

Design of Squirrel-Cage Self-Excited 3-phase **Induction Generator**

Bilal Abdullah Nasir

Abstract Due to the wide utilization of a 3-phase, squirrel-cage, self-excitation generator in renewable energy and isolated areas application, the paper deals with detailed design procedure of this type of generator, in a sequence and systematic manner. The design steps are obtained and executed in a Matlab file of the computer program to suit the newly designed constructions and parameters of the generator. In the new construction, the generator can be operated in a stable and saturation region. Due to the similarity in the construction of induction motor and generator, the formulas used in the calculation of equivalent circuit components of an induction motor may be utilized to calculate the parameters of the induction generator. To obtain optimized induction generator parameters and construction dimensions an ant colony algorithm is used to optimize these construction dimensions and generator parameters. The main objective parameters used in this algorithm are the generator efficiency, the excitation-capacitance, winding temperature rise, and minimum generator size is for 5 HP, 400 V, 50 Hz, and star connection generator.

Keywords: Squirrel-Cage Induction Generator, Design Steps, Generator Parameters, Ant Colony Optimization.

I **INTRODUCTION**

In recent years, the increasing demand for renewable energy has caused great interest in the development and utilization of wind and micro-hydro-electric power plants. Many papers showed the importance of wind and microhydro induction generators' performance analysis, modeling, protection, and control [1-5]. However, there are fewer publications that proposed the design and construction of these types of generators to develop an effective machine for electricity generation, especially in isolated areas and standalone generators [6-10]. Two types of secondary windings of the rotor in the induction generator are slip-ring wound rotor and squirrel-cage rotor. Squirrel-cage-type generators are used widely in isolated area applications. The major disadvantages of this type of generator are the low efficiency, high volume size, and low power factor. With a change in the design of the magnetic circuits of this type of generator, the performance can be improved.

These types of generators are used more than the other type of generators due to the ease of operation, construction, maintenance, and low noise. The design of the induction generator for desired and suitable performance must be not restricted by stator and rotor structure. The induction machine is operated as a magnetic circuit and it will be influenced by the magnetic saturation. However, the operation of the squirrel-cage self-excited induction generator becomes stable when the generator workes in the saturation region. Then, the best step to optimize the design of an induction generator is to design a new machine that can carry the saturated magnetizing current and handle the great terminal voltage. The similarity in the construction of induction motor and generator makes it possible to use the design steps of induction motor for the procedure of induction generator. The mathematical formulas and empirical equations used to calculate the equivalent circuit components of the induction motor can be used to calculate the components of the induction generator equivalent circuit. In this paper, a detailed design procedure of squirrelself-excited induction generator is presented cage. systematically with a design algorithm flow chart, by modifying the classical method of induction motor design. Recently, to solve the optimization requirements an ant colony algorithm has been suggested, which is derived from the foraging behavior of ants to optimize the designed parameters of induction machines [11-13]. In this paper, the ant colony optimization algorithm-based method is used for the optimal design of a squirrel-cage self-excited induction generator. In this method, optimal values of design parameters are determined to maximize the generator efficiency and to minimize the generator excitation capacitance, stator winding temperature, and generator volume.

Π **DESIGN STEPS**

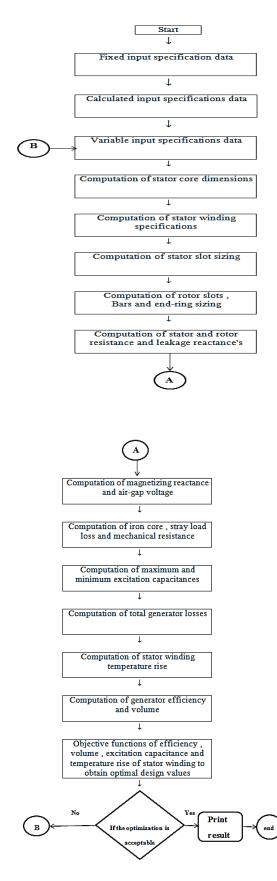
The design procedure of the squirrel-cage, self-excited induction generator involves several steps. The sequence of the design steps can be summarized in a flowchart as shown in figure (1). These steps can be executed as follow:

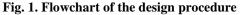
1- The first step in the design of a squirrel-cage, self-excited induction generator is to define the fixed input specifications data of the generator. For example, the generator has 5 HP output power, 400 V line voltage, 50 Hz, 3-phase supply, and Y-connection type. These data can be states in table (1).

Manuscript received on October 11, 2021. Revised Manuscript received on October 16, 2021. Manuscript published on October 30, 2021.

* Correspondence Author

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


> Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) 181 © Copyright: All rights reserved.



Retrieval Number: 100.1/ijeat.A31981011121 DOI: 10.35940/ijeat.A3198.1011121 Journal Website: <u>www.ijeat.org</u>

Bilal A. Nasir*, Lecturer, Northern Technical University, Iraq.

