
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

2201
Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C5172029320/2020©BEIESP
DOI: 10.35940/ijeat.C5172.029320

A New Compiler: Code Conversion at Assembly

Level

Ritu Sindhu, Neha Gehlot, Indu Malik

Abstract: Ever switched programming languages? If yes, you

know how difficult it is to learn the syntax and get familiar with

new language. But what if we write the code in our preferred

language and it can run as any other language’s code. The thing

is, whatever we write ultimately gets converted to 0’s and 1’s, the

only difference is how these 0’s and 1’s is shown to our machine.

We may need different languages, but what if the code with the

syntax of one language, runs reasonably well as if it was written

with syntax of some other language. This is where a compiler

comes in[1].

The aim of this paper is to develop a compiler which could

create a new code for another language, based on the machine

code developed by other languages. This compiler solves two

problems Syntax issue and Universal Compiler.

Keyword: whatever different languages, languages.

I. INTRODUCTION:

A compiler interprets and/or compiles a program

written during a appropriate language into identical target

language through variety of stages.

Starting with recognition of token through target code

generation offer a basis for communication interface

between a user and a processor in important quantity of your

time[1]. Various elements of the compiler are as follows:

Source code: It is the high-level code that we write in IDE

of a particular language.

Assembly code: It is the, high level code converted to a

basic low-level code. It contains mixture of machine code

and high-level code.

Machine code: This is the code which machine finally sees.

Compiler: It converts high-level language into assembly

code and then the assembler converts assembly code into

machine code.

Revised Manuscript Received on January 22, 2020.

Prof. (Dr.) Ritu Sindhu, School of Computing Sciences and

Engineering, Galgotias University, Uttar Pradesh, India.

E-mail:ritu.sindhu2628@gmail.com
Ms. Neha Gehlot, Department of Computer Science and Engineering,

SGT University, Gurugram, Haryana, India.

E-mail:neha_fet@sgtuniversity.org
Ms. Indu Malik, School of Computing Sciences and Engineering,

Galgotias University, Uttar Pradesh, India.

E-mail:ritu.sindhu2628@gmail.com

Figure 1: Block Diagram of Layman language of

working of suggested compiler

The idea of making a language to be able to run as any other

code written in different language, is that the compiler will

be a combination of all compilers available for every

language and it will check which language syntax the user is

using and accordingly generates the assembly code. This

assembly code is then sent to a de-assembler of the language

in which we want our code to execute. This de-assembler

returns the assembly code in required language which is

then decompiled to achieve the code conversion from one

language to another.

mailto:Ritu.sindhu2628@gmail.com
mailto:neha_fet@sgtuniversity.org
mailto:Ritu.sindhu2628@gmail.com

A New Compiler: Code Conversion at Assembly Level

2202
Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C5172029320/2020©BEIESP
DOI: 10.35940/ijeat.C5172.029320

So, the most challenging part is deigning this de-assembler.

De-assembler has to solve two problems firstly it has to

understand the assembly code of one language. Secondly it

must be capable of converting code of source language to

other languages [4].

Figure 2: Overview of working of compiler

Figure 3: Structure of compiler

So the question is how the language code can be

converted to another language code?
The thing is if we try to convert syntax of one language to

another language, it would consume lot of memory with

checks and loops[3].

So we take the code into assembly level and then recompile

it using reverse of compilation or de-compiler.

Figure 4: Conversion of code

So, with the proper understanding of compiler we can use

the assembly code of python and feed it to De-assembler of

C++ to set the equivalent C++ code of program written in

python.

Figure 5 : Core concept of working of code conversion

Suppose we have a C++ program as shown in above fig. We

want our compiler to give a python equivalent code for this.

So, we start as follows.

Step1: Preprocessor- It removes all the whitespaces from

our C++ code and converts in into pureHLL.

Step2: Lexical analysis-(From here the compilation

begins) It converts the pure HLL into stream

of token that is it breaks up the code into smallest possible

units.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

2203
Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C5172029320/2020©BEIESP
DOI: 10.35940/ijeat.C5172.029320

Step3: Syntax analysis-This phase of compiler checks

whether the syntax of our C program is correct or not and

accordingly forwards a parse tree of the code with

instructions to the next phase.

Step4: Semantic analysis- This phase checks whether the

declaration and statements of a program has clear meaning

and are consistent in a way which control statements and

data types are supposed to be used. After verifying a

semantically verified parse tree is forwarded.

Step5: Intermediate code generation-The semantically

verified parse tree is converted to a linear representation

(e.g. postfix notation). The intermediate code tends to

machine independent. To evaluate this linear representation

a three-address code is generated and is forwarded for code

optimization.

Step6: Code optimization-The work of code optimization

is to make the three address code compact and robust.

Step7: Target code optimization-It’s the final test of our

C++ code after which assembly code is generated and then

passed to the assembler[14].

II. RESULT ANALYSIS:

Up till now we have normal compiler deign. After converted

to assembly our code and result of compilation looks like.

