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ABSTRACT 

 

Computational approaches in drug discovery and development hold great promise, with artificial 

intelligence methods undergoing widespread contemporary use, but the experimental validation of 

these new approaches is frequently inadequate. We are initiating Critical Assessment of 

Computational Hit-finding Experiments (CACHE) as a public benchmarking project that aims to 

accelerate the development of small molecule hit-finding algorithms by competitive assessment. 

Compounds will be identified by participants using a wide range of computational methods for 

dozens of protein targets selected for different types of prediction scenarios, as well as for their 

potential biological or pharmaceutical relevance. Community-generated predictions will be tested 

centrally and rigorously in an experimental hub(s), and all data, including the chemical structures of 

experimentally tested compounds, will be made publicly available without restrictions. The ability of 

a range of computational approaches to find novel compounds will be evaluated, compared, and 

published. The overarching goal of CACHE is to accelerate the development of computational 

chemistry methods by providing rapid and unbiased feedback to those developing methods, with an 

ancillary and valuable benefit of identifying new compound-protein binding pairs for biologically 

interesting targets. The initiative builds on the power of crowd sourcing and expands the open 

science paradigm for drug discovery. 
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INTRODUCTION 

 

The past decades have witnessed continuous incremental improvements in the computational 

methods used to facilitate small molecule drug discovery and development. However, the field is 

currently witnessing a revived optimism, fueled by continuous leaps in computational power, 

increased accessibility to diverse chemical space, improved physics-based methods, and the 

emerging potential of newer machine learning and AI approaches. It is fair to say that the question is 

not whether in silico design will grow as a part of drug discovery, but how much and how quickly 

these methods will reduce the experimental discovery cycle. This optimism must be tempered by the 

fact that considerable additional progress is needed. Today, no algorithm can select, design, or rank 

potent, drug-like small molecule protein binders consistently. Predicting pharmacokinetic, 

pharmacodynamic and toxicity (ADMET) properties is even more difficult, as this involves the 

interactions of a candidate drug with the entire biological system, rather than a single protein target.    

 

Significant advances in computational methods can be gained through blinded benchmarking 

exercises, as evidenced by community progress in developing computational methods to predict 

protein structure from primary sequence.  In 1993 when the “Critical Assessment of Techniques for 

Protein Structure Prediction” (CASP) exercise1 (https://predictioncenter.org/) was launched,  humans 

were often better at predicting protein structures than were computational methods. Leveraging 

high-quality and openly available experimental information in a well-organized database (the 

Worldwide Protein Data Bank [www.wwpdb.org]), in silico approaches gradually became increasingly 

capable of predicting protein structure.  Very recently machine learning algorithms have been able 

to predict the structures of many (but not all) globular proteins as accurately as can be determined 

experimentally 2,3.   

 

In computational chemistry and specifically in protein-targeted small molecule discovery, organizing 

benchmarking exercises similar to CASP has occurred 4-12, but none are currently operational. In 

addition, other than the TDT and DREAM benchmarking initiatives 7,8,12 which included a prospective 

arm to its prediction challenge, there has been no concerted effort to provide experimental testing 

of predictions.  This includes no opportunity to fund the synthesis and quality control of predicted 

compounds and to test their binding rigorously under standard conditions.  Commercial sensitivities 

also complicate small molecule binding benchmarking. A large fraction of the experimental data 

suitable for benchmarking in silico binding predictions are generated within the pharma industry and 

kept confidential, rather than being released for general use. In addition, significant advances in 

computational chemistry technologies are taking place within companies, and massive private 

investment is flowing into new companies for the development of artificial intelligence (AI) methods. 

These companies are also likely reluctant to share their methods in any detail, or see them put to the 

test publicly. Finally, unlike the prediction of experimental protein structures, which is a narrowly-

scoped problem with a relatively unambiguous solution, benchmarking the prediction of useful small 

molecules against a target is much more difficult – multiple possible solutions differ both 

quantitatively and qualitatively. 

