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A Vision for the future 

 

For the past 40 years, computer scientists and engineers have been building technology that 
has allowed machine vision to be used in high value applications from factory automation to 
Mars rovers. However, until now the availability of computational power has limited the 
application of these technologies to niches with a strong enough need to overcome the cost 
and power hurdles. This is changing rapidly as the computational means have now become 
available to bring computer vision to mass market applications in mobile phones, tablets, 
wearables, drones and robots enabling brand new user-experiences within the cost, power 
and volumetric constraints of mobile platforms.  
 

“Live in the future, then build what's missing” – Paul Graham 

 

Computational imaging represents an historic transition from the 150-year old paradigm of 
taking photos on silver halide photo stock, chemically developing and printing them, to 
computing (making) pictures. According to Hayes [1] a digital camera is no longer a passive 
recording device, and is an image creation rather than a simple recording device. In existing 
digital still cameras, the focus is on making digital images identical to their chemical 
forebears. However, once the camera contains sufficient image-processing horsepower, a 
computational camera can move beyond the reality captured by conventional digital 
cameras. The sensor array in such a camera plays the role film used to, but it’s the beginning 
rather the end of the image creation process. 
 

In his book describing the work of photography pioneer Ansel Adams in the 1920s, 30s and 
beyond, William Turnage [2] claims Adams spent up to a day per print effectively doing 
manually what today would be called High Dynamic Range (HDR) photography: "[Adams] 
always said that the negative is the equivalent of the composer's score and the print is the 
equivalent of the conductor's performance".  Similarly the concept of multi-aperture (array) 
and lightfield (plenoptic) cameras which allow depth to be recovered from images and 
enable a range of Depth-of-field (DoF) and other effects to be implemented 
computationally, have been around since the turn of the 20th century since Lippmann 
demonstrated his 3x4 array camera in 1911 [3], essentially waiting 100 years for the 
computational means to catch up with his vision.  
 

Current computational photography architectures [4][5][6] focus very much on image 
capture and post-processing in the point and shoot camera paradigm within existing 
smartphone architectures.  In this model image capture is controlled using APIs such as 
fCam, Android Camera 2.0 and the forthcoming Camera 3.0 API (Application Programming 
Interface) for Android (derived from fCam).  These APIs are aimed at opening up the 
previously closed world of the camera and to some extent the camera Image Signal 
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Processing (ISP) internals to the application developer.   
 

 
 

Figure 1 Imaging and Vision Capture and Processing Chain 

 

This fine control of the capture process enables applications based on focal stacks (rapidly 
captured bursts of images with different camera settings) in smartphones such as High 
Dynamic Range (HDR) image and video capture, synthetic aperture photography where 
depth of field (DoF) can be varied to focus on different parts of the image, removal of 
unwanted persons or objects within images, best shots of groups (everybody smiling, facing 
the camera and not blinking etc.) and sophisticated ISP functions such as alignment of 
multiple raw images for super-resolution etc.  
 

The Android Camera 3.0 API makes extensive use of burst mode, capturing sequences of 
high-resolution images, and associated depth information, at high rates in smartphones, 
leveraging existing GPU cores using computational imaging algorithms using Renderscript to 
deliver the best images in a platform-independent manner. Similar efforts to standardise 
camera APIs, the capture and fusion of sensor metadata and hardware acceleration for 
computer vision are ongoing within the Khronos industry driven standards organisation, as 
well as more domain-specific initiatives such as Advanced Driver Assistance Systems (ADAS) 
within the automotive community driven by EU NCAP and US safercar safety standards. 
 

The APIs and programming models proposed in [4][5][6] aim to leverage the existing 
hardware processing resources by layering software to marshal the heterogeneous 
computational resources in Application Processors (APs) to do a new job they were never 
designed to do. Generally the hardware architectures underlying these APIs, and currently 
used to deliver these advanced camera functions, are multicore CPUs, DSPs and GPUs 
already present in existing or derivative Application Processors (APs) which are widely used 
in smartphones and tablets. The result is a compromise that constrains the computational 
capability of the system, delivers poor user experiences and very poor battery life. 
 
 



 

Moving Beyond Taking Pictures 

 

One of the defining characteristics of computer vision is that it turns into a means of making 

measurements and inferences about the world and taking action based on those 

measurements rather than simply capturing a scene by measuring the light incident at each 

pixel in an array.  On a very basic level many of us have unwittingly been using massive 

numbers of cameras to measure the world for the past 15 years since Microsoft introduced 

the first camera mouse in 1999.  These optical mice use a combination of an LED mounted 

at a glancing angle and simple camera to extract the underlying texture in any surface the 

mouse is moved across, with post-processing to extract a motion vector which is used to 

control the cursor on a PC screen.  In the past few years new human interaction devices 

such as Microsoft’s Kinect, Leap Motion’s camera-based gesture device and Tobii’s eye-

tracker have begun to revolutionise the way we interact with digital content on PCs and 

gaming consoles. 