File Type: COFF OBJECT

main:

 0000000000000000: 48 83 EC 28 sub

rsp,28h

 0000000000000016: C3 ret

__local_stdio_printf_options:

 0000000000000000: 48 8D 05 00 00 00 lea

rax,[?_OptionsStorage@?1??__local_stdio_printf_options@

@9@9]

 00

 0000000000000007: C3 ret

_vfprintf_l:0000000000000000: 4C 89 4C 24 20 mov

qword ptr [rsp+20h],r9

 0000000000000014: 48 83 EC 38 sub rsp,38h

 0000000000000018: E8 00 00 00 00 call

__local_stdio_printf_options

 0000000000000039: E8 00 00 00 00 call

__stdio_common_vfprintf

 000000000000003E: 48 83 C4 38 add rsp,38h

 0000000000000042: C3 ret

printf:

 0000000000000000: 48 89 4C 24 08 mov qword ptr

[rsp+8],rcx

 0000000000000027: E8 00 00 00 00 call

__acrt_iob_func

 000000000000002C: 4C 8B 4C 24 28 mov r9,qwordptr

[rsp+28h]

 000000000000003C: E8 00 00 00 00 call _vfprintf_l

 0000000000000041: 89 44 24 20 movdwordptr

[rsp+20h],eax

 000000000000004E: 8B 44 24 20 moveax,dwordptr

[rsp+20h]

 0000000000000056: C3

The tricky thing begins from here. Since assembler is

platform dependent, so it will convert our C++ assembly

code to different machine code for different platform. So if

we want to go for code conversion we must revert back our

C assembly code to a assembly equivalent of python[15].

This phase conversion is where the core design idea of this

paper lies. Working at a hardware level, if we get an exact

conversion, then we can revert back the process of

compilation using python compiler to get our desired result.

III. CHALLENGES:

 The phase conversion of assembly code of our language to

another language’s assembly code is the most important

problem to tackle down.

 The designed compiler must learn to identify what

language is being used so that we can program a hybrid

language and get its equivalent code in any other

language, at advance level.

 Generating high level language code from assembly code,

it’s the reverse process of compiling so I call it de-

compiling.

 Initially I thought of developing a ML model that would

classify code, this could serve as a potential challenge in

developing such a thing and integrating it with ML.

IV. CONCLUSION:

I was really fascinated by this thought of mine, a concept of

universal compiler which solves a great problem where we

need different compilers depending upon programming

language and on the other hand it’s also capable of

generating code in different languages vanishing the

language compatibility in the entire technical industry.

A New Compiler: Code Conversion at Assembly Level

2204
Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C5172029320/2020©BEIESP
DOI: 10.35940/ijeat.C5172.029320

With this compiler being implemented a programmer can rid

of learning new languages, simple feed his code to this

compiler and just get the code in desired language.

Programming language will never be a barrier in

implementing things and solving real world problem which

is at the end of the day every one’s main motive.

Further concluding, my entire design process of this thing

will be divided into 3 steps firstly I would design the basic

structure of compiler which will be the mixture of all the

compilers present in the today’s date. Secondly the main

part would be to develop a translator which would translate

the assembly code of language to the assembly code of

another language, this will work at the assembly level. Last

part would be de-compiler which would generate HLL code

form assembly code. The most challenging phase is the

second phase which I have already discussed in the

challenges section of this paper.

REFERENCES:

1. Aho, Alfred V., Hop croft, J. E., and Ullman, Jeffrey D. [1974]. The

Design andAnalysis of Computer Algorithms.Addision Wesley,
Reading, MA

2. Ball, T., Larus, J.: Optimally profiling and tracing programs. ACM
Transactions on Programming Languages and Systems 16(3), 1319–

1360 (1994).

3. Ball, T., Larus, J.: Efficient path profiling. In: Proc. 29th Annual Intl.
Symp. on Microarchitecture (December 1996).

4. Berkeley Unified Parallel C (UPC) Project.

5. Berstein, D., Rodeh, M.: Global Instruction Scheduling for
Superscalar Machines. In: Proc. of SIGPLAN 1991 Conference on

Programming Language Design and Implementation (1991).

6. Calder, B., Feller, P., Eustance, A.: Value Profiling. In: Proc. 30th
Annual Intl. Symp. on Microarchitecture (December 1997.

7. https://stackoverflow.com/questions/47948234/assembly-code-of-a-

hello-world-program-in-c
8. https://nptel.ac.in/courses/106/105/106105190/

9. Johnstone, A., Scott, E.: Modelling GLL parser implementations. In:

Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 42–61. Springer, Heidelberg (2011).

10. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) Parsing of

Programming Languages. In: Programming Language Design and
Implementation, PLDI 1989, pp. 170–178 (1989).

11. Visser, E.: Scannerless Generalized-LR Parsing. Technical report,

University of Amsterdam (1997)
12. https://stackoverflow.com/questions/840321/how-can-i-see-the-

assembly-code-for-a-c-program.

13. Ijirt.org.
14. www.codon.uk.org.uk.

15. ijarece.org.

AUTHORS PROFILE

Dr. Ritu Sindhu pursued her Master of Technology

from Banasthali University, Rajasthan, India. She did

Her Ph.D from Banasthali University,Rajasthan,
India.. She is currently working as a Professor, School

of Computer Science and Engineering,Galgotias

University, Greater Noida, India. She has published 40
research papers in various reputed National and International Journals. Her

teaching experience is 14 Years.

Ms.Neha Gehlot pursued her Master of Technology

from ITM University, Gurugram India. She is
pursuing her Ph.D from SGT University , Gurugram

India. She is currently working as a Assistant

Professor, in SGT University, Gurugram India. She
has published 15 research papers in various reputed

National and International Journals. Her teaching

experience is 5 Years.

Ms. ndu is working as an Assistant Professor in

Galgotias University. She have completed M.Tech
in Computer Science & Engineering from

Banasthali Vidyapith. And have worked on lidar

data during my M.Tech project.

https://stackoverflow.com/questions/47948234/assembly-code-of-a-hello-world-program-in-c
https://stackoverflow.com/questions/47948234/assembly-code-of-a-hello-world-program-in-c
https://nptel.ac.in/courses/106/105/106105190/
https://stackoverflow.com/questions/840321/how-can-i-see-the-assembly-code-for-a-c-program
https://stackoverflow.com/questions/840321/how-can-i-see-the-assembly-code-for-a-c-program
http://www.codon.uk.org.uk/

