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Abstract. The interaction between different applications and services
requires expressing their security properties. This is typically defined as
security policies, which aim at specifying the diverse privileges of dif-
ferent actors. Today similarity measure for comparing security policies
becomes a crucial technique in a variety of scenarios, such as finding the
cloud service providers which satisfy client’s security concerns. Existing
approaches cover from semantic to numerical dimensions and the main
work focuses mainly on XACML policies. However, few efforts have been
made to extend the measure approach to multiple policy models and
apply it to concrete scenarios. In this paper, we propose a generic and
light-weight method to compare and evaluate security policies belonging
to different models. Our technique enables client to quickly locate service
providers with potentially similar policies. Comparing with other works,
our approach takes policy elements’ logic relationships into account and
the experiment and implementation demonstrate the efficiency and ac-
curacy of our approach.

Keywords: IT Security, Access Control, Policy Evaluation, Similarity
Measure.

1 Introduction

Nowadays, data and service exchange across multiple actors becomes an emerg-
ing demand to provide dynamic ecosystems. This process involves a large number
of actors such as cloud service provider (SP) and client. From customer’s point
of view, it is always difficult to decide whose service should be chosen so they
use a broker to rank and select the suitable SPs based on user’s requirement.
However, most of the current service ranking technologies [1] do not consider
the security aspect or they only measure security parameters such as encryp-
tion method [2] and security level [3,4]. Among various criteria that need to be
considered for the service selection, security policy is a critical concern. Before a
collaboration takes place between different actors, an actor A may need to know
if the other actor guarantees a similar level of A’s security policies. Policy com-
parison is one of the main mechanisms to that end. It consists in measuring the
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similarity between two security policies and giving an evaluation score. A higher
score between policies p1 and p2 indicates that they are more likely to share
an equivalent security level and yield the same decisions. Unlike other measure
criteria, security policies are usually based on first-order logic. For example, an
access control policy consists of multiple elements and they collectively deter-
mine whether a user is allowed to take some actions on certain objects. Thus,
the existing brokering technologies are difficult to apply on security policies.

In this paper, we propose a new algorithm to calculate the similarity score
between two policies. The contribution is twofold. On one hand, our method is
policy-agnostic and can be applied on various types of security policies. On the
other hand, we propose integrating our policy similarity measure algorithm in
SP selection process and the implementation proves that this integration can
enrich the services offered with efficiency.

The rest of the paper is organized as follows: Section 2 reviews existing
proposals on security policy models and policy similarity measure techniques.
Section 3 proposes the policy similarity measure algorithm with an exhaustive
calculation example. Section 4 illustrates an experiment in which the accuracy
of our algorithm is demonstrated. Section 5 gives an implementation integrated
with our algorithm. Section 6 concludes the paper and outlines future work.

2 Related Work

To present our policy evaluation method, we suggest, as a first step, to specify
security policies which describe and control different exchanges within a dynamic
environment of diverse applications. In this context, the administrator of these
applications has to define what is permitted and what is prohibited during the
execution in order to secure the use of the proposed services. To do that, he
should specify the security policy to be implemented. Access control policy is
one kind of such policies. An access policy governs access to protected resources
by specifying which subjects can access which resources by which operations
and under which circumstances. The specification of access control policy de-
pends on different policy models. One widely used model is RBAC (Role-Based
Access Control) [5]. In the RBAC model, access permissions are not assigned
directly to the users but are abstracted as “roles” which correspond to different
task descriptions. To apply RBAC, users should be assigned to different roles
thus they possess indirectly the relevant permissions. The OrBAC (Organization
Based Access Control) model [6] is an extension of the RBAC model. It defines
a conceptual and industrial framework to meet the needs of information security
and sensitive communications and allows the policy designer to define a security
policy independently. With the development of web service, ABAC (Attribute
Based Access Control ) model [7] brings flexibility and interoperability for pol-
icy definition. The ABAC model defines permissions based on security-relevant
attributes such as subject attributes, resource attributes and environment at-
tributes.