 

In the past few years, a combination of scientific and technical advances has made it possible to 

conceptualize a benchmarking exercise that can overcome some of these limitations. Among the 

https://predictioncenter.org/
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most important is the creation of ultra-large libraries of chemicals that can be described in silico and 

procured “on-demand” 13,14. This reduces significantly the cost associated with accessing chemical 

matter to test predictions. There has also been a dramatic increase in the availability of 

computational resources, which facilitates data sharing and democratizes the ability to make 

predictions. Hand in hand with the improvements in infrastructure has been the development of new 

computational algorithms, both machine learning and physics-based.  Recently, all these advances 

were mobilized within community-wide efforts to identify new chemical starting points for SARS-

CoV-2 drug discovery 15. 

 

The past years have also seen increased community acceptance of the idea that public and private 

sectors can collaborate pre-competitively in areas that were once considered commercially sensitive.  

The “open-access, open-source, open-data” paradigm is now accepted as an accelerator of 

biomedical science. Critically, this paradigm has expanded to include the notion that placing chemical 

matter, including advanced molecules such as chemical probes, in the public domain without 

complex and rate-limiting intellectual property agreements provides immense scientific value 16. 

 

Based on this new landscape, we propose to create a public-private partnership called Critical 

Assessment of Computational Hit-finding Experiments (CACHE) to benchmark computational 

approaches to finding small molecule hits for proteins. Modelled after CASP, CACHE will organize hit-

finding challenges against selected targets and participants will use various computational methods 

to predict hits.  However, unlike CASP, which was able to piggy-back on experiments being done in 

the structural biology community, CACHE must have an experimental arm testing predictions 

prospectively. Each challenge will typically include two testing iterations to enable refinement and 

forward application of predictive models. Upon completion of a hit-finding challenge, all data 

generated by CACHE, including all chemical structures, will be publicly available without restrictions 

on use.  

 

THE GENESIS OF THE CACHE CONCEPT 
 

In November 2020, prompted by recent developments and interest in computational methods, 

including deep learning, as well as the challenges in identifying the best performing methods, ~80 

scientists from industry, academia, and funding agencies met virtually to consider potential areas of 

drug discovery that might benefit from coordinated benchmarking. Of the many areas that were 

identified, the group prioritized hit-finding – identification of a small molecule that binds a targeted 

protein with high enough affinity to qualify as a credible starting point for a drug discovery project – 

as particularly suitable and practical, and an excellent area to begin. To advance the idea, a set of ~30 

representatives developed a draft concept for CACHE in four working groups, which focused on: 1) 

Target selection and prioritization; 2) Virtual library construction; 3) Measuring outcomes; and 4) 

Governance. Here we present these groups’ ideas for the CACHE project. 
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THE CACHE CONCEPT 
 

CACHE will present and organize a variety of “hit-finding” challenges to the community. As a part of 

this, and as described in detail below, CACHE will identify suitable protein targets, curate the virtual 

chemical libraries, define success parameters for predictions, and solicit predictions for hit 

compounds. For evaluation, CACHE will purchase or otherwise procure the predicted compounds, 

experimentally measure the binding of the compounds to their intended target, calculate other key 

properties of the active compounds, and share the outcomes openly with the community (FIG. 1). 

We envision that CACHE, like CASP, will organize multiple rounds of challenges, providing on-going 

opportunities for algorithm developers to improve and test their methods. 

 

 
Fig. 1. CACHE challenge workflow. 1. “Hit-finding” challenges: CACHE presents a variety of “hit-finding” 

challenges to the community, including assessment criteria. 2. Virtual libraries: CACHE will establish and host 

two virtual libraries; a make-on-demand library (REAL, ZINC20) and a library comprising compounds 

synthetically accessible by chemists in academia or industry (bespoke chemistry). 3. Participants predict 

chemical matter & CACHE experimentally tests compounds:  Each participant will have opportunity to make 

two cycles of predictions per round. CACHE will procure and assay the predicted compounds.  At this stage, 

structures of compounds will be made available to all participants, but screening data will be provided only to 

the specific participant and competition management, in order to serve as a starting point for an additional 

cycle of predictions. 4. Compounds, data placed in the public domain: Once the second cycle is complete, the 

data package, including all structures and screening data, as well as an assessment of each compound, will be 

made available to all, without restriction. 

