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Abstract: Let G = (V, E) be a simple graph. A set )(GVS   is 

a dual dominating set of G (or bi-dominating set of G) if S is a 

dominating set of G and every vertex in S dominates exactly two 

vertices in V-S. The dual-domination number γdu(G) (or 

bi-domination number  Gbi  ) of a graph G is the minimum 

cardinality of the minimal dual dominating set (or dual 

dominating set). In this paper dual domination number and 

relation with other graph parameters are determined. 

Keywords:  Domination, dual-domination, chromatic number and 

connectivity.  

I. INTRODUCTION 

Let G(V,E) be a simple, connected graph where V(G) is its 

vertex set and E(G)  is its edge set. The degree of any vertex v 

in G is the number of edges incident with v and is denoted by 

deg v. The minimum degree of a graph is denoted by (G) and 

the maximum degree of a graph G is denoted by Δ(G). A 

vertex of degree 1 is called a pendent vertex. In this paper, 

dual domination number with other parameters are 

determined. For graph theoretic notations, Harary [1]and 

Gray chartand [2]  are referred to. 

II. PRELIMINARIES 

Definition 2.1:[1] The chromatic number χ(G) is defined as 

the minimum n for which G has an n-coloring. A graph G is 

n-colorable if χ (G)  n and is n-chromatic if χ(G) = n. 

Definition 2.2:[1] The connectivity κ = κ(G) of a graph G is 

the minimum number of points whose removal results in a 

disconnected or trivial graph. 

Definition2. 3:[5] A set )(GVS   is a dual dominating set 

of G if S is a dominating set of G and every vertex in S 

dominates exactly two vertices in V-S. 

Remark 2.4: The dual domination number (G) of a graph 

G is the minimum cardinality of all minimal dual dominating 

sets. The maximum cardinality of a dual dominating set of G is 

called the upper dual domination number of G and it is denoted 

by (G). 
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Theorem 2.5[5]: Let G be a connected graph, If G =  then 

 = n - 2. 

III. MAIN RESULT 

Theorem 3.1: For any connected graph G with n  ≥ 5 vertices, 

γdu(G)  + χ(G) ≤ 2n − 2 and the bound is sharp if and only if  

G  Kn. 

Proof: Let G be a connected graph with n  ≥ 5 vertices. We 

know that  χ(G) ≤  n and by theorem[1.5],  γdu(G) ≤ n − 2. 

Hence γdu(G) + χ(G) ≤ 2n − 2. Suppose G is isomorphic to Kn. 

Then clearly γdu(G) + χ(G) = 2n − 2. Conversely, let 

γdu(G)+χ(G) = 2n− 2.  

Case(i): Suppose χ(G) = n – r, r ≥ 1. Since γdu(G) + χ(G) = 2n 

– 2, γdu(G) = n + r – 2, a contradiction. 

Case(ii): Suppose γdu(G)  = n – r, r ≥ 3. Since 

 γdu(G) + χ(G) = 2n – 2, χ(G)  = n + r – 2, r ≥ 3, a contradiction. 

From both cases it is observed that γdu(G) + χ(G) = 2n – 2 is 

possible only if  γdu(G) = n − 2 and χ(G) = n. Hence G is 

isomorphic to Kn . 

Theorem 3.2: For any connected graph G with n ≥ 3
 

 

Proof: Let G be a connected graph with n ≥ 5 vertices. We 

know that for any connected graph G, . Since 

 ≤ n – 2,   + ∆(G) ≤ 2n – 3. 

Example  3.3:  Consider the following graph G is given in the 

following figure 1 

                                                

 
Figure1 

Let S1 = {a, c} and S2 = {b, d}, every vertex of the set 

 Si , 1 ≤ i ≤ 2 dominates exactly two vertices in V - Si. Hence  

Si , 1 ≤ i ≤ 2 are the dual dominating set of G,  ≤ 2. 

Since G is not isomorphic to either C3 or P3,  ≥ 2. 

Hence   = 2 and ∆(G) = 3,  + ∆(G) = 5 = 2n – 3. 

Theorem 3.4: Let G be a graph of order n ≥ 5. Then γdu(G) + 

γdu( ) ≤  2n − 6 and the bound is sharp. 

Proof: Case(1): Suppose γdu(G) = n – 2. Let S be a γdu – set. 

Let V -  S = {u, v}, the two vertices u and v may or may not be 

adjacent with both u and v in G. Let H = . Hence  

 =   K2 or   2K1. Since K2 and K1 do not have dual 

dominating set,  has no 

dual dominating set.   
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Subcase(1a): Suppose γdu(G) = n – 3. Since γdu( ) ≠ n – 1, 

γdu(G) + γdu( ) ≠ 2n – 4. 