To the best of our knowledge, most approaches to evaluate policy similarity
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are based on XACML [8] policies. Lin et al. [9] propose an algorithm to eval-
uate policy similarity by calculating the similarity score between two XACML
policies. This is indeed a pioneering work and it effectively distinguishes the
categorical predicate and numerical predicate cases. The second version of the
algorithm [10] advances the measure algorithm for numerical predicate and in-
tegrates ontology matching. However, the work has two limitations. Firstly, the
algorithm only focuses on the literal level but not logic aspect of security policy.
As a result, the similarity score computed may have a large difference with the
test value in real cases (presented in Appendix A) . Secondly, the former algo-
rithm contains 9 weight parameters which need to be configured and choosing
the proper values is not easy to users. In addition, there are two variants of the
former work. Bei et al. [11] investigate the contrary of the similarity: dissimilar-
ity. In order to address the rule relationship comparison, they apply fuzzy theory
to compute rule dissimilarity. Pham et al. [12] improve the similarity computing
approach specified by Lin et al. [9] and also propose a mechanism to calculate
a dissimilarity score by identifying related policies which are likely to produce
different access decisions. Based on policy similarity measure, there exist some
applications. Lin et al. [13] present a novel data protection framework in which
policy similarity comparison approach is applied on policy ranking model. Cho
et al. [14] propose a technique that allows similarity evaluation of encrypted
policies. Shaikh et al. [15] suggest using similarity measure to select services in
a distributed and heterogeneous environment. Bertolino et al. [16] put forward
a new approach for access control test prioritization based on similarity.

3 Policy Similarity Measure (PSM)

The PSM assigns a similarity score Spolicy for any two given policies, which ap-
proximates the percentage of the rule pairs having the same decision. The formal
definition is given in Equation (1), where Num(sameDecision(r1i, r2j)) denotes
the quantity of the rule pairs having the same decision and Num(allDecision(r1i,
r2j)) denotes the amount of the total decision pairs.

Spolicy(p1, p2) ≈ Num(sameDecision(r1i, r2j))

Num(allDecision(r1i, r2j))
, r1i ∈ p1, r2j ∈ p2 (1)

The similarity score is a value between 0 and 1. Two equivalent policies are
expected to obtain a similarity score which equals 1. We mention that the defi-
nition of policy similarity score in [10] focuses on the percentage of the requests
obtaining the same decisions. Comparing with the former work, our definition
for PSM is more fine-grained because the same decision from two policies can be
derived from one or multiple rule pairs. Consequently, by considering decisions
of rule pairs but not final policy decisions, our PSM is more accurate from both
calculation and test aspects. More details are shown in Section 4.



4 Yanhuang Li et al.

3.1 Policy Structure

As a generic algorithm, our PSM can be applied on different policy models and
this compatibility requires a transformation process before calculation. Policies
are firstly split into different rules and each rule is expressed in the form of:

decision effect(attr name1 ⊕ attr value1, ..., attr namen ⊕ attr valuen) (2)

where decision effect is a decision effect such as permit and deny; attr name de-
notes the name of an attribute;⊕ indicates a comparison operator and attr value
represents an attribute value. We define (attr namei ⊕ attr valuei) as a policy
element and it can be broadly classified into the following five categories [17,18]:

Category 1: One variable equality constraints. x = c, where x is a variable
and c is a constant.
Category 2: One variable inequality constraints. x . c, where x is a vari-
able, c is a constant and . ∈ {<,≤, >,≥}.
Category 3: Real valued linear constraints.

∑n
i=1 aixi . ci, where xi is a

variable, ai, ci are constants and . ∈ {=, <,≤, >,≥}. This category contains
conjunctions of atomic boolean expressions defined by linear constraints in m-
dimensional real space.
Category 4: Regular expression constraints. The general form of boolean
expression in this category is any element formed using ∧ and ∨ with expressions
of the form either s ∈ L(r) or s /∈ L(r), where s is a string variable and L(r) is
the language generated by regular expression r.
Category 5: Compound Boolean expression constraints. This category
includes constraints obtained by combining elements belonging to the categories
listed above. The combination operators can be ∧,∨ and ¬.

