly than its ancestor. Owing to inadequacy of space details of NSGA-II cannot be provided in this paper.

IV. SIMULATION RESULTS

The recommended NSGA-II is used to solve a complicated MRCHPEED problem. Here a system has been considered having two separate frameworks. Simulation results have been utilized to coordinate the viability of the suggested NSGA-II along with strength pareto evolutionary algorithm 2 (SPEA 2).Fuel charge and discharge are major conflicting issues. To illuminate opposing connections among the goal capacities, every one for example fuel cost and discharge is limited independently by utilizing genuine coded hereditary calculation (RCGA). The populace size, most extreme number of cycles, hybrid and transformation probabilities are preferred like 100, 300, 0.9 and 0.2 separately.

NSGA-II is confirmed to improve different goals for example fuel cost and discharge at the same time. To analyze the outcomes, SPEA 2 is utilized to take care of this issue.

The population size, upper limit of iterations, crossover and mutation probabilities are preferred 20, 30, 0.9 and 0.2 respectively in NSGA-II and SPEA 2.The NSGA-II, SPEA 2 and RCGA are abused by using MATLAB 7.5 on a PC (Dual core, 1TB, 3.3 GHz).

Section 1 consist of of 13 Nos of generation units with restricted effective area and valve point effect, 6 Nos of cogeneration units and 5 Nos of heat-only units. Detailed data is summarized in Table A.1 and Table A.2 in the appendix. The other data of co-generation units is taken from [4].

Section 2 comprises 26 Nos of conventional generation unit restricted effective area and valve point effect, 12 Nos of units which produced power from a particular fuel source, for example, flammable gas, biomass, coal and 10 heat-only units. Records of section 2 are managed by replicating records of section 1.

The active power stream border commencing section 1 to section 2 or commencing section 2 to section 1 is 300MW. The heat stream border commencing section 1 to section 2 or commencing section 2 to section 1 is 300 MWth. Whole active power and heat requirement separated between section 1 and section 2 are 30% and 70% respectively.

2307

Total active power requirement is 7500 MW and entire heat requirement is 5000 MWth.

Multi-region combined heat power economic dispatch problem and multi-region combined heat and power emission dispatch problem are solved by using RCGA. It is examined that under multi-region combined heat and power economic dispatch, total cost is 207472 \$/hr and emission is 287.1266 Kg/hr. But price boosts to 521942 \$/hr and emission reduces to 183.8696 Kg/hr in case of multi-region combined heat and power emission dispatch.

Multi-region combined heat power economic emission dispatch (MRCHPEED) issue is fathomed via using recommended NSGA-II and SPEA 2. Contingent upon MRCHPEED using NSGA-II, fuel cost is 305630 \$/hr and emission is 241.4702 Kg/hr. MRCHPEED using SPEA 2, fuel charge is 317390 \$/hr and discharge is 241.9414 Kg/hr.

The active power and heat production of section 1 and section 2 accomplished from the multi-region combined heat and power economic dispatch along with others by utilizing NSGA-II and SPEA 2 have been pointed out in Table I and Table II correspondingly.

Fuel cost, emission, interconnection active power transmission and interconnection heat transmission acquired commencing multi-region combined heat and power economic dispatch problem along with others are accumulated inside chart 3 as given. The cost convergence and emission convergence characteristics acquired by utilizing RCGA has been revealed in Fig. 2 and Fig. 3 respectively. Figure 4 reveals the distribution of 20 nondominated solutions attained in the final iteration of recommended NSGA-II and SPEA2 attained from MRCHPEED.

Fig. 2. Cost convergence characteristic

Fig. 3. Emission convergence characteristic

Fig. 4. Pareto-optimal front of the final iteration

Parameter	Multi-	Multi-	Multi-region		
	region combined heat and	region combined heat and	combined power e emission	heat and conomic dispatch	
	economic dispatch	emission dispatch	NSGA- II	SPEA 2	
Cost (\$/h)	207472	521942	305630	317390	
Emission (Kg/h)	287.1266	183.8696	241.4702	241.9414	
T ₁₂ (MW)	42.1859	246.8647	200.0926	100.9626	
H ₁₂ (MWth)	173.3398	116.7972	271.5332	149.8350	

2308

Published By:

& Sciences Publication

Table I: Active power production (MW) and Heatproduction (MWth) of section 1 acquired from multi-region combined heat and power dispatch