Design of Squirrel-Cage Self-Excited 3-phase Induction Generator

Table- 1: fixed input specifications

Input parameters of the designed generator	Symbol	Value
Output power	Pout	5 HP
Phase voltage	V_{ph}	230 V

Retrieval Number: 100.1/ijeat.A31981011121 DOI: 10.35940/ijeat.A3198.1011121 Journal Website: <u>www.ijeat.org</u>

Number of phases	т	3
Supply frequency	f _s	50 Hz
Stator-connection	Y	-
Number of magnetic poles	2p	4
Power factor	$\cos(\phi)$	0.9
Speed of operation	N _r	1525 r.p.m
Synchronous speed	N _s	1500 r.p.m
Number of parallel paths	a _p	2
Type of stator winding	layer	1
Efficiency	$\eta\%$	90
Ambient temperature	T _a	25 °C
The form factor of the sine-wave	K _{ff}	1.1
Stator to rotor mmf factor	K _{mm}	0.9
Mechanical machining factor	K _{ty}	1.7
Saturation factor	K _{st}	0.5
Number of fins in the outer frame	K _{fins}	2.0
Carter coefficient	K _{ca}	1.25
Iron lamination thickness factor	K _{fe}	0.96
Stator winding factor	K _{ws}	0.93
Stator slot filling factor	K _{fil}	0.4
Stator tooth flux density	K _{ts}	1.6 wb/m ²
Stator core flux density	K _{cs}	1.6 wb/m ²
Rotor tooth flux density	K _{tr}	1.6 wb/m ²
Rotor core flux density	K _{cr}	1.6 wb/m ²
Air-gap flux density	Bg	1.65 wb/m ² from the table (A-1)
Fixed input parameter of the designed	symbol	Value
generator Minimum stator slot pitch	$ au_{ssmin}$	7.5 mm
Maximum stator slot pitch	τ _{ssmax}	15 mm
Number of slots / pole / phase	q_{s}	3
Permeability of copper and aluminum	μ.	$4\pi * 10^{-7} \text{ H/m}$
Copper resistivity	ρ _{cuo}	$1.7 * 10^{-8} (\Omega.m)$
Aluminum resistivity	ρ_{alo}	$2.8 * 10^{-8} (\Omega.m)$
Thermal temperature coefficient of	∝ _{cu}	1/259
copper Thermal temperature coefficient of	$\propto_{a\ell}$	1/250
aluminum The form factor of magnetic flux	Φ_{ff}	0.75
Temperature conductivity factor	∝ _{cond}	833
Temperature convection factor	∝ _{conv}	50
Iron material density	Yid	7800 kg/m ³
Specific iron loss	P _{ils}	2.5 watt/ kg
Stator slot mouth width	bos	3 mm
Stator slot mouth height	hos	2 mm
Rotor slot mouth width	bor	3 mm
Rotor slot mouth height	hor	1 mm
Stator slot height between slot mouth	hw	3 mm
height and slot first width.		

2- The calculated input specifications data with their calculation formula as shown in table (2).

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) 182 © Copyright: All rights reserved.

Table- 2: calculated input	specifications data
-----------------------------------	---------------------

The calculated input	symbol	Calculation formula
parameter		
Machine rated slip	s _r	$s_r = (N_s - N_r)/N_s$
Machine synchronous	n_s	$n_s = 2 * f_s / (2P)$ (r.p.s)
speed	_	
Stator angular	Ws	$w_s = 2 * \pi * f_s$ rad./sec.
frequency	_	
line-to-line voltage	$V_{\ell\ell}$	$V_{\ell\ell} = \sqrt{3} * V_{ph} \qquad \text{(Volts)}$
Induced e.m.f	K _e	$K_e = 0.98 - 0.005 * P$
coefficient		

3- The variable input parameters as shown in table (3). These parameters can be changed in values by the computer program to obtain the optimal design.

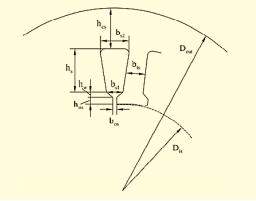
Table- 3: variable input specifications data

Variable input parameters	symbol	Value	
Volume controlling ratio = stator stacklength pole pitch	λ_{vc}	1.1 from the table (A-2)	
Inner to outer stator core diameter ratio	K _{ds}	0.62 from the table (A-3)	
Stator conductor current density	J _{co}	$4 * 10^6$ A/m ² from the table (A-4)	
Rotor bar current density	J _b	$4 * 10^6$ A/m ²	
Rotor end-ring current density	J _{er}	$5 * 10^6$ A/m ²	
Specific electrical loading	A _c	25000 (A/m)	
Specific stator slot loading	A _{ss}	500 (A. conductor)	

4- Calculation of stator core dimensions as shown in table (4). This table shows the related parameters to the stator core dimensions and their related calculated formulas.

Table- 4: stator core dimensions and their related formulas

i vi muno			
Parameter	symbol	Related formula	
Apparent generator power	S_g	$S_g = P_{out} / (\eta * \cos\phi)$ (VA)	
Generator volume utilization factor or output coefficient	Со	$C_o = K_{ff} * \phi_{ff} * K_{ws} * \pi * B_g * A_c$ Joule/m ³	
Stator bore diameter	D_{bs}	$D_{bs} = \left[2P * S_g / (Co * \pi * \lambda_{vc} * n_s) \right]^{\frac{1}{3}}$ (mm)	
Stator outer diameter	D _{os}	$D_{os} = D_{bs}/K_{ds}$ (mm)	
Stator stack length	ℓ_{ss}	$\ell_{ss} = (\pi * \lambda_{vc} * D_{bs})/2P (mm)$	
Stator pole- pitch	$ au_p$	$\tau_p = (\pi * D_{bs})/2P (mm)$	
Maximum stator slot number	Q_{smax}	$Q_{smax} = \pi * D_{bs} / \tau_{ssmin}$ (mm)	
Minimum stator slot number	Q_{smin}	$Q_{smin} = \pi * D_{bs} / \tau_{ssmax}$ (mm)	
The suitable number of stator slots	Q_s	From table (A-5)	
Stator slot pitch	$ au_{ss}$	$\tau_{ss} = \pi * D_{bs} / Q_s \qquad (mm)$	
Effective air- gap length	g_e	$g_e = 0.2 + 2 * [D_{bs} * \ell_{ss} * 10^{-6}]^{\frac{1}{2}}$ (mm)	


5- Stator winding calculation, as shown in table (5).