 

 

Figure 2 HP Sprout workstation 

More recently devices like HP’s Sprout use a combination of a physical LCD touchscreen, and 

downward facing video projector coupled with a computer-vision enabled horizontal touch 

surface (TouchMat) to build a user interface that extends outside the box, allowing the user 

to interact with the real world in new and exciting ways, capturing and manipulating 2D and 

3D digital content in a highly intuitive manner.  These capabilities have also begun to appear 

in mobile devices such as Amazon’s FirePhone [26] which boasts four dedicated computer-

vision (global-shutter) cameras mounted in the corners of the device along with associated 

IR LEDs in addition to the conventional front and rear-facing cameras.  The four cameras 



allow novel UI features such as viewpoint dependent 3D rendering which adapts to the 

users head-position, HDR image capture, cloud-backed image search, etc. 

 

Figure 3 Project Tango Phone 

The next step is of course to move beyond the limitations of our personal devices entirely 

using telepresence and autonomous drones and robots as well as embedding vision in a 

broader range of products. A key enabler for these use-cases is Simultaneous Localization 

and Mapping (SLAM), widely used by autonomous robots operating in unknown 

environments and developed in the early 1990s for Mars rovers [7][8].  In such systems, 

SLAM software turns a conventional RGB camera into a 6 DoF (Degrees of Freedom) 

transducer and the autonomous mobile platforms enabled by it must be able to reliably 

measure ego-motion as otherwise long-term navigation is impossible, and conventional 

means of location determination versus a known reference such as GPS are unavailable. 

Stereo odometry determines the ego-motion of a stereo camera in the 6 degrees of 

freedom (DoF) that are possible in the 3D world (3 for translation and 3 for rotation) and 

compensates for wheel slippage which can otherwise cause problems with odometry. 

Furthermore sensor fusion and tracking are also integral components of many autonomous 

vehicles and robots. 

Until very recently SLAM algorithms have been academic in nature and have not been 

optimised for embedded platforms. An approach to implementing SLAM on embedded 

platforms leveraging SIMD coprocessors, DSP and multi-core CPUs is outlined in [9] and 

rapid progress in embedding such technology is being made through initiatives like Google’s 

Project Tango [19] and SLAMbench [10].  A good example of a consumer device 

incorporating SLAM is the Dyson 360 Eye robotic vacuum cleaner [25] and we can expect 

that such systems will rapidly fall in price and increase in capabilities in the coming years 

driven by advanced semiconductors. 



 

Figure 4 Dyson 360 Eye 

Returning to human vision, the idea of Virtual Reality has been around for a long time but 

the experience never delivered on the promise with many of the devices either not working 

or inducing nausea in the unfortunate wearer.  The key issue according to Abrash [11] is 

latency or in other words the delay between head motion and the corresponding virtual 

world update reaching the eyes.  Too much latency results in images drawn in the right 

place, but at the wrong time, creating anomalies which are amplified by head motion; the 

faster the head moves, the greater the anomaly, compounded further when the head 

change direction.  Moving beyond the confines of traditional VR devices like Oculus Rift 

companies like Magic Leap [24] who recently raised over $542M from Google and other 

investors hint at an intriguing world of seamless mixed reality blending rendered graphics 

with reality using advanced displays and enabled by computer vision. 

 



Figure 6 Rendering of Mixed Reality by Magic Leap 

Latency is even more demanding in applications like active headlights in cars, such as the 

CMU SmartHeadlight programme directed by Prof Takeo Kanade [12] where the total 

round-trip latency from snowflake or raindrop reflection, through sensor, computer-vision 

hardware and closing the loop by modulating an LED projector array in the headlight is on 

the order of 1500ms. 

 

Figure 7 ProxDynamics PD-100 Drone 

Another important application for computer vision is in giving an out-of-body-experience by 

mounting a camera on a drone and having it track the user for instance to make sports and 

activity videos.  These devices have just begun to appear on the market and it can be 

expected that such devices will proliferate the consumer electronics space in the coming 

years as prices fall and fly-time increases.  Weight of both battery, electronics and airframe 

as well as the sensor array are key concerns with the electronics often being the limiting 

part of programs like sFly [22], which achieved a 10min autonomous fly time and required 

about 1W for a 100g payload.  The military, law-enforcement and the emergency services 

are being targeted by dedicated price-is-no-object devices such as the ProxDynamics Black 

Hornet PD-100 drone helicopter  [23] which weighs in at a miniscule 16g (equivalent to 3 

sheets of A4 paper) and boasts 3 cameras and a wireless link that operates to over 1km 

range.  