It is worth noting that elements in most security policies usually belong to cat-
egory 1 2 and 3. In this paper, we are not going to address how to deal with
category 4 because expressing security policy by generated language is out of
scope of basic security policy definition. We would also like to mention that the
categories listed above are not mutually exclusive. For example, the expression
“8 : 00 ≤ Time ≤ 18 : 00” which belongs to category 3 can be also expressed by
category 5: “(8 : 00 ≤ Time)∧ (Time ≤ 18 : 00)”. In our formalization, in order
to minimize the expected computational burden, we avoid the use of category 5
by transforming the policy elements with Boolean combinations into category 3.

We would also like to note that each element in Form 2 after transforma-
tion should be atomic. An element is atomic if it does not contain explicitly
compound logical operator (∧,∨,¬). By this definition, an atomic element can
belong to category 1, 2 and just one dimension of category 3. In category 5, an
element whose attribute values are connected by “∨” operator can be expressed
by a set. Here we don’t consider “¬” operator for the reason that “¬” relation
can be converted into rules having contrary effects. Having different types of
attribute values, atomic elements in security policies can be divided into the



Similarity Measure for Security Policies 5

following two types:

– Categorical element: The operator is “ = ” and the attribute value belongs
to the string data type or be a set of string. For example “Role=admin”
and “Action=[read,write,create]” are categorical atomic elements.

– Numerical element: The operator can be “ = ”, “ < ”, “ ≤ ”, “ > ”, “ ≥ ”
and the attribute value can be integer, real, date/time data types. Operators
and values can be combined into a set or an interval. For example, elements
“time={3 pm, 4 pm, 5 pm}”, “FileSize > 5 GB”, “8 : 00 ≤ Time ≤ 18 : 00”
are numerical atomic elements.

In an example that we will use throughout the paper, we consider three XACML
policies illustrated in [10]. These policies are defined for managing an informa-
tion system of a research laboratory. The policies after transformation are:

policy1 (p1)
r11 : Permit(Role = {professor, postDoc, student, techStaff },
Resource = {source, documentation, executable}, Action = {read, write})
r12 : Deny(Role = {student, postDoc, techStaff },
Resource = {source, documentation, executable}, Action = write,
19 : 00 ≤ T ime ≤ 21 : 00)

policy2 (p2)
r21 : Permit(Role = {student, faculty, techStaff }, Action = {read, write},
F ileSize ≤ 120 MB)
r22 : Permit(Role = techStaff , Action = {read, write}, 19 : 00 ≤ T ime ≤ 22 : 00)
r23 : Deny(Role = student,Action = write, 19 : 00 ≤ T ime ≤ 22 : 00)
r24 : Deny(Role = {student, faculty, staff }, Action = {read, write},
Resource = media)

policy3 (p3)

r31 : Permit(Role = businessStaff , Resource = xls,Action = {read, write},
8 : 00 ≤ T ime ≤ 17 : 00, F ileSize ≤ 10 MB)

r32 : Deny(Role = student,Action = {read, write})

From a user’s perspective, p1 is more similar to p2 than p3 because most activities
described by p1 for the data owner are allowed by p2. Our motivation is to quickly
compute similarity scores Spolicy(p1, p2) and Spolicy(p1, p3) with expectation that
the former is higher than the latter. The expected result is to indicate that the
similarity between p1 and p2 is much higher than the similarity between p1 and
p3.

3.2 Overview of PSM Algorithm

Shown in Figure 1, the PSM algorithm takes two policies as input and generates a
similarity score as output. The calculation process can be divided into four steps.
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Fig. 1: The process of similarity score calculation

Step 1: Policy transformation. Two policies to be computed are split into
rules in Form 2 which consist of atomic elements as follows.

r1i : Permit(e1i 1, e1i 2, ...), r2j : Permit(e2j 1, e2j 2, ...), ...