Retrieval Number: 100.1/ijeat.A31981011121 DOI: 10.35940/ijeat.A3198.1011121 Journal Website: <u>www.ijeat.org</u> This table shows the parameters related to the stator winding and their calculated formulas.

Table- 5: stator winding calculations

Parameters	Symbol	Related formula
Stator flux per pole	Φ_p	$\Phi_p = \phi_{ff} * \tau_p * \ell_{ss} * B_g \text{ (weber)}$
Stator turns per phase	N _{ph}	$N_{ph} = V_{ph} / (4 * K_e * K_{ff} * F_s * \Phi_p)$
Stator conductors per slot	S _{sc}	$S_{sc} = 2 * m * a_p * N_{ph}/Q_s$
Stator load line current	$I_{\ell\ell}$	$I_{\ell\ell} = P_{out} / \left(\eta * \sqrt{3} * V_{\ell\ell} * \cos\phi \right)$ (A)
Stator load phase current	$I_{ph\ell}$	$I_{ph\ell} = I_{\ell\ell} \tag{A}$
Generator reactive power	Q_{gr}	$Q_{gr} = S_g * \sin(\phi)$ (VAR)
Stator self- excitation capacitive reactance	X _{cph}	$X_{cph} = 3 * V_{ph}^2 / Q_{gr} (\Omega)$
Stator excitation current	I _{cph}	$I_{cph} = V_{ph} / X_{cph} \tag{A}$
Stator phase current	I _{sph}	$I_{sph} = \left[I_{ph\ell}^2 + I_{cph}^2 \right]^{\frac{1}{2}}$ (A)
Stator specific slot loading	A _{ss}	$A_{ss} = S_{sc} * I_{sph} \dots \text{ (A.cond.)}$
Stator winding conductor cross- sectional area	A _{co}	$A_{co} = I_{sph} / J_{co} \qquad (mm^2)$
Stator winding conductor diameter	D _{co}	$D_{co} = 4 * A_{co}/\pi (mm)$

6- Stator slot sizing calculations as shown in table (6). This table shows the related parameters to the stator slots and their formulas of calculation. The stator slot structure is shown in figure (2).

Fig. 2. Stator slot structure

Table- 6: Stator slot sizing calculations

Para mete r	Symbol	Related calculation formula
Stato r usefu l slot area	A _{use}	$A_{use} = A_{co} * S_{sc} / K_{fil}$ (mm ²) K_{fil} can be obtained from the table (A-6)
Stato r tooth widt h	b _{ts}	$b_{ts} = B_g * \tau_{ss} / (K_{ts} * K_{fe}) $ (mm)

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) 183 © Copyright: All rights reserved.

Design of Squirrel-Cage Self-Excited 3-phase Induction Generator

Stato r slot widt h (1)	b _{s1}	$b_{s1} = [\pi * (D_{bs} + 2 * h_{os} + 2 * h_w)/Q_s] - b_{ts}$
Stato r slot widt h (2)	<i>b</i> _{<i>s</i>2}	$b_{s2} = [4 * A_{use} * tan(\pi/Q_s + b_{s1}^2)]^{\frac{1}{2}} $ (mm)
Stato r usefu l slot heigh t	h _{ss}	$h_{ss} = 2 * A_{use} / b_{s1} + b_{s2}$ (mm)
Stato r back iron core heigh t	h _{cs}	$h_{cs} = [D_{oc} - \{D_{bs} + 2 * (h_{os} + h_w + h_{ss})\}]/2$ (mm)

7- Calculation of rotor slots, bars, and end-ring sizing as shown in table (7).

This table shows the related formulas for the calculation of rotor slots, bars, and end-ring sizing. The rotor slot geometry is shown in figure (3).

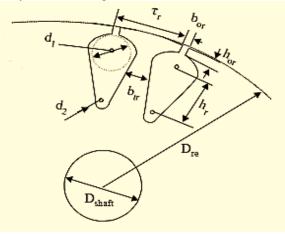


Fig. 3. Rotor slot structure

Table- 7: Rotor slots, bars, and end-ring sizing

Parameter	Symbo	Related calculation formula
Number of rotor slots	Q_r	From table (A-5)
Rotor current per	Í _{rph}	$\hat{I}_{rph} = I_{sph}/K_{mm}$
phase referred to stator		(mm)
Rotor bar current	I _b	$I_b = 2 * m * N_{ph} * K_{ws} * \hat{I}_{rph} / Q_r$ (A)
Rotor slot area or rotor bar area	A _b	$A_b = I_b / J_b $ (mm ²)
Rotor end-ring current	I _{er}	$I_{er} = I_b / (2 * sin(\pi * P/Q_r)) $ (A)
Rotor end-ring cross- sectional area	A _{er}	$A_{er} = I_{er}/J_{er}$ (mm ²)
Rotor outer diameter	D _{or}	$D_{or} = (D_{bs} - 2 * g_e)$ (mm)
Rotor slot pitch	$ au_{sr}$	$\tau_{sr} = \pi *= (D_{bs} - 2 * g_e)/Q_r$ (mm)
Rotor tooth width	b _{tr}	$b_{tr} = B_g * \tau_{sr} / (K_{fe} * K_{tr})$ (mm)
Rotor slot width	b _{sr}	$b_{sr} = (\tau_{sr} - b_{tr})$ (mm)
Rotor core height (core back iron)	h _{cr}	$h_{cr} = \Phi_p / (2 * \ell_{ss} * K_{cr})$ (mm)
Upper diameter of rotor slot geometry	d_1	$d_1 =$