Subcase(1b): Suppose γdu(G) = n – 4. Since γdu( ) ≠ n, γdu(G) 

+ γdu( ) ≠  2n – 4. 

Subcase(1c): Suppose γdu(G) = n – r, r ≥ 5. Since 

 γdu( ) ≠ n + s, s ≥ 1, γdu(G) + γdu( ) ≠  2n – 4.  

From the cases (1), (1a) and (1b), (G) + γdu( ) ≠  2n – 4. 

 Case(2): Suppose either (G)  or γdu( ) is equal to n – 2. 

As in case(1) dual dominating set doesnot exist for G or . 

Subcase(2a): Suppose (G) = n – 4. Since γdu( ) ≠ n – 1.  

Hence (G) + γdu( ) ≠  2n – 5. 

Subcase(2b): Suppose (G) = n – r, r ≥ 5. Since γdu( ) ≠ n 

+ s, s ≥ 0.  Hence (G) + γdu( ) ≠  2n – 5. 

case(3): Suppose (G) = n – 5 and γdu( ) ≠ n – 1.  Hence 

(G) + γdu( ) ≠  2n – 6. 

Subcase(3a): Suppose (G) = n – r, r ≥ 6 and  γdu( ) ≠ n + 

s, s ≥ 0.  Hence (G) + γdu( ) ≠  2n – 6. 

Case(4): Let G = C5 and  is also C5 and γdu(C5) = 2. Hence  

(G) + γdu( ) = 4 = 2n – 6. 

From all the cases (G) + γdu( ) ≤  2n – 6. 

Remark 3.5: Let ∣V(G)∣ = 4. G has a dual dominating set if 

and if G is isomorphic to C4, K4 and K4 – e. Hence  = 2K2, 

4K1 and K2 2K1 respectively. Hence  has no dual 

dominating set. 

Remark 3.6: Let ∣V(G)∣ = 3. G has a dual dominating set if 

and if G is isomorphic to P3 and C3. Hence  = 3K1 and K2 

K1 respectively. Hence  has no dual dominating set. 

Theorem 3.7: Let G be a connected graph with n ≥ 3 vertices, 

(G) + κ(G) ≤  2n – 3 and the bound is sharp if and only if G 

is isomorphic to Kn. 

Proof: Let G be a connected graph with n ≥ 3. We know that 

κ(G) ≤  n – 1 and (G) ≤  n – 2. Hence (G) + κ(G) ≤  2n 

– 3. Suppose G is isomorphic to Kn. Then clearly (G) + 

κ(G) = 2n – 3. Conversly, Let (G) + κ(G) = 2n – 3. This is 

possible only if (G)  = n -2 and  κ(G) = n – 1. Hence G is 

isomorphic to Kn. 

Theorem 3.8: Let G be a connected graph with n  ≥ 4 vertices. 

Let S be a minimum dual dominating set of G . If κ(G) = n – 2 

or n - 1, ∆(G) = n-1, χ(G) = n-1 or n, and diam(G) = 2 or 1 iff 

∣S∣ = n – 2 and   is complete graph. 
Proof: Let G be a connected graph with n  ≥ 4 vertices. 

 S = { v1, v2, …, vn-2} is the dual dominating set of G and 

 is complete graph.  

Case(i): Suppose the vertices vn-1 and vn belong to V – S is 

adjacent with each other. Then clearly κ(G) = n - 1, ∆(G) = 

n-1, χ(G) = n, and diam(G) = 1. 

Case(ii): Suppose the vertices vn-1 and vn belong to V – S not 

adjacent with each other. Then clearly κ(G) = n - 2,  

∆(G) = n-1, χ(G) = n - 1, and diam(G) = 2. 

Conversely,  

Case(i): Suppose κ(G) = n – 1 then G is isomorphic to Kn. 

Clearly  ∆(G) = n-1, χ(G) = n, and diam(G) = 1. 

 Let V(G) = {v1, v2, …, vn}. S =  {v1, v2, …, vn-2 } is the 

minimum dual dominating set of G. ∣S∣ = n – 2 and  is 

complete graph. 

Case(ii): Suppose χ(G)  =  n – 1 then G is isomorphic to Kn - 

e. Clearly  ∆(G) = n-1, κ(G) = n – 2 , and diam(G) = 2.  

Let V(G) = {v1, v2, …, vn}. S =  {v1, v2, …, vn-2 }is the 

minimum dual dominating set of G. The vertices vn-1 and vn 

not adjacent with each other. ∣S∣ = n – 2 and  is 

complete graph. 

IV. CONCLUSION 

In this paper, dual domination number with chromatic 

number, connectivity and Nordhaus-Gaddum type result are 

discussed . 
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