Step 2: Rule pair calculation. Scores of each rule pair in the same decision
effect (d) between two policies are calculated. In Equation (3), the score for each
rule pair is the product of the scores of all the element pairs. Product operation
is chosen because any mismatch of element pair results different replies from two
policies. Details for element pair calculation are shown in Section 3.3.

Sd(r1i, r2j) =
∏
k

S(e1i k, e2j k), r1i ∈ p1, r2j ∈ p2, e1i k ∈ r1i, e2j k ∈ r2j (3)

Step 3: Decision effect calculation. Each Sd(p1, p2) equals the sum of all
the similarity scores of rule pairs in one decision effect (Equation (4)).

Sd(p1, p2) =
∑
i

∑
j

Sd(r1i, r2j), r1i ∈ p1, r2j ∈ p2 (4)

Step 4: Total score calculation. Shown in Equation (5), the total score is
based on the scores from different decision effects Sd(p1, p2) and the total amount
of rule pairs from all the decision effects.

Spolicy(p1, p2) =

∑
d Sd(p1, p2)∑
dNum(d)

, d ∈ (permit, deny, ...) (5)

3.3 Similarity Score of Rule Elements

The score of an element pair can be calculated when they share the same at-
tribute name and in the same decision effect. In step 2 above, the score of a rule
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pair is based on the rule elements having the same attribute name. When an
element’s attribute name does not appear in another rule, the access decisions
from the two rules are not affected due to this difference. For this reason, we
consider that the score of such element is 1. The calculation for similarity score
of rule elements differs in element type.

Similarity Score for Categorical Elements. For categorical elements, we
measure the exact match of two values. A higher score indicates that the two
elements share more common attribute values. The formula for two elements e1
and e2 is defined as follows:

Sc(e1, e2) =
num(v1 ∩ v2)

num(v1 ∪ v2 ∪ v3... ∪ vn)
(6)

Sc(e1, e2) presents the exact percentage of the same decision for one element pair.
num(v1 ∩ v2) denotes the quantity of common attribute values between element
e1 and e2; num(v1 ∪ v2 ∪ v3... ∪ vn) is the quantity of common attribute values
among all the elements in two policies and these elements should 1) have the same
attribute name 2) belong to the rules of the same decision effect. Equation (6)
is an extension of Jaccard similarity coefficient [19]. The difference is that the
denominator in our equation covers two policies but not two rules because the
aggregation of element scores in decision effect calculation(Equation 4) requires
the same attribute space shared by different rule pairs.

Some policy models may use abstract element to represent a set of concrete
values. For example, in RBAC, Role element is an abstraction of Subjects; in
OrBAC, a Role is a set of Subjects, an Activity is a set of Actions and a V iew is
a set of Objects. In this case, the abstract values should be transformed to their
related concrete values. For example, abstraction trees for Role and Resource
elements of p1, p2, p3 are shown in Figure 2, 3.

Department

student

undergraduate graduate

faculty

researcher

postDoc professor professorEmeritus

instructor

staff

businessStaff technicalStaff

Fig. 2: Abstraction tree for Role element.

File

documentation

.pdf .doc .txt

executable

.o .exe

media

.mp3 .avi

source

.c .cpp .java .xls

Fig. 3: Abstraction tree for Resource element.
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To calculate the score of Role elements between r11 and r21, as student and
faculty are two abstract values, they should be translated into concrete values
which are leaves: {undergraduate, graduate} and {postDoc, professor, professor
− Emeritus, instructor}. After the transformation, we find that the two ele-
ments share 5 common attribute values. The disjunction of all the Role elements
from policy 1 and policy 2 contains 8 attribute values. Applying Equation (6),
Sc(er 11(Role), er 21(Role)) = 5/8 = 0.625.