Lower diameter of rotor slot geometry(d_2 must be less than d_1)	<i>d</i> ₂	$ \begin{bmatrix} \pi * (D_{or} - 2 * h_{or}) - \\ Q_r * b_{tr} \end{bmatrix} / (\pi + Q_r) $ $ (mm) $ $ d_2 = $ $ \begin{bmatrix} \begin{pmatrix} 32 * \\ A_b * \\ \tan(\pi/Q_r) \\ - \\ \begin{pmatrix} - \\ 8 + \\ 4 * \\ \pi * \\ \tan(\pi/Q_r) \end{pmatrix} \\ + \begin{pmatrix} 4 * \\ \pi * \\ \tan(\pi/Q_r) \\ -8 \end{pmatrix} \\ + \begin{pmatrix} 4 * \\ \pi * \\ \tan(\pi/Q_r) \\ -8 \end{pmatrix} $ $ \dots \dots (mm) $
Rotor slot depth	h _{sr}	$h_{sr} = (d_1 - d_2)/2 * \tan(\pi/Q_r)$ (mm)
Rotor end-ring height (radial thickness)	b	$b = 1.1 * (h_{sr} + h_{or} + (d_1 + d_2)/2) $ (mm)
Rotor end-ring width (axial thickness)	а	$a = A_{er}/b$ (mm)
Rotor shaft diameter	D _{sh}	$D_{sh} = \left[D_{or} - 2 * (h_{or} + \frac{(d_1 + d_2)}{2} + (d_1 + $
		$\left(\begin{array}{c} h_{sr}+h_{cr} \end{array} ight) ight]$

8- Calculation of stator resistance per phase as shown in table (8). This table shows all the parameters related to the calculation of stator resistance and their formulas.

Table- 8: calculation of stator resistance

Parameter	Symbol	Related calculation formula
Number of stator slots	Ps	$P_s = Q_s / (2P)$
per pole		
Chording factor	K _{ch}	$K_{ch} = \cos(\pi/(2*P_s))$
Coil span	<i>y_{sc}</i>	$y_{sc} = \tau_p * K_{ch}$
		(mm)
Length of end-turn from	ℓ_{et}	$\ell_{et} = (y_{sc} + 20 * 10^{-3})$
the table (A-7)		(mm)
Length of one turn	ℓ_t	$\ell_t = 2 * (\ell_{ss} + \ell_{et})$
		(mm)
Stator resistance per	R _s	$R_s = \rho_{cuo} * \ell_t * N_{ph} / (A_{co} *$
phase		a_p) (Ω)

9- Calculation of rotor resistance per phase referred to stator side as shown in table (9). This table shows all the parameters related to the calculation of rotor phase resistance and their formulas.

Table- 9: calculation of rotor phase resistance

		1
Parameter	Symbol	Related calculation formula
Length of	lers	$\ell_{ers} = \pi * (D_{or} - 2 * h_{sr} - b)/Q_r$
end-ring per		(mm)
rotor slot		
Skin effect	K_r	$K_r = h_{sr} * [2 * \pi * f_r * \mu_o / (2 * \rho_{alo})]^{\frac{1}{2}}$
factor		Where $f_r = S$. f_s rotor voltage frequency
Skew effect	K _{sq}	$K_{sq} = \sin \left(\pi * P/Q_r\right) / (\pi * P/Q_r)$
factor	-	
Rotor	R_r	$R_r = \left[\{ \rho_{cuo} * \ell_{ss} * K_r / A_b \} + \right]$
resistance		$\{\rho_{alo} * \ell_{ers} / (2 * A_{er} * sin^2(\pi P/Q_r))\}]$
per phase		
Rotor	Ŕ _r	$\hat{K}_r = \left[4 * m * (N_{ph} * K_{ws})^2 / (Q_r * K_{sq}^2)\right]$
resistance		$*R_{r}$
per phase		* <i>K_r</i>
referred to		
the stator		
side		

10- Calculation of stator leakage reactance per phase as shown in table (10).

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) 184 © Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.A31981011121 DOI: 10.35940/ijeat.A3198.1011121 Journal Website: <u>www.ijeat.org</u> This table shows the parameters calculation steps with their formulas, which are used to calculate the stator leakage reactance.

Table- 10: calculation of stator leakage reactance

Parameter	Symb	Related calculation formula		
	ol			
Stator slot permeance	λ_s	$\lambda_{s} = \left[\left(2 * h_{ss} / \left((b_{s1}^{3} * b_{s2}) \right) \right) + (2 * h_{w} / (b_{s1} + b_{os})) + (h_{os} / b_{os}) \right] \\ * (1 + 3 * K_{ch}) / 4$		
Differential	λ_{ds}	$\lambda_{ds} = \left[(0.9 * \tau_{ss} * q_s^2 * K_{ws}^2 * C_s * Y_{ds}) \right]$		
permeance of		$(K_{ca} * g_{e} * (1 + K_{st}))]$		
stator slot		Where $C_s = [1 - (0.033 * b_{os}^2 / (g_e * \tau_{ss}))]$		
		Y_{ds} is a factor that can be obtained from the table (A-8). The parameter (θ) in the equation of (Y_{ds}) can be calculated as : $\theta = \pi * (6 * K_{ch} - 5.5)$		
Stator end- turn permeance	λ_{et}	$\lambda_{et} = 0.34 * q_s * \binom{\ell_{et} - 0.64 *}{K_{ch} * \tau_p} / \ell_{ss}$		
Stator leakage reactance per phase	X _{ℓs}	$X_{\ell s} = \begin{bmatrix} 2 * & & \\ \mu_o * & & \\ \ell_{ss} * & / (P * q_s) \\ N_{ph}^{2h} * & \\ (\lambda_s + \lambda_{ds} + \lambda_{et}) \end{bmatrix} (\Omega)$		

11- Calculation of rotor leakage reactance per phase as shown in table (11). The table involves all the parameters related to the rotor leakage reactance calculation with their formulas.