Economic Dignotok	Emission Dispoteb	Economic Emission		
Dispatch	Dispatch	NSCA II	SPFA 2	
P_{t1} 175.3269	131.3751	238.6961	121.4263	
P _{t2} 240.2568	220.0097	169.3303	269.6463	
P _{t3} 262.1979	225.0039	252.0785	259.3150	
P _{t4} 122.4446	148.1775	137.6074	165.9348	
P _{t5} 171.2847	149.4530	180.0000	100.9899	
P _{t6} 106.1885	151.0677	107.4919	139.3710	
P _{t7} 137.3948	76.0717	86.5014	60.0000	
P _{t8} 143.3005	76.1873	136.9679	60.0000	
P _{t9} 131.5079	75.4632	120.3673	71.5266	
P _{t10} 77.5608	96.4404	101.4402	106.8052	
P _{<i>t</i>11} 75.2351	97.5335	119.5742	120.0000	
P _{t12} 55.0000	77.5996	57.8323	94.8652	
P _{t13} 55.9525	77.0394	57.3955	81.6566	
P _{c1} 147.0936	246.9580	177.5651	185.7836	
P _{c2} 87.0206	125.7733	93.0103	82.0021	
P _{c3} 170.5433	247.0000	225.3918	239.8347	
P _{c4} 83.6526	125.7509	119.4748	72.5157	
P _{c5} 10.7658	60.0000	33.4432	39.6768	
P _{c6} 39.4589	89.9604	35.9243	79.6128	
H _{c1} 141.7551	0	65.3837	53.9485	
${ m H}_{c2}$ 115.5269	32.3889	48.3176	80.0202	
${ m H}_{c3}$ 154.8795	0	0	0	
${ m H}_{c4}$ 112.6807	32.1705	13.4316	50.2808	
H _{c5} 40.3284	0	0.0941	28.3155	
H _{c6} 21.9781	24.1873	5.1975	0.0005	
H _{<i>h</i>1} 60.0000	1.4000	36.7000	56.7000	
H _{h2} 59.9822	0	60.0000	44.7000	
H _{h3} 119.9857	0	105.1000	87.2000	
H _{<i>h</i>4} 119.9984	1.0000	120.0000	112.2000	
H _{h5} 726.2247	1525.60	774.3	1136.4	

Table II: Power production (MW) and heat production (MWth) of section 2 acquired from multi-region combined heat and power dispatch.

Economic	Emission	Economic Emission		
Dispatch	Dispatch	Disp	atch	
	121 2701	NSGA II	SPEA 2	
\mathbf{P}_{t1} 175.1141	131.2701	47.8544	125.2241	
P _{t2} 242.6539	220.0054	157.7517	270.0507	
P _{t3} 304.6120	225.0104	285.2191	243.0064	
P _{t4} 147.6799	147.5379	147.5379	176.5720	
P _{t5} 166.2134	150.3602	124.0388	163.4945	
P _{t6} 136.7123	149.5807	180.0000	133.8819	
P _{t7} 173.7326	76.4833	60.0000	117.9709	
P _{t8} 154.9804	77.1193	179.4743	60.0577	
P _{t9} 121.5496	74.9862	91.3939	125.0197	
P _{t10} 40.3942	95.6814	108.0711	80.5614	
P _{t11} 40.4158	95.9912	40.2763	119.9426	
P _{t12} 56.2225	76.1652	61.9070	55.0000	
P _{t13} 55.0172	55.0118	107.3403	55.8733	
P _{t14} 421.4253	135.3546	243.2763	257.7605	
P _{t15} 234.3023	90.2354	284.8780	266.3629	
P _{t16} 252.2307	225.0035	236.0131	227.6083	
P _{t17} 146.8343	148.1660	180.0000	63.6185	
P_{t18} 147.2141	149.1256	120.8225	152.0744	
P_{t19} 174.7218	150.1015	126.8398	153.4561	
P_{t20} 161.7564	73.8703	60.0000	79.5739	
P _{t21} 148.2109	76.5604	119.8093	135.8604	
P _{t22} 180.0000	73.7084	154.0689	76.2866	
P _{t23} 55.4384	95.7966	78.8220	120.0000	
P _{t24} 41.4238	97.1463	120.0000	120.0000	
P _{t25} 57.7860	76.1090	88.2034	98.9655	
P _{t26} 55.5977	76.2695	112.2056	74.3555	
P _{c1} 117.6495	246.9607	195.6818	215.7340	
P _{c2} 70.9362	125.7974	60.4244	74.7606	
P _{c3} 148.8926	246.9461	222.8787	130.2030	
P _{c4} 103.4972	125.8000	97.6660	118.7039	

