

Deep Learning-based Anomaly Detection in Nuclear Reactor Cores

Thanos Tasakos¹, George Ioannou¹, Vasudha Verma², Georgios Alexandridis¹, Abdelhamid Dokhane², Andreas Stafylopatis¹

- 1. National Technical University of Athens, Greece
- 2. Paul Scherrer Institut, Switzerland

Overview

- The introduction of a deep learning methodology for the classification of different perturbation types and their position in the reactor core, using convolutional neural networks
- The performance of a complementary robustness analysis to assess the system's performance on noisy or missing data
- The assessment of the system's functionality on plant measurements obtained from the Gösgen nuclear power plan in Switzerland

Noise analysis

- Assess the condition of the reactor core using noise diagnostics
 - Measure the fluctuation of neutron flux around a mean value using in-core & excore detectors
- Type & number of perturbations occurring in the core is usually unknown
- Modelling techniques allow for the simulation of perturbations in the core
 - Estimate the induced neutron flux in the core for known, realistic perturbations
- The deep learning architecture <u>learns</u> the patterns of the simulated perturbations...
- ... and tries to determine whether they occur in actual plant measurements

Simulated measurements

- Performed for a Swiss pre-KONVOI pressurized water reactor
 - 3-loop reactor, 177 fuel assemblies
- Neutron noise simulations based on the CASMO-5 SIMULATE-3 code system, coupled with the SIMULATE-3K transient nodal code
- Type of perturbations
 - Individual fuel assembly vibrations
 - Cantilevered, C-shape and S-shaped modes
 - Inlet coolant temperature fluctuations
 - Inlet coolant flow fluctuations
 - ... and their combinations

The proposed architecture at a glance

System input

- Input is a transformed version of the initial detector signal
- Input is detrended and normalized
- Time domain signals are transformed into scaleograms, based on the wavelet transform

ResNet architecture (identification & localization networks)

Identification task results

F1-score of the perturbation identification network for varying SNR ratios

Perturbation type	SNR= 10	SNR=1	SNR= 0.1	SNR= 0.01
FA vibration	1.00	1.00	0.99	0.17
Inlet temperature fluctuation	1.00	0.99	0.53	0.30
Inlet flow fluctuation	1.00	1.00	0.62	0.09
Cluster vibration & thermohydraulical fluctuation	0.99	0.99	0.66	0.30

Localization task results

Prediction accuracy of the localization network

Prediction proximity	Proportion of the test set		
exact 1 difference > 1 difference	0.73 0.21 0.06		

Robustness Analysis: faulty detectors

- Assess the distinguising capability of the models, given partial information about grid condition
- Create subsets of functional incore & ex-core detectors

Prediction accuracy of the localization network for different subsets of functional detector signals

	Functional subsets of detectors						
Prediction	I_1, I_2, I_5	I_1, I_2, I_5	I_3, I_4, I_6	I_3, I_4, I_6	I_1, I_3, I_4	I_1, I_3, I_4	
proximity		+ ex-core		+ ex-core		+ ex-core	
exact	0.52	0.58	0.48	0.65	0.43	0.66	
1 difference	0.31	0.32	0.32	0.26	0.34	0.22	
2 difference	0.11	0.07	0.13	0.07	0.15	0.09	
> 2 difference	0.06	0.03	0.07	0.02	0.08	0.03	

Preliminary comparison with plant measurements

Thank you! Any questions?