Table- 11: calculation of rotor leakage reactance

		r or rotor reakage reactance
Parameters	Symbol	Relate formula of calculation
Rotor slot	λ_r	$\lambda_r = [0.66 + (2 * hsr/(3$
permeance		$*(d_1 + d_2)))$
		$+ h_{or}/b_{or}$]
Rotor slot	λ_{dr}	$\lambda_{dr} = 0.9 * \tau_{sr} * \mathcal{Y}_{dr} * Q_r^2 / (K_{ca} *$
differential		$g_e(6*P)^2)$
permeance		Where $Y_{dr} = 9 * (6 * P/Q_r)^2 * 10^{-2}$
		K_{ca} = can be obtained from the table
		(A-9).
Rotor end-ring	λ_{er}	$\lambda_{er} = \left[2.3 * (D_{or} - b)\left(Q_r * \ell_{ss} * 4 * \right)\right]$
permeance		$sin^{2}(\pi * P/Q_{r}))] * Log [4.7 *$
		$(D_{or} - b)/(b + 2 \cdot a)]$
Skin-effect	K _x	$K_x =$
factor		
		$3 / \left[\frac{2 * h_{sr} *}{\{w_s * \mu_o / (2 * \rho_{a\ell o})\}^{\frac{1}{2}}} \right] * 10^{-3}$
Rotor leakage	$X_{\ell r}$	$X_{\ell r} = w_s * \mu_o * \ell_{ss} * (\lambda_r * K_x +$
reactance per		$\lambda_{dr} + \lambda_{er}) \tag{\Omega}$
phase		
Rotor leakage	$\acute{X}_{\ell r}$	$\dot{X}_{\ell r} = \left[4 * m * (N_{ph} * K_{ws})^2 / (Q_r * M_{vs})^2 \right]$
reactance per		L · · · ·
phase referred to		$K_{sq}^2\Big] * X_{\ell r} \tag{\Omega}$
the stator side		

12- Calculation of magnetizing reactance per phase and the corrected rotor leakage reactance due to the skew effect as shown in table (12).

 Table- 12: calculation of magnetizing reactance and the corrected rotor leakage reactance

Parameters	Symbol	Related calculation formula
Magnetizing reactance per phase	X _m	$X_m = w_s * K_{st} * \mu_o * m * \tau_p *$ $\ell_{ss} * (N_{ph} * K_{ws})^2 / (\pi * P *$ $g_{\ell}) \qquad (\Omega)$
Rotor leakage reactance due to skew-effect	$\acute{X}_{\ell r s q}$	$ \begin{aligned} \dot{X}_{\ell r s q} &= X_m * \left(1 - K_{s q}^2 \right) \\ (\Omega) \end{aligned} $
Total rotor leakage reactance per phase	$\acute{X}_{\ell rt}$	$ \begin{aligned} \dot{X}_{\ell rt} &= \left(\dot{X}_{\ell r} + \dot{X}_{\ell r s q} \right) \\ (\Omega) \end{aligned} $

Retrieval Number: 100.1/ijeat.A31981011121 DOI: 10.35940/ijeat.A3198.1011121 Journal Website: <u>www.ijeat.org</u> 13- Calculation of magnetizing voltage and no-load current per phase as shown in table (13).

 Table- 13: calculation of magnetizing voltage and noload current

Parameters	Symbol	Related calculation formula
Magnetizing or air-gap phase voltage	V_g	$V_g = V_{ph} + I_{sph} * [R_s^2 + X_{\ell s}^2]^{\frac{1}{2}}$ (V)
No-load current / phase	I _o	$I_o = \left[\hat{I}_r^2 - I_{sph}^2 \right]^{\frac{1}{2}}$ (A)
Rotor phase current	Í _{rph}	
Magnetizing current per phase	Im	$I_m = V_g / X_m$ (A)

14- Calculation of maximum and minimum excitation capacitance of the generator as shown in table (14). The maximum and minimum capacitance per phase can be calculated from the equivalent circuit of the generator.

 Table- 14: maximum and minimum excitation

 capacitance per phase

Parameters	Symbol	Related calculation formula
Stator load loss	$R_{s\ell\ell}$	$R_{s\ell\ell} = R_s * X_{\ell s}^2 / [R_s^2 + X_{\ell s}^2] (\Omega)$
resistance [5]		
Slip at	S_{max}	$S_{max} =$
maximum torque		$\dot{R}_r / \left[(R_s + R_{s\ell\ell})^2 + (X_{\ell s} + \dot{X}_{\ell r})^2 \right]^{\frac{1}{2}}$
Minimum rotor speed	W _{rmin}	$W_{rmin} = w_s * (1 - S_{max}) \frac{ele.rad}{sec.}$
Maximum rotor speed	W _{rmax}	$W_{rmax} = w_s * (1 + S_{max}) \frac{elerad}{sec.}$
Maximum excitation capacitance per phase	C _{emax}	$C_{emax} = 1/(W_{rmin}^2 * (X_m + X_{\ell s}) / w_s)$ (µF)
Minimum excitation capacitance per phase	C _{emin}	$C_{emin} = 1/(W_{rmax}^2 * (X_m + X_{\ell s}) / w_s)$ (μF)

15- Calculation of generator losses as shown in table (15).In this table, the details of losses calculation with their formulas are presented and then added to determine the total machine losses.