Another application of tree architecture is to represent the inheritance re-
lation. The inheritance mechanism is defined in object-oriented programming
as an efficient way to design an application. In Java, a class which is derived
from another class is called a subclass. A similar mechanism for roles is used in
RBAC [5] and the hierarchy of roles is associated with inheritance of permission.
The role inheritance mechanism is extended in OrBAC model [20]: hierarchies
of roles, views and activities are formally defined associated with inheritance
relationships. In an inheritance tree, child elements can inherit the privileges
of their parent elements. For example, the Role elements of a research labora-
tory may possess an inheritance tree for permission (Figure 4). When applying
Equation (6), all the attribute values having inheritance relationship in the same
inheritance tree should be treated as identical ones.

student

professor

postDoc technicalStaff

Fig. 4: Inheritance tree for Role element

Similarity Score for Numerical Elements. The calculation for numerical
elements is more complex because numerical attribute values may have different
forms such as single value, set, bounded interval and unbounded interval. Here
we propose a unified method defined in Algorithm 1 for computing the similar-
ity score between two numerical elements. The algorithm takes two numerical
elements as input. Firstly, if two elements have the same attribute name, opera-
tor(s) and attribute value(s), the score is 1 (lines 1,2). Secondly, the two elements
should be checked if their intersection is empty. An empty intersection returns
0 as similarity score (lines 4,5). Otherwise, there are three cases:

– Bounded interval (lines 7,8): Two elements’ values are both bounded
interval. Length of an interval equals the difference between its endpoints. To
compute the score, we divide the length of the conjunction of two intervals by
the length of their disjunction. For example, the score for time elements in r12
and r23 is: Sn(r 12(time), r 23(time)) = Len(21− 19)/Len(22− 19) = 0.67.
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Algorithm 1 Sn(e1, e2): numerical similarity score calculation
Input: two numerical elements e1 and e2
Output: numerical similarity score

1: if e1 = e2 then
2: return 1
3: end if
4: if e1 ∩ e2 = φ then
5: return 0
6: else
7: if both e1 and e2 are bounded intervals then
8: return Len(e1∩e2)

Len(e1∪e2)

9: else if both e1 and e2 are sets then
10: return Num(e1∩e2)

Num(e1∪e2)

11: else
12: return 0.5
13: end if
14: end if

– Set (lines 9,10): Two elements’ values are both sets. To compute the score,
we divide the cardinality of the conjunction of two sets by the cardinality
of their disjunction. For example, Time1 = [3 am, 4 am, 5 am], Time2 = [4
am, 5 am, 6 am], Sn(Time1, T ime2) = 2/4 = 0.5.

– Other cases: As calculation between two different forms is difficult, we
assign a fuzzy value 0.5 as the similarity score. 0.5 is chosen because it is the
average value of similarity score.

3.4 Example of Calculation

Here we present an exhaustive example to illustrate how the PSM works. Contin-
uing with the three policies p1, p2, p3 defined in section 3.1 and their abstraction
trees introduced in section 3.3, we illustrate the four steps of calculation.

1. Policy transformation: Shown in Section 3.1, the three policies have al-
ready been transformed from XACML policies to rules composed of atomic
elements.

2. Rule pair calculation: Applying Equation (3), (6) and Algorithm 1, we
calculate scores for different rule pairs in each decision effect:

Permit :

Srule(r11, r21) = 0.625× 1× 1× 1 = 0.625

Srule(r11, r22) = 0.125× 1× 1× 1 = 0.125

Deny :

Srule(r12, r23) = 0.25× 1× 0.5× 0.67 = 0.084

Srule(r12, r24) = 0.5× 0× 0.5× 1 = 0
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3. Decision effect calculation: By Equation (4), scores of each decision effect
are:

Spermit = Srule(r11, r21) + Srule(r11, r22) = 0.75

Sdeny = Srule(r12, r23) + Srule(r12, r24) = 0.084

4. Total score calculation: The final score between two policies is calculated
by Equation (5):

Spolicy(p1, p2) =
Spermit + Sdeny

Num(permit) + Num(deny)
=

0.75 + 0.084

2 + 2
= 0.209

Applying the same process, we can also calculate the similarity score between
policies p1 and p3: Spolicy(p1, p3) = 0.083. The two scores Spolicy(p1, p2) and
Spolicy(p1, p3) indicates that policy p1 is more similar to p2 than p3 in terms of
the percentage of rule pairs having the same decision.