 

CACHE CHALLENGES & TARGET SELECTION 
 

CACHE will organize hit-finding challenges that represent the range of common scenarios 

encountered in hit-finding depending on available target information (FIG. 2, Panel B). A Target 

Selection Group will select targets appropriate for each of these 5 scenarios. Specifically, the Target 

Selection Group will define the acceptance criteria for targets in each scenario, bioinformatically 

create a “long list” of targets that meet these criteria, and create a mechanism(s) for the community, 
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including the funders of CACHE, to prioritize from this list those targets to be included in the launched 

benchmarking challenges. 

 

 
 
Fig. 2. Target selection consideration and classes of CACHE challenges. A. Targets will be selected from a long 
list of proteins that represent a range of scenarios of varying technical difficulty, are experimentally enabled 
(for example,  there must be a robust binding assay) and, where possible, represent opportunities to make 
new biological or medical discoveries.  Funders can prioritize targets within each challenge. B. The five 
potential “hit-finding” scenarios that address key technical questions in computational chemistry. SMOL: small 
molecule. 
 

The most important technical requirement for inclusion of a potential target into the list will be the 

availability of two cost-effective direct binding assays that can provide rapid, validated, high-quality 

experimental feedback. From this list of targets that meet technical requirements, CACHE and its 

funders will select the final targets using a prioritization scheme that maximizes the structural 

diversity of the target proteins, and ideally that also takes into account the opportunity to discover 

new biological insights, so that CACHE outputs benefit not only the computational and 

pharmaceutical communities.  We anticipate that a funder (such as a disease-focused charity) would 

consider CACHE as an attractive funding opportunity through the mobilization of a wide global 

network of computational chemists to focus on their priority target(s) (FIG. 2). We also imagine that, 

in lieu of providing direct support, funders, foundations, or companies might also offer in-kind 

support for CACHE, for example, by offering to experimentally test all predictions for a given target, 

or providing access to computational resources, assay reagents, or laboratory equipment. Ideally, for 

each of the 5 scenarios, CACHE will have the resources to pursue at least 3 different targets at a time. 
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CACHE WILL FACILITATE AND ENCOURAGE PARTICIPATION 

 
CACHE will provide virtual compound libraries 

 

To enable rapid and cost-effective testing of predictions, CACHE will establish a well-defined and 

robust “Core” Make-on-Demand (MoD) virtual library comprising compounds that are readily 

accessible from commercial vendors, at reasonable cost. A combination of Enamine REAL* and 

ZINC20 14 might comprise the core of this library.   

 

CACHE will annotate compounds in the library with predicted physical properties (e.g., cLogP, PSA, 

Fsp3, etc.) that will be assessed in the success criteria (see next section). The aim is to enable each 

participant to select individual subsets and/or apply relevant filtering which he/she sees fit, while 

ensuring any such pre-filtering or sub-set restrictions can be accounted for in any subsequent 

evaluation and comparison of approaches. CACHE will also create “Subsets” within the initial library 

as may be required to account for the needs of specific CACHE participants (e.g., a 1% diversity set 

or a 10% diversity set might be preferred when examining computationally intensive approaches, 

etc.). The libraries will evolve, adding more compounds as they become commercially available or 

accessible, and creating additional library subsets as feedback on the performance is collected.     

 

CACHE will also explore mechanisms to provide participants access to a virtual library (VL) containing 

new chemistry. The concept here is to ask synthetic chemists within academic or industry to 

contribute to a  “New Chemical Space” VL by adding compounds that they would be willing to 

synthesize “on demand” in a timely manner with their emerging synthetic chemistry protocols, and 

using their own resources. The purpose of including these compounds is to access structurally unique 

scaffolds or sub-libraries. This library could serve as a counterpoint to the “parallel synthesis” MoD 

library and would also provide a mechanism for academic chemists to get their new chemistry 

screened by a large number of computational methods against a wide range of biologically interesting 

targets, and in turn for CACHE to sample new and exciting compounds. 