Beyond UI, smart cameras can also be used to measure other phenomena for instance 

Eulerian Video Magnification [13] can be used to amplify natural movement, luminance or 

colour changes and make it visible to the human eye much in the same way as time-lapse 

photography allows us to see plants grow or clouds move across the sky.  We can expect 

such features to appear in medical equipment and baby-monitors in the not too distant 

future.  Eulerian magnification can also be used to reconstruct sound [14] that causes a 

plant’s leaves to move in a sealed room when fed into an appropriate inverse acoustical 

model, however the civilian applications for this technology are less clear.  



Computer vision and computational photography are undoubtedly in a rapid growth phase 

with new vision-based applications appearing on a regular basis. One prominent example is 

Placemeter, which uses public video feeds (from old unused smartphones attached to 

windows) and computer vision algorithms to create the first ever, real time layer of data 

about places, streets and neighbourhoods. Placemeter [21] collects and serves up-to-the-

minute information like how crowded a place is, how long the wait is, and whether it will get 

more or less crowded in the next hour. There are many more examples: image search, 

panoramas, face detection in smartphones' cameras, face recognition biometrics to unlock 

devices, video stabilization in YouTube, Facebook's facial recognition for photo tagging etc. 

 

Eyes Everywhere 

 

It is clear that computer vision is on an explosive growth phase transitioning from traditional 
automation in factories to the world in which people work, live, and play.  While computer 
vision is a mature research field from a theoretical point of view, practical ubiquitous vision 
has not progressed to the same extent as systems have been confined to labs and factories. 
The underlying difficulties are the primarily the computational and cost requirements 
imposed by consumer devices. Human vision is immediate, we open our eyes and can 
immediately recognize and categorize objects and the structures of scenes. What we do not 
realize is the vast computational resources that our brain brings to bear unconsciously to 
make all of this happen. When our eyes are open, vision accounts for two-thirds of the 
electrical activity of the brain, and the sensors, our eyes, are located right there in the same 
casing as our brains.  That our brain manages to delivery all of this functionality, which we 
can only dream of duplicating in a machine, it is even more amazing when we think that our 
brain consumes a mere 20W and is fuelled by environmentally-friendly renewable sugars.  
This being said even our crude approximations of human vision are now starting to yield 
useful results in practical power and cost envelopes. 
 

With the advent of cloud computing, it is tempting to think that the cloud alone can bear 
the computational load associated with vision processing. However, crunching the 
enormous volume of visual data is currently beyond the reach of all but a few very large 
companies, and network bandwidths cannot cope with the massive use of cameras. Power 
efficiency is a major issue and wirelessly transmitting data for remote computation can cost 
up to a million times more energy per operation compared to processing locally in a device. 
A further reason for pushing processing and even limited decision making to the network 
edge in applications like virtual or augmented reality, autonomous vehicles and robots is 
that data-centres have major issues with latency. Finally, privacy in the cloud is a concern, 
especially when we consider that more often than not, the subject of our monitoring will be 
humans.  Our own brains are co-located with our eyes, processing visual data close to the 
point of origin and our reflexes deal with the latency of transmitting stimuli to our brain and 
back to the muscles using local neural circuits to save time and get us out of “harm’s way”.   
 

Placing the computational resources close to optical and other sensors in Cyber-physical 
Systems clearly solves many of the same issues. Going beyond this perhaps we require not 
only “intelligence everywhere” but also “eyes everywhere” for many applications. In the 



scientific and technical literature, the closest systems to this ‘eyes everywhere’ paradigm 
are to be found under the terms ‘embedded vision’ and ‘vision sensor networks’. On the 
one hand, embedded vision refers to vision systems that are integrated into more complex 
devices such as automotive or medical equipment. Those systems are a natural evolution of 
fixed industrial vision systems based on PCs and smart cameras. While such systems are 
increasingly used, power and size requirements are not so stringent and development is 
typically application-specific. Vision sensor networks, on the contrary, aim at smaller power-
efficient vision sensor nodes that can operate standalone, however the proliferation of 
standards and lack or interoperability has frustrated widespread adoption and 
commercialization, causing some researchers [15] to observe: “Given the fair number of 
proposed designs, it is somewhat surprising that a general-purpose embedded smart 
camera, based on an open architecture is difficult to find, and even more difficult to buy.” 
 

Current heterogeneous platforms such as mobile phone application processors can be used 
to prototype algorithms but from published results they appear limited to VGA 30fps 
resolution and around 5W power dissipation with technologists like John Carmack, CTO of 
Occulus [17]  saying that Application Processor power dissipation limits realistic VR 
experiences to around 15 minutes.  Even then implementing relatively simple pipelines on 
these platforms involves a high level of complexity involved in the coordination of multiple 
ARM processors, NEON SIMD extensions and GPUs all of which must share access to data-
structures in memory through shared access or copying data.  In the case where data is 
copied to and from the GPU it means that a certain level of granularity in terms of GPU tasks 
is required to make the effort of moving data to and fro, worthwhile.  This complexity must 
either be managed explicitly by the programmer with a mixture of C/C++ code for the ARM, 
SIMD assembler for NEON and OpenGL ES or OpenCL shaders or via vendor supplied 
libraries and APIs.  
 