Table- 15: Generator losses calculation

Parameters	Symbol	Related calculation formula
Stator copper loss	P _{cus}	$P_{cus} = 3 * I_{sph}^2 * R_s$ (watt)
Rotor copper loss	P _{cur}	$P_{cur} = 3 * \hat{l}_r^2 * \hat{R}_r$ (watt)
Mechanical loss	P _{mec}	$P_{mec} = 0.012 * P_{out}$ from the table (A-10) (watt)
Iron core losses	P _{ic}	$P_{ic} = 3 * V_g * I_{ic}$ (watt) Where $I_{ic} = I_o * cos\phi_o$ (A)
Stray load losses	$P_{s\ell\ell}$	$P_{s\ell\ell} = 3 * I_{sph}^2 * R_{s\ell\ell} \qquad \text{(watt)}$
Total machine losses	$P_{t\ell}$	$P_{t\ell} = P_{cus} + P_{cur} + P_{mec} + P_{ic} + P_{s\ell\ell}$

16- Calculation of generator temperature rise as shown in table (16). The table shows the stator and rotor winding resistivity calculation in terms of winding temperature rise.

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) 185 © Copyright: All rights reserved.

Table-	16:	temperature rise calculation of the stator
		winding

		0
Parameters	Symbol	Related calculation formula
Machine frame	A _{frame}	$A_{frame} = \pi * D_{os} * (\ell_{ss} + \tau_p) *$
area	-	$K_{fins} * 10^{-6}$ (m ²)
Frame temperature	T _{frame}	$T_{frame} = P_{t\ell} / (\propto_{conv} * A_{frame}) (^{\circ}\mathrm{C})$
		where $\propto_{conv} = 50$ from table (A-11)
Stator winding	Twinding	$T_{winding} = T_{ambient} + T_{frame}$ (°C)
temperature		$T_{ambient} = 25^{\circ}C$
The resistivity of	$ ho_{cu}$	$\rho_{cu} = \left(1 + \alpha_{cu} * T_{winding}\right) * \rho_{cuo}$
the stator winding		(Ω, m)
The resistivity of rotor bars	$ ho_{a\ell}$	$\rho_{a\ell} = \left(1 + \alpha_{a\ell} * \left(T_{winding} + 10\right)\right) *$
		$\rho_{a\ell o}$ ($\Omega.m$)

17- Calculation of optimized parameters of the generator as shown in table (17). The main parameters that are optimized in this design of the induction generator are efficiency, excitation-capacitance, stator winding temperature, and the generator volume.

Table- 17: optimized parameters calculation

parameters	Symbol	Related calculation formula
Generator	$\eta\%$	$\eta\% = [P_{out}/(P_{out} + P_{t\ell})] *$
efficiency		100
Excitation	C_{emin}	$C_{emin} =$
capacitance		$1/[w_{rmax}^2 * (X_m + X_{\ell s})/W_s]$
Stator winding	T _{winding}	$T_{winding} = T_{ambient} + T_{frame}$
temperature		, , , , , , , , , , , , , , , , , , ,
Generator	Volume	<i>Volume</i> = $(\pi * D_{os}^2 * \ell_{ss}/4) *$
volume		$10^{-3} (C_m^3)$

III ANT COLONY OPTIMIZATION

In this paper, for example, a 5-HP squirrel-cage, self-excited induction generator, 50 Hz and 400 V line-to-line is designed and optimized. The objective function is used for maximum efficiency, minimum excitation capacitance, minimum generator volume, and minimum temperature rise. The ant colony algorithm parameters are given as [12] :

 $F_{(x,w)} = W_1 * \frac{1}{[1+\eta]} + W_2 * C_{emin} + W_3 * volume + W_4 * T_{winding}$

Where W_1 , W_2 , W_3 and W_4 are the weights that indicate the relative significance among the chosen objectives. These weight parameters can be set to one for activating the objective function. The multi-objective optimization problem can be suited by combining many objectives through weight parameters into a single objective to optimize the chosen objectives (involves both minimizations and maximization) simultaneously.

IV RESULTS AND DISCUSSION

The ant colony optimization algorithm is used to obtain the optimal design parameters of the squirrel-cage, self-excited induction generator. The design equations in tables (2-17) are used to feed the computer program in a sequence and systematic arrangement of the design procedure. The software package is developed and executed in a Matlab file. The final machine design results are obtained by optimizing the objectives of efficiency, excitation capacitance, machine volume, and stator winding temperature rise. It is clear from tables (18-19), which are the results of the design, those better design parameters are obtained when the weights $W_1 = W_2 = W_3 = W_4 = 1$ in the ant colony algorithm of optimization. Table (18) shows the results of all machine construction parameters, while

table (19) shows the optimal results of objective parameters. The algorithm offers maximum machine efficiency and minimum excitation capacitance, minimum size, and minimum stator winding temperature rise. In this case study, the machine efficiency is 88%, the minimum excitation capacitance per phase is $25\mu F$, the minimum volume of the machine is 2260 C_m^3 and the minimum stator winding temperature rise is 50 °C.