 

At regular and defined intervals over the course of the CACHE benchmarking exercises, the CACHE 

virtual libraries team will evaluate the impact of library choice, composition and nature (diversity, 

size) on both virtual screening capabilities and on general screening success and recommend changes 

accordingly. 

 

CACHE will provide robust experimental testing of predictions 

 

At the core of the CACHE initiative will be an experimental hub (or hubs) that will provide rapid, high-

quality testing of the predictions. Predicted compounds will be submitted to the experimental hub, 

which will procure the compounds and assay them using a binding assay selected to be most 

appropriate for the protein target. Each compound will be assayed at a single concentration in 

duplicate, and each positive re-tested in dose-response mode, as well as in an orthogonal biophysical 

 
* https://enamine.net/compound-collections/real-compounds/real-space-navigator 
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assay, which is critical. Feedback will be given first to the predictor(s), who will have the opportunity 

to submit a new set of predictions. 

 

Each CACHE challenge round will take ~18 months, with two cycles of predictions per round 

The CACHE challenge will involve two cycles of predictions in order to give participants the 

opportunity to incorporate learnings from the first round into their designs. The timing and sequence 

of the proposed challenge round is shown in FIG. 3. Challenges will be staggered in order to avoid 

overwhelming the experimental hub.   As part of each challenge, participants will be asked to make 

predictions from a small library constituting the combined list of predicted compounds contributed 

to the first cycle by all participants. Experimental testing of these compounds and then comparing 

with predictions will facilitate inter-algorithm benchmarking. 

Fig. 3. The timelines of challenge activities. After reviewing the Letters of Intent (LOI), each complete 

challenge round will take ~18 months, with the various stages outlined.   

 

CACHE BENCHMARKING  
 

Benchmarking virtual screening methods poses a challenge, because no single measure, or even 

combination of measures, can be used to unambiguously quantify the success of virtual screens, let 

alone determine which among many binders is the “best”. Although binding affinity will be the main 

benchmarking criterion, it is relevant to incorporate other properties important for drug discovery, 

including the calculated lipophilicity and novelty of the predicted structures, and also the 

experimentally-determined selectivity against one or more homologous “off-targets” (if this is called 

for in a challenge).  Solubility of the compounds will be predicted, but also will be determined 

experimentally.  Insoluble compounds will be flagged because precipitation is a confounder in nearly 

all binding assays.  

 

CACHE will publish in advance the success criteria (activity, selectivity, aqueous solubility, 

lipophilicity, novelty, etc.) for each challenge, and how they will be combined into an overall multi-
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objective score 17,18, such as oralPhysChemScore (oPCS) 19 . CACHE will provide the workflows and 

scripts that were used to calculate the different descriptors. In one possible scheme (TABLE 1), active 

compounds will not be ranked per se, but rather will be classified into 3 buckets (green, yellow, red) 

by summing up the traffic light values for each property (column). The scoring scheme used to assess 

a compound’s physical and molecular properties will be similar across the challenges, but the values 

for potency and selectivity may change depending on the challenge. For example, compounds with 

weaker affinity might be acceptable for hard targets with no precedent, but higher affinities might 

be the aim if the challenge is to identify novel chemotypes for precedented targets. As stated above, 

to facilitate comparison among methods, all predictions from all participants for a given target will 

be combined into a single small virtual library, and all participants will also be asked to rank these 

compounds. 

 

Top-scoring molecules will be further analyzed by a panel of experienced medicinal chemists in order 

to provide additional annotation to the molecules, including opinion on the suitability of the hits to 

serve as a starting point for potential drug discovery programs. Their reflections will not influence 

the score, but rather will help contextualize the output. 

 

Table 1. Example CACHE traffic light (TL) scoring scheme for one arbitrary target protein. Scoring 

schemes will differ for different challenges. 