Multi-Region	Combined	Heat and	Power	Economic	Emission	Dispatch
	0011101100					

Economic Dispotate	Emission	Economic Emission	
Dispatch	NSGA II	NSGA II	SPEA 2
P _{c5} 10.4163	59.9163	47.7762	38.3283
P _{c6} 47.9396	89.8480	82.6971	80.1689
P _{c7} 149.0130	246.8992	156.5276	213.4789
P _{c8} 74.6154	125.6641	121.5002	105.6402
P _{c9} 147.3443	246.9531	135.0682	227.6502
P _{c10} 105.2674	125.7584	82.4985	110.1486
P _{<i>c</i>11} 10.1667	59.9512	36.7629	26.9498
P _{c12} 80.2413	89.9919	84.2810	77.5090
H _{c1} 125.2917	0.0016	60.0660	21.1935
H _{c2} 101.7223	32.1396	63.6122	10.9137
H _{c3} 142.6570	0	89.1739	1.6623
H _{c4} 129.7772	32.3555	5.1826	17.9133
H _{c5} 40.1778	0.0590	9.2503	33.9861
H _{c6} 25.8558	24.5429	21.3635	1.5788
H _{c7} 142.9650	0.1691	65.0978	18.7457
H _{c8} 104.7792	33.1855	0.3305	93.3041
H _{c9} 142.0037	0.1392	94.7179	29.1193
H _{c10} 131.3721	32.2791	104.3493	113.3349
H _{c11} 40.0617	0.1407	4.5180	10.1226
H _{c12} 0.5230	24.4440	7.8781	0
H _{<i>h</i>1} 59.9604	0.6000	57.4000	60.0000
H _{h2} 59.9817	8.8000	51.3000	31.3000
H _{h3} 119.9880	8.6000	113.4000	83.6000
H _{h4} 119.9375	0	106.5000	62.1000
H _{<i>h</i>5} 717.0273	2607.9	1250.8	1146.0
H _{h6} 59.9968	4.3000	33.9000	60.0000
H _{h7} 59.9686	0.8000	27.5000	59.5000
H _{h8} 119.9926	12.6000	120.0000	56.9000
H _{h9} 119.9976	3.2000	113.1000	97.3000
H _{h10} 722.6231	557.000	1372.0	1341.6

v. CONCLUSION

In the current work, NSGA-II is recommended to solve complex multi-region combined heat and power economic emission dispatch problem. Simulation results attained from the recommended technique are compared with those attained from SPEA 2. It is seen that the recommended technique proffers a cutthroat performance.

REFERENCES

- 1. C. Wang and S. M. Shahidehpour, "A decomposition approach to nonlinear multi area generation scheduling with tie-line constraints using expert systems", IEEE Trans Power Syst., vol. 7, no. 4, pp. 1409-1418, 1992.
- 2. D. Streiffert, "Multi-area economic dispatch with tie line constraints", IEEE Trans. Power Syst. Vol. 10, no. 4, pp. 1946-1951, 1995
- 3. Behnam Mohammadi-Ivatloo, Mohammad Moradi-Dalvand, Abbas Rabiee, "Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients", Electric Power System Research 2013, 95 9-18.
- 4. M. Basu, "Group search optimization for combined heat and power economic dispatch", International Journal of Electrical Power & Energy Systems, Volume 78, June 2016, Pages 138-147.
- 5. M. R. Gent and J. W. Lamont, "Minimum Emission Dispatch", IEEE Trans. on PAS, (90), pp. 2650-2660, 1971.
- K. Deb and R. B. Agrawal, "Simulated binary crossover for continuous 6. search space", Complex Systems, vol. 9, no. 2, pp. 115-148, 1995.
- 7. N. Srinivas and K. Deb, "Multiobjective function optimization using nondominated sorting genetic algorithms", IEEE Trans. on Evol. Comput., vol. 2, no. 3, pp. 221-248, 1994.
- 8. K. Deb, A. Pratap, S Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. on Evol. Comput., vol. 6, no. 2, pp. 182-197, April 2002.
- 9. E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving the Strength Pareto Evolutionary Algorithm", Swiss Federal Institute of Technology (ETH), Zurich, Switzerland. Technical report TIK- Report 103, May 2001.
- 10. Manisha Sharma, Manjaree Pandit, Laxmi Srivastava, "Reserve constrained multi-area economic dispatch employing differential evolution with time-varying mutation", International Journal of Electrical Power and Energy Systems, Volume 33, Issue 3, March, 2011, pp. 753-766.
- 11. M. Ghasemi, J. Aghaei, E. Akbari, S. Ghavidel and Li Li, "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems", Energy, vol. 107, pp. 182-195.2016
- 12. F. J. Rooijers, R.A.M. van Amerongen, "Static economic dispatch for co-generation systems", IEEE Transactions on Power Systems 9 (3) (1994) 1392-1398
- 13. Tao Guo, Henwood M. I., Ooijen M. van, "An algorithm for heat and power dispatch", IEEE Transactions on Power Systems 11 (4) (1996) 1778-1784.
- 14. C. T. Su, C. L. Chiang, "An incorporated algorithm for combined heat and power economic dispatch", Electric Power System Research 2004, 69 (2-3) 187-195.
- 15. K. Deb and R. B. Agrawal, "Simulated binary crossover for continuous search space", Complex Systems, vol. 9, no. 2, pp. 115-148, 1995.
- 16. M. R. Gent and J. W. Lamont, "Minimum Emission Dispatch", IEEE Transactions on power apparatus and systems, (90), pp. 2650-2660, 1971.