 Table- 18: Design specifications of the generator construction parameters

construction	-	
Generator construction parameters	Symbol	Dimension
Stator stack length/pole pitch	λ_{vc}	1.15
Inner to outer stator core diameter	K _{ds}	0.625
Stator conductor current density	J _{co}	$4.5 * 10^6$ A/m ²
Rotor bar current density	J_b	$4.5 * 10^6$ A/m ²
Rotor end-ring current density	J _{er}	$5.5 * 10^6$ A/m ²
Specific electrical loading	A _c	23500 A/m
Specific stator slot loading	A_{ss}	450 A. conductor
Apparent generator power	S_{g}	4725 VA
Generator volume utilization factor	Co	35900 Joule / m ³
Stator outer diameter	D_{os}	57 mm
Stator stack length	ℓ_{ss}	195 mm
Stator pole-pitch	$ au_p$	44.5 mm
Stator slot number	Q_s	24
Effective air-gap length	g_e	1.12 mm
Stator flux per pole	ϕ_p	0.013 weber
Stator turns per phase	N_{ph}	165
Stator phase current	I _{sph}	7.0 A
Stator winding conductor area	A_{co}	1.5 mm ²
Stator winding conductor diameter	D _{co}	1.4 mm
Stator useful slot area	A_{use}	21.0 mm ²
Stator tooth width	b_{ts}	3.0 mm
Stator slot width (1)	b_{ts} b_{s1}	4.5 mm
Stator slot width (2)	b_{s1} b_2	2.5 mm
Stator useful slot height	h_{ss}	15.0 mm
Stator back-iron core height	h_{cs}	16.0 mm
Rotor slot number	Q_r	22
Rotor phase current	\hat{I}_{rph}	7.3 A
Rotor bar current		164 A
Rotor slot area	I_b A_b	36.5 mm ²
Rotor end-ring current	I_{er}	
	A_{er}	264 A 48 mm ²
Rotor end-ring cross-sectional area Rotor outer diameter	A _{er}	54.5 mm
Rotor slot pitch	D _{or}	
Rotor tooth width	$ au_{sr} \\ b_{tr}$	7.9 mm 3.0 mm
Rotor slot width	b_{tr} b_{sr}	4.9 mm
Rotor core height	h_{cr}	11.0 mm
Rotor upper slot diameter	d_1	4.6 mm
Rotor lower slot diameter	d_1 d_2	1.0
Rotor slot depth	h_{sr}	7.5 mm
Rotor end-ring height	b h	8.0 mm
Rotor end-ring width	a	6.5 mm
Rotor shaft diameter	D_{sh}	
	$\frac{D_{sh}}{R_s}$	33.1 mm 3.1 Ω
Stator resistance per phase Rotor resistance per phase		2.5 Ω
* *	$\frac{\dot{R}_r}{X_{\ell s}}$	
Stator leakage reactance per phase		1.8 Ω
Rotor leakage reactance per phase	Χ _{ℓr}	0.85 Ω
Magnetizing reactance per phase	X_m	140 Ω
Magnetizing or air-gap voltage /	V_g	250 Ω
phase	I	20 4
No-load current per phase	I _o	2.0 A
Magnetizing current per phase	I_m	1.8 A
Iron core current per phase	I _{ic}	0.9 A
Iron core resistance per phase	R _{ic}	280 Ω

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) 186 © Copyright: All rights reserved.

Design of Squirrel-Cage Self-Excited 3-phase Induction Generator

*	-	
Parameters	Symbol	Dimension
Minimum excitation	C _{emin}	25 μF
capacitance per phase		
Stator winding	Twinding	52 °C
temperature	5	
Generator volume	Volume	2270 C_m^3
Generator efficiency	Efficiency	88 %

V CONCLUSION

Design steps with their suitable theoretical and empirical formulas are executed in the computer program and Matlab file to obtain the structure dimensions and parameters of the 3-phase squirrel-cage self-excited induction generator. The design steps are summarized in sequence tables and systematic manner. The new design dimensions and parameters of the generator suit the generator operation in the stable and saturation region. The design results are optimized by an ant colony optimization algorithm. The objective parameters are used in this algorithm to obtain maximum generator efficiency and minimum excitation capacitance, minimum winding temperature rise, and minimum generator size. A generator of 5 HP, 400 V, 50 Hz, and Y-connection is used as an example of the design procedure.

APPENDIX [14]

 Table- A-1: Air-gap flux density as a function of number of magnetic poles

Poles Number (2P)	2	4	6	8
Air-gap density	0.5-	0.65-0.78	0.7-	0.75-
(wb/m ²)	0.75		0.82	0.85

Table- A-2: Volume control parameter (λ_{vc}) as a function of the number of poles

Poles Number (2P)	2	4	6	8
Volume controlling ratio (λ_{vc})	0.6- 1.0	1.2-1.8	1.6- 2.2	2-8

Table- A-3: Stator inner to outer diameter ratio (K_{ds}) as a function of poles number

Poles Number (2P)	2	4	6	8
Ratio (K _{ds})	0.54- 0.58	0.61- 0.68	0.68- 0.71	0.72-0.74

Table- A-4: current density of stator winding as a function of poles number

Poles Number (2P)	2 or 4	6 or 8
A current density of stator winding (J_{co})	4-7 A/mm ²	5-8 A/mm ²

Table- A-5: stator and rotor slot number as a function of poles number

			-		
(2P)	Q_s	24	36	48	_
			32	44	
2	Q_r	18	30	40	
		20	28	30	
	Q_s	24	36	48	72
4	0	22	34	46	70
	Q_r	18	30	42	66
			28	36	62
	Q_s	I	36	54	72
6			32	46	68
0	Q_r		28	44	64
			22	40	62

Retrieval Number: 100.1/ijeat.A31981011121 DOI: 10.35940/ijeat.A3198.1011121 Journal Website: <u>www.ijeat.org</u>

	Q_s		-	48	72
8	0			38	60
	Q_r			36	56

Table (A-6) stator slot filling factor (K_{fil})

$K_{fil} = 0.35 \rightarrow 0.4$	For machines less than 10 kw
$K_{fil} = 0.4 \longrightarrow 0.44$	For machines above 10 kw

Table- A-7: end-ring length as a function of poles number and coil span (y_{sc})