TL value 

TL Binding 
affinity 

 (measured) 
TL Sw 

(measured) 

TL logD @ 
pH 7.5 

(measured) 

TL 
MW/MW 

corr 

TL 
PSA 
(Å2) 

TL 
# 

rotatable 
bonds 

TL 
Fsp3 

Novelty* 

0 <1µM ≥ 50 <3 ≤ 400 ≤ 120 ≤ 7 >0.3 <0.6 

1 
10-1 µM 

10-50 3-4 400-500 
120-
140 

8-10 
0.2- 
0.3 

0.6 - 0.8 

2 >10 µM < 10 >4 > 500 > 140 ≥ 11 <0.2 >0.8 

TL = traffic light, Sw = solubility in water; Fsp3 = fraction of sp3 hybridized carbon atoms, calculated based on Murcko scaffolds 

*Tanimoto distance relative to most similar structures binding that target in most recent version of ChEMBL using ECFP4 fingerprints 

as calculated from Rdkit (https://www.rdkit.org/) 

 

SHARING THE CACHE OUTPUT 
 

CACHE will generate three main outputs for the community: screening data, chemical structures, and 

the performance of algorithms. CACHE’s mandate is making available the screening data and the 

chemical structures to the community without intellectual property or other restrictions on use, and 

in a digitally readable format. These data will also include the composition of the virtual libraries 

screened, all predicted small molecules including negative data, and all screening methods. 

 

As a condition of participation, CACHE will mandate that predictors disclose their approaches in 

sufficient detail to enable an expert in the area to understand the methodology and algorithms. 

These methodology descriptions will be double-blind peer-reviewed by other participants to ensure 

they contain sufficient information according to standards of the field.  In the interest of encouraging 

participation from all sectors, participants will not be required to provide access to their code and 

can remain anonymous. However, CACHE will encourage participants to share their code and, as 
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stated below, intends to provide a range of financial incentives for those participants who open-

source their algorithms and workflows, and ideally who also submit their fully automated workflows. 

In addition, participants must agree that those who submit top-performing methods (as determined 

by prespecified criteria agreed to by CACHE and the participants – see next section) will automatically 

be un-blinded. Participants that agree to share workflows, code and methodology must do so in a 

FAIR manner 20. 

 

Table 2. CACHE output. 

List of methods/strategies Anonymized list of participants along with a description of their approach 

Predicted structures from each 

participant, for each of two cycles 

Experimentally determined and calculated properties for all predicted 

compounds (Table 1) 

Performance of algorithms on common 

set of compounds 

Create a virtual library that comprises predictions made by all participants 

in Cycle 1, and each participant will rank the compounds in that library 

Set of top structures Top ranked structures, including SAR if available 

Crystal structures Coordinates of all complexes of targets and predicted binders 

Synthetic routes for top-ranked set of 

structures 

Summary and primary data (yields) 

Assay data (screening) Primary screening data for all predictions and orthogonal confirmation data 

for active molecules  

Quality control data for compounds NMR, HPLC, MS, solubility 

 

Participants will be encouraged to publish the results of their submissions and detailed analyses of 

their performance, and to work together to share learnings and identify differentiators of 

performance. CACHE will organize a workshop following each challenge and coordinate the 

publication of overview papers for each challenge, perhaps with dedicated special issues of relevant 

journals to provide a wider forum for participants. 

 

HOW WILL CACHE AND THE CHALLENGES BE ORGANIZED AND MANAGED? 
 

CACHE will be structured as an independent, not-for-profit entity, or fiscally governed by a not-for-

profit organization with aligned goals, such as the Structural Genomics Consortium (SGC) 

[http://thesgc.org] or the Open Group (https://www.opengroup.org). CACHE or its parent 

organization will receive funding as described below and sub-contract other organizations (academic, 

government or industry) to carry out CACHE activities, and under terms that mandate data sharing. 

Industry could provide funding via donation, contract, or fee-for-service mechanisms. CACHE will 

create a Secretariat to handle administration, fundraising, project management, and logistics. 

 

CACHE will comprise Members, who have the opportunity to influence the strategic directions of 

CACHE through a General Assembly. Members will include funders of CACHE as well as any 

participant that makes a meaningful contribution. The Membership will elect a Governing Board to 

http://thesgc.org/
https://www.opengroup.org/
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be responsible for making operational decisions, including target selection, participation rules, and 

use of funds. An external Scientific Advisory Board will be appointed by the Governing Board to 

provide outside advice on scientific questions such as target choice and metrics for success. 