	APPENDIX Table A.1: Data of section 1							
T	herma	l gener	rators					
U	nit P	^{min} P	$^{\max} a$	b	С		μ κ	π
1	0	680	160	3.6	0.0021	5.42	89 0.0351	0.00024
2	2 0	360	130	3.8	0.0017	4.28	95 0.0411	0.00040
3	6 0	360	130	3.8	0.0017	4.28	95 0.0411	0.00040
4	60	180	100	4.0	0.0023	4.26	69 0.0545	0.00028
5	60	180	100	4.0	0.0023	4.26	69 0.0545	0.00028
6	60	180	100	4.0	0.0023	4.26	69 0.0545	0.00028
7	60	180	120	3.5	0.0035	4.26	69 0.0254	0.00036
8	60	180	120	3.5	0.0035	4.26	69 0.0254	0.00036
9	60	180	120	3.5	0.0035	4.26	69 0.0254	0.00036
10) 40	120	150	4.6	0.0105	1.38	59 0.0327	0.00032
11	40	120	150	4.6	0.0105	1.38	59 0.0327	0.00032
12	2 55	120	140	3.8	0.0015	1.43	85 0.0232	0.00034
13	55	120	140	3.8	0.0015	1.43	85 0.0232	0.00034
Co	genera	ation u	nits					
Uni	it <i>O</i>	e f	3 7	/	δ	Е	ξ	τ
1	2650	14.5	0.0345	4.20	0.030	0.031	0.00165	
2	1250	36.0	0.0435	0.60	0.027	0.011	0.00220	
3	2650	14.5	0.0345	4.20	0.030	0.031	0.00165	
4	1250	36.0	0.0435	0.60	0.027	0.011	0.00220	
5	2650	34.5	0.1035	2.20	0.025	0.051	0.00140	
6	1565	20.0	0.0720	2.34	0.020	0.040	0.00110	
He	at-onl	y units						
Uni	it H	^{min} H	\mathbf{H}^{\max}	D I	7	λ	ρ	
1	0	60	950	2.01	09 0	0.038	0.0018	
2	0	60	950	2.01	09 0.0	38	0.0018	
3	0	120	480	3.06	51 0.0	52	0.0017	
4	0	120	480	3.06	51 0.0	52	0.0017	
5	0	2695.2	950	2.01	09 0.0	38	0.0016	

Table A.2: Restricted effective area of 1 thermal generators	
of spation 1	

of section 1							
Unit	Precinct 1, MW	Precinct 2, MW	Precinct 3,				
			MW				
1	[180, 195]	[260, 335]	[390, 420]				
2	[30, 40]	[180, 220]	[305, 335]				
3	[30, 45]	[190, 225]	[305, 335]				
10	[45, 55]	[65, 75]	-				
11	[45, 55]	[65, 75]	-				

AUTHORS PROFILE

Suman Kumar Dey, received his B.Tech in Electrical Engineering from Makaut (Formerly WBUT) in 2008 and M.Tech in Electrical Power from Calcutta University in 2013. Currently, he is pursuing his Ph.D. in Electrical Engineering under the Department of Power Engineering, Jadavpur University, Kolkata.

His area of interest is Power System, Electric Drives and renewable energy.

Deba Prasad Dash, received his B.Tech and M.Tech degrees under Utkal University in 1997 and 2001, respectively. He has done his Ph.D. from Jadavpur University, Kolkata in 2011. Currently, he is working as Associate Professor, Department of

Electrical Engineering, Government College of Engineering, Kalahandi. His area of interest includes power system optimization and renewable energy sources.

Mousumi Basu, received the bachelor degree, master degree and Ph.D. degree from Jadavpur University, Kolkata, India, in 1991, 1993 and 2003 respectively. She is a professor at Power Engineering Department of Jadavpur University. Her research is focused on power system optimization, soft computing

techniques and renewable energy sources.