4 Experimental Results

In order to verify if our algorithm is applicable to real cases, we compare the
percentage of the same decision pairs with the PSM score. Firstly, we implement
a random policy generator which takes policy elements as input then generates
access control policies in Form 2. Secondly, we extract policy elements from four
policies with different models and each of them is related to a real scenario:
RBAC for project management [21], Net-RBAC for firewall configuration [22],
OrBAC for hospital management [23], ABAC for administration of research lab-
oratory [10]. Thirdly, these policy elements are inputted to the policy generator
and each policy pair generated obtains a similarity score by our algorithm. Fi-
nally, we input various combinations of elements as access control requests into
the four policies and count the percentage of the same decision pair between
rules from output. We mention that the test method which we used are brute-
force based: for categorical element, we take all the combination of string values;
for numerical element, enumerating all the numerical based attribute value in
an interval (For example 19 : 00 ≤ Time ≤ 21 : 00) is impossible. Without loss
of generalization, we make equidistant sampling for bounded interval and bilat-
eral sampling for unbounded interval. For example, inputs are all the integers
from 1 to 24 for 0 : 00 ≤ Time ≤ 24 : 00; for FileSize > 10 MB, inputs are
FileSize = 9 MB and FileSize = 11 MB.

Table 1: Policies tested
Policy Model Categorical element Numerical element Effect

project-admin RBAC 15 0 permit

firewall-admin Net-RBAC 4 28 permit

hospital-admin OrBAC 15 6 permit,deny

lab-admin ABAC 19 0 permit,deny
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Figure 5, 6 show the policy similarity score (y-axis) and the same decision per-
centage for rule pairs (x-axis) in set-4 and set-8. Each test set contains 1000
pairs of policies. In set-4, each policy has four rules and in set-8 each policy has
eight rules. The configurations of elements for each policy model are shown in
Table 1. For example, laboratory administration policies are written by ABAC
model and these policies contain 19 categorical elements with permit and deny
effects. We observe that the score increases when the similarity between two
policies increases. At the same time, the experimental values approach to the
scores calculated and the quantity of test rules has no impact on the variation of
curves. These data enable us to conclude that the PSM score well approximates
the similarity between policies.

5 Application

Our PSM algorithm can be applied to different SP selection use cases such
as network configuration, compute allocation and cloud storage. This section
presents a concrete scenario.

5.1 Scenario Description

SUPERCLOUD [24] is a European project which aims to support user-centric
deployments across multi-clouds and enables the composition of innovative trust-
worthy services. SUPERCLOUD will build a security management architecture
and infrastructure to fulfill the vision of user-centric secure and dependable
clouds of clouds. One use case is to build a middle-ware layer between cloud
customer and cloud SPs and this middle-ware could select SP(s) according to
the security requirement of client. Here we implement a scenario of cloud storage.
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The subjects involved in the scenario are cloud client, cloud broker and SP. A
cloud client wants to use the cloud storage service(s) provided by one or multiple
SPs. At the same time, the client wishes that the security policies of SP meet
his requirement. Otherwise, he may launch a negotiation process with SP(s)
whose security policies are most approximate. To this end, the client chooses the
SUPERCLOUD solution. It is worth noting that discovering SP(s) with client’s
similar security level is just a pre-selection phase. Other criteria such as price
and performance will be taken into consideration in the final negotiation and
decision steps.