Other options such as miniature IP cameras and smart cameras do not get close to the 
required size, energy consumption, cost and processing power. On the related level, in 2014 
Freescale released the Wearable Reference Platform (WaRP) [16]. WaRP is the first attempt 
to provide a reference platform for future development of wearable devices. While it is 
open, small and can be connected to cameras, WaRP has not been designed for mobile 
embedded vision, which is the most challenging capability in terms of required processing 
power and energy consumption.  
 

In this context, innovative vision applications are typically based on (little effective) DIY kits, 
smartphones or else are supported by large companies that can fund the specific hardware 
and software developments needed. Research and academia do not seem to have a 
versatile platform for deploying innovative vision applications and for rapidly designing new 
products based on the latest advances in the field. 
 

A Myriad of new possibilities 

 

In the aforementioned context, Movidius is focused on bringing human vision and scene 
understanding to mobile devices allowing low power always-on vision capabilities in devices 
with the very low latencies required for interactive services, self-driving cars and robots etc.  
Movidius is enabling a swathe of new computer vision applications to be brought to the 



mass market for the very first time in embedded devices such as mobile phones, tablets and 
cameras. The first generation of the Movidius Myriad Vision Processing Unit (Myriad1 VPU) 
powers the computer vision subsystem in Google’s Project Tango (see Figure 3) where it 
handles all of the high performance ISP, feature tracking and tracking tasks in 10x less 
power than any other solutions available on the market today [19].  In August 2014 
Movidius introduced its second generation Myriad2 which was designed to achieve 20-30x 
the processing per watt of the previous generation Myriad1. Myriad2 is a System-on-Chip 
(SoC) that embeds a software controlled multi-core, multi-ported memory subsystem and 
caches which can be configured to allow a large range of workloads to be handled, providing 
exceptionally high sustainable on-chip data and instruction bandwidth to support the twelve 
processors, 2 RISC processors and high-performance video hardware accelerator filters. 
Supporting a sustained throughput of 600Mpixels/sec means that Myriad2 can deliver 
1080p120 with less than 20% of the available pixel bandwidth. As a result of the highly 
power-efficient architecture of Myriad2 an OpenCV compatible multi-scale Haar Cascade 
consisting of 20 stages, computed using twelve SHAVEs and one of the HW accelerators in 
Myriad2 can calculate 50,000 multi-scale classifications for each 1080p resolution frame, in 
less than 7 msec (a key requirement for immersive VR [11]).   
 

Because of this performance and the focus on embedded vision systems Myriad2 has been 
recently selected to power the “Eyes of Things” (EoT) platform [18], an Innovation Action 
funded by the European Union’s Horizon 2020 Framework Programme for Research and 
Innovation.  The objective is to build an embeddable always-on computer vision system 
which can be used as a generic platform for any applications requiring mobile/embedded 
vision.  The hardware and software infrastructure developed in EoT will be available to 
OEMs and the public in general, and applications for EoT nodes are myriad including: 
wearable, UAVs, robotics, surveillance, etc. It is estimated that the use of the EoT platform 
will save up to 41% in time-to-market for advanced vision-based applications. 
 

Conclusions 

 

It is clear that a wide range of computational photography and computer vision techniques 
can greatly enhance user experiences and while these techniques are well understood they 
are in a considerable state of flux which precludes the use of fixed-function hardware as 
there is no “one-size-fits-all” device or algorithm for many or all of these applications.  In 
this context a software programmable device which is optimised for vision workloads clearly 
offers an optimal balance of power and performance.  It is our belief that Vision Processing 
Units (VPUs) will become the industry standard way of handling such workloads using open 
APIs like Khronos OpenVX [20] in the same way that GPUs are used to process computer 
graphics workloads and Myriad is simply the first example of this class of device to make it 
to market.  As we see it the availability of capable, flexible and power efficient 
homogeneous processor architectures architected for computer vision will allow users to 
begin to expect to “Live in the future” where always-on computer vision applications are 
possible at HD resolution, dissipating only 100s of mW. These platforms will be utilised in a 
range of use-cases including standalone AR displays, wearable devices, UAVs, mobile robots, 
surveillance cameras and also tablets and phones where the computer vision processor 
offloads demanding tasks from the AP.  For the first time the device designers will focus on 



designing world-beating products with revolutionary CV functionality in record timescales 
and with exceptionally low power requirements. 
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