MANS M&C 2021

The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering

Comparison of neutron noise solvers based on numerical benchmarks in a 2-D simplified UOX fuel assembly

Antonios Mylonakis

Chalmers University of Technology, Sweden

Authors

- P. Vinai, H. Yi, A. Mylonakis, C. Demazière
 - Chalmers University of Technology
- B. Gasse, A. Rouchon, A. Zoia
 - Université Paris-Saclay, CEA
- A. Vidal-Ferràndiz, D. Ginestar, G. Verdú
 - Universitat Politècnica de València
- T. Yamamoto
 - Kyoto University

Outline

- Background
- Benchmarks
- Results
- Conclusions

Background

Background

CORTEX neutron noise-based core monitoring methodology

Background

- Some of the neutron noise solvers developed and used in CORTEX
 - Monte Carlo transport
 - TRIPOLI-4®
 - MC solver developed by KyotoU

- Deterministic transport
 - APOLLO3® (frequency-domain IDT solver)
 - NOISE-SN

- Diffusion
 - CORE SIM+
 - FEMFFUSION (time-dependent solver)

Background

- Two numerical neutron noise benchmarks in a simplified fuel assembly to
 - Verify correct implementation of the solvers
 - Compare solvers based on different transport approximations
 - Generate reference solutions

Benchmarks

Benchmarks

- Simplified UOX fuel assembly
 - 2-D system, 21.58 cm x 21.58 cm
 - 264 homogeneous square pins
 - 25 water holes
 - Reflective boundary conditions
 - 2 energy-group macroscopic cross sections
 - Isotropic scattering

Benchmarks

Exercise 1

- Fast neutron noise source = 0
- Thermal neutron noise source = -1 + i

Exercise 2

- $\Sigma_{t,g} = \Sigma_{t,g,0} + \delta \Sigma_{t,g} = \Sigma_{t,g,0} + 0.041 \Sigma_{t,g,0} \cos(\omega_0 t)$
- $\Sigma_{s,g\to g'} = \Sigma_{s,g\to g',0} + \delta\Sigma_{s,g\to g'} = \Sigma_{s,g\to g',0} + 0.034\Sigma_{s,g\to g',0}\cos(\omega_0 t)$
- $\Sigma_{f,g} = \Sigma_{f,g,0} + \delta \Sigma_{f,g} = \Sigma_{f,g,0} + 0.021 \Sigma_{f,g,0} \cos(\omega_0 t)$

ullet Static neutron flux and k_{eff}

Solvers	k_{eff}	Difference [pcm]
TRIPOLI-4®	0.99912 ± 8 pcm	Reference
KU Monte Carlo solver	$0.99919 \pm 7 \text{ pcm}$	7
APOLLO3®	0.99784	-128
NOISE-SN	0.99996	84
CORE SIM+	1.01309	1397
FEMFFUSION	1.01367	1485

Fast flux Thermal flux

- Exercise 1
 - Relative thermal neutron noise amplitude
 - Relative differences with respect to TRIPOLI-4

- Exercise 2
 - Relative thermal neutron noise amplitude
 - Relative differences with respect to TRIPOLI-4

- Exercise 2
 - Thermal neutron noise phase
 - Relative differences with respect to TRIPOLI-4

Conclusions

Conclusions

- Different transport approximations for neutron noise simulations were compared
 - Similar results from the Monte Carlo and the deterministic higher-order transport solvers
 - Diffusion-based solvers show discrepancies close to the neutron noise source
- Next: benchmarks with more complex neutron noise sources, e.g.,
 - Vibrations of fuel pins

Acknowledgments

 The current research has been carried out within the CORTEX research project, which has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 754316.

 TRIPOLI-4® and APOLLO3® are registered trademarks of CEA. B. Gasse, A. Rouchon and A. Zoia gratefully acknowledge partial financial support from EDF and Framatome.

Thank you for the attention!

• Questions?