Fig. 7: Service provider selection for cloud storage

The implementation is based on CloudSim [22] simulation framework. Fig-
ure 7 illustrates the architecture of our implementation. Firstly, client expresses
his requirement on cloud storage by security policies. For example, client may
wish that he could have a space of 100 GB and he is allowed to upload files
between 8:00 and 22:00. Then the client sends his requirement to the SUPER-
CLOUD layer where a cloud broker is deployed. The cloud broker obtains the
information and security policy templates from SPs. Applying our PSM algo-
rithm, the broker proposes a ranking list of SPs which meet client’s requirement
from storage space to security policies. PSM scores from SPs are ranked from
high to low. When one SP’s storage space is less than the requirement, broker
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may also propose a composition of two SPs in the same domain3. In this case,
two SPs’ security policies should be combined and the policy after composition
is also calculated by PSM and ranked. The composition operation depends on
concrete use cases. Here we apply Conjunction (&) operation proposed in [25]
for cloud storage policies. Consequently, there is more storage space and the
security policy is stricter after composition. An example is as follows:

SP1 : 50 GB,Permit(Action : [upload, download], 8 : 00 ≤ T ime ≤ 23 : 00)

SP2 : 50 GB,Permit(Action : [upload, download, delete], 7 : 00 ≤ T ime ≤ 22 : 00)

SP1&SP2 : 100 GB,Permit(Action : [upload, download], 8 : 00 ≤ T ime ≤ 22 : 00)

5.2 Performance

The implementation is programmed in JAVA and is executed on an Intel machine
having configuration: 2.2 GHz with 4 GB of RAM running Windows 8 and JDK
1.8. We measure the execution time needed until the client receives a SP ranking
list. Figure 8 shows the execution time with the increase of SP quantity from
0 to 100 in each domain and there exist five domains. Blue line with triangles
presents the execution time with the PSM and red line with stars shows the
execution time without the PSM. In Figure 9, the domain number varies from
5 to 30. The higher surface presents the execution time with the PSM and the
lower surface shows the execution time without the PSM. From the two figures,
we remark that the introduction of the PSM does not cause much of performance
loss and it proves that our PSM algorithm is light-weight.
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3 We suppose that SPs in a cloud federation share the same domain and two SPs in
the same domain can be composed as a virtual SP.
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6 Conclusion and Future Work

The main objective of this paper is to expose our proposition to show how
to measure the similarity between two security policies. The proposition gives
mainly a generic and light-weight algorithm with which we can calculate a simi-
larity score between two access control policies. After introducing the categorical
measure and numerical measure, output of our algorithm approximates to the
test result. In addition, our algorithm can be applied on policies with different
models such as ABAC, RBAC and OrBAC.

We are planning to extend our work along the following directions. The first
direction is related to policy negotiation between SP and client in a real dis-
tributed environment such as Grid’5000 [26]. The similarity evaluation may serve
as a filter step to find out the SPs with similar security level. The second direction
is to integrate our algorithm in some security policy negotiation frameworks [27].
The similarity score will be helpful in the negotiation process such as counter
offer generation and decision making.
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Appendix

A Brute-force based test for existing work

Figure 10 shows the brute-force test result of policy similarity score by using
the same test environment illustrated in Section 4. The y-axis represents the
PSM score computed by the algorithm proposed in [10]; the x-axis shows the
test result of policy similarity defined by Equation (7) [10], where Sreq denotes
the set of the requests with the same decisions from p1 and p2 and Req is the
set of the requests applicable to either p1 or p2:

Spolicy(p1, p2) = |Sreq|/|Req| (7)

We remark that the similarity score computed does not approximate to the test
result. The main reason is that, firstly, as a brute-force based test method, our
input requests are more exhaustive than ones generated by other test tools such
as MTBDD [18]. Secondly, the PSM algorithm defined in [10] focuses only on the
literal level but not logic aspect of security policy. As a result, two security rules
sharing the majority of common elements are considered to hold a higher simi-
larity score. However, the rest of elements may cause totally different decisions
which indicates that the two rules are not similar in terms of output.
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