Poles number (2P)	End turn (ℓ_{et}) as a function of coi	l span
2	$\ell_{et} = (2 * y_{sc} - 0.04), y_{sc}$	in meter
4	$\ell_{et} = (2 * y_{sc} - 0.02), y_{sc}$	in meter
6	$\ell_{et} = (\frac{\pi}{2} * y_{sc} + 0.018), y_{sc}$	in meter
8	$let = (2.2 * y_{sc} - 0.012), y_{sc}$	in meter

Table- A-8: The factor (Y_{ds}) as a function of number of slots / pole / phase (q_s)

q_s	The factor Y_{ds} in the equation of stator slot differential
	permeance
1	$Y_{ds} = 9.5 * 10^{-2}$
2	$Y_{ds} = (0.25 * \sin(\theta) + 2.6) * 10^{-2}$
3	$Y_{ds} = (0.18 * sin(\theta) + 1.24) * 10^{-2}$
4	$Y_{ds} = (0.24 * \sin(\theta) + 0.76) * 10^{-2}$
6	$Y_{ds} = (0.11 * sin(\theta) + 0.41) * 10^{-2}$

Table- A-9: Carter coefficient (K_{ca})

$K_{ca} = 1.2 - 1.3$	For semi-closed stator slots
$K_{ca} = 1.5 - 1.7$	For open-stator slots

Table- A-10: Machine mechanical losses (P_{mec}) as a function of pole-pairs

pole-pairs (P)	Mechanical losses (P_{mec}) in terms of
	Pout
1	$P_{mec} = 0.03 * P_{out}$
2	$P_{mec} = 0.012 * P_{out}$
3, 4	$P_{mec} = 0.008 * P_{out}$

Table- A-11: temperature convection coefficient (\propto_{conv}) as a function of poles number

Poles number (2P)	\propto_{conv} (W/m ² . K)
2	60
4	50
6	40
8	32

REFERENCES

- A.K. Al-Jabri and A.I. Alolah," Limits on the performance of the three-phase self-excited induction generators ", IEEE Transactions on Energy Conversion, Vol. 5, No. 2, Pp 350-356, June 1990.
- B. Sawetsakulanond, P. Hothongkham, and V. Kinnares, " Investigation on the performance between standard and highefficiency induction machines operating as grid-connected induction generator", IEEE ICSET, Pp 949-953, 2008.
- B. A. Nasir," Modeling of a self-excited induction generator in the synchronously rotating frame including dynamic saturation and iron core loss into account ", International Journal of Electrical and Computer Science, Vol. 20, No. 1, Pp 1-6, February 2020.
- B. A. Nasir," and R.W. Daoud, "Modeling of wind turbine selfexcited induction generator system with pitch angle and excitation capacitance control ", AIP Conference Proceedings, Vol. 2307, No. 1, Pp 1-21, December 2020.
- B. A. Nasir, " An accurate iron core loss model in the equivalent circuit of induction machines ", Journal Of Energy, Hindawi Publisher, Vol. 2020, Article ID 7613737, Pp 1-10, 2020.

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) 187 © Copyright: All rights reserved.

- J. Faiz, A. A. Dadgari, S. Horning and A. Keyhani, "Design of a three-phase self-excited induction generator", IEEE Transactions on Energy Conversion, Vol. 10, No. 3 Pp 516-52, 1995.
- B. Sawetsakulanond, P. Hothongkham, and V. Kinnares, "Design and construction of three-phase of self-excited induction generator ", IEEE ICSET, Pp 1373-1378, 2008.
- 8. Ion Boldea, "Wound-rotor induction generators: Design and testing: Variable speed generators ", Book, CRC Press, 6 October 2015.
- B. Kareem, T. Ewetumo, M.K. Adeyeri, A. Oyetunji, and S.T. Olowookere, "Development of electricity generating system for a micro-power plant ", Journal of Production Engineering, Vol. 21, No. 2, Pp 43-49, 2018.
- A.G. Yetgin, M. Turan, B. Cevher, A.I. Canakoglu, and A. Gun, " Induction motor design process and the effect of output coefficient ", 7th International Conference on Advanced Technologies (ICAT '18), Pp 152-159, April / May 2018.
- P.S. Prakash, " Multi-objective design of induction motor using artificial intelligence techniques ", International Research Journal Of Engineering Technology (IRJET), Vol. 4, No. 7, Pp 3529-3535, July 2017.
- P.S. Prakash, " Elegant design strategy for multi-objective optimization of induction motors ", International Research Journal of Engineering and Technology (IRJET), Vol. 4, No. 8, Pp 2395-2401, August 2017.
- B. Alizadeh and S.A. Gholamian, "Application of Ant colony optimization algorithm for the optimal design of squirrel cage induction motor ", International Journal of Mechatronic, Electrical and Computer Technology, Vol. 4, No. 13, Pp 1674-1690, October 2014.
- 14. I. Boldea and S.A. Nasar, " The induction machines design handbook ", Second Edition, Taylor and Frances Group, CRC Press, 2010.

AUTHORS PROFILE

Bilal A. Nasir, (Non-member) He was born in 1958, Iraq. He received B.Sc. of electrical engineering from university of Technology, Baghdad-Iraq, 1980, and M.Sc. of electrical engineering from university of Mosul, Iraq, in 1984 and PH.D. of electrical engineering from Al-Mustansiriyah university, Iraq, in 1997. He has been employed as a lecturer in Northern Technical University ,Iraq /Hawijah Technical Institute, Kirkuk, Iraq from 1988 up to date. Now he

was an assistant professor in electrical power and machines.

Retrieval Number: 100.1/ijeat.A31981011121 DOI: 10.35940/ijeat.A3198.1011121 Journal Website: <u>www.ijeat.org</u>