 

CACHE plans to launch challenges for each of the five hit-finding scenarios shown in figure 2, each 

challenge comprising 3 different protein targets, and occurring over 2 years. There will be periodic 

public open calls for participation. For the first rounds, letters of intent will be solicited to better 

understand the needs and goals of potential participants. All potential participants would be asked 

to submit brief applications detailing their qualifications to participate and general intended 

approach. For inclusivity, the initiative should strive to accept every reasonable application, with due 

attention being paid to use resources efficiently. 

 

For each challenge, CACHE will select a Challenge Lead who will be responsible for the coordination 

of experiments and logistics. The Challenge Lead will ensure best practices are used in challenge 

design, execution, and assessment, and codified in iteratively revised documents (such as living 

reviews or contributions to the NCATS Assay Guidance Manual). Challenge Leads will determine the 

details of specific challenges, and what compound properties – experimental or computed – beyond 

affinity for the target will be incorporated into the overall performance scores. 

 

Challenge Leads will also be responsible for determining and executing or delegating the execution 

of appropriate “baseline methods” (such as random local search, simple similarity matching or vanilla 

docking methods where applicable) that will be run centrally (to avoid duplication for participants 

running many similar baselines). Challenge Leads will have the support of the Scientific Advisory 

Board in making all these decisions. 

 

CACHE FUNDING STRATEGY – SHARING THE COSTS 

 

CACHE intends that its activities, including governance, management, logistics, and data sharing, will 

be supported by a pool of government, industry, and charitable funders. Ideally, CACHE funding 

would also be used to provide subsidies for participants from resource-poor environments, providing 

an overall more inclusive approach. 

 

The funding of the challenges themselves will be shared among interested funders and participants. 

Funders, such as a disease foundation or a company, could support challenges of particular interest 

to them. As CACHE matures, participants will be expected to help defray some portion of per-

compound costs (including synthesis/purchase and assays) using their own funding. To facilitate this, 

CACHE will develop a transparent cost structure that can be used in funding applications. CACHE 

aspires to be able to subsidize the cost of participation for participants that agree to share their 

methods, code, or methodologies. 

 

In the first round, CACHE aims to secure sufficient funding to purchase and assay ~100 compounds 

for every qualified participant to distribute among 3 targets. In subsequent rounds, these costs will 

be transferred to participants. We estimate the costs of experimental testing for 100 compounds is 

approximately USD$25,000; this includes purchasing of the compounds, quality control, protein 

https://www.livecomsjournal.org/
https://www.livecomsjournal.org/
https://ncats.nih.gov/expertise/preclinical/agm
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purification, equipment time, primary biophysical assays, and hit confirmation using orthogonal 

assays. To facilitate logistics as well as to provide the opportunity to negotiate bulk pricing, CACHE 

will procure the compounds on behalf of all participants. If participants wish to test more than 100 

compounds in the first rounds, or if the number of participants exceeds the initial available funding, 

participants may be required to fund some portion of per-compound costs. 

 

CACHE will also be well-positioned to collaborate with other successful community initiatives in order 

to increase the impact of CACHE. For example, if CACHE includes a viral target among the challenges, 

then the CACHE predictions might input into community anti-viral development initiatives†.  

Predicted compounds that pose synthetic challenges can be turned into additional community 

challenges to design and predict the most efficient synthetic pathway for a given small molecule‡.   

Confirmed hits could also be used as starting points to develop new chemical probes§. 

 

SUMMARY AND NEXT STEPS 
 

A group of scientists from the public and private sector intend to launch a benchmarking initiative to 

accelerate the development of computational methods to predict small molecules that bind to 

proteins. The initiative will comprise an experimental and data hub(s), which will support a 

community of predictors. All data, including chemical structures, will be made available without 

restriction on use. The initiative intends to attract funding from industry, governments, and 

foundations to support the infrastructure, and challenge-specific funding, in order to give disease-

focused funders the opportunity to target the community-wide effort to proteins of interest to them. 

An organizational meeting is being arranged, with the intention to launch the first CACHE challenge 

in early 2022. 
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