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different targets and at different time scalings unknown to the
robot. Human-Human collaborative object transfer studies
reveal that object motion is highly correlated with a motion
pattern [2], [12].

For position, let the motion to a new target pg ∈ R3 with
time scaling τp, be generated by the position DMP model:

p̈ =
1

τ2p
(αzβz(pg − p)− αzτpṗ+ gf (t/τp)Kpgfp(t/τp))

(1)
where p, ṗ, p̈ ∈ R3 are the position, velocity and acceleration
of the robot’s end-effector and the rest terms are detailed in
Appendix B. Accordingly for the orientation, the motion to
a new target orientation Qg ∈ S3 with time scaling τo is
generated by the following orientation DMP formulation:

q̈′ =
1

τ2o
(αzβz(q

′
g − q′)− αzτoq̇′ + gf (t/τo)Kqgfo(t/τo))

(2)
where q′ = log(Q ∗ Q̄0) ∈ R3 with Q, Q0 ∈ S3 being the
current and initial orientation and Q̄0 the conjugate of Q0,
log(.) the quaternion logarithm and q′g = log(Qg ∗Q̄0), Unit
quaternion preliminaries can be found in Appendix A, and
more details on (2) in Appendix B.

In the above DMP models, the forcing terms fp,fo
comprise of a weighted sum of Gaussians which encode the
motion pattern. The matrices Kpg , Kqg provide the spatial
scaling of the motion based on the target and the gating
function gf (.) ensures that the forcing term vanishes at the
end of the motion (Appendix B).

Remark 1: Writing the DMP model with the orientation
anchored to the initial orientation Q0 is important as it de-
couples q′ from Qg which greatly simplifies the orientation
DMP formulation in case time varying target estimates are
to be utilized. This is in contrast to q′ = log(Qg ∗ Q̄)
from [13], where the orientation is anchored to the target
orientation Qg . This formulation is exploited in the design
of the reference model detailed in the next Section.

Remark 2: The use of separate time scaling variables for
position and orientation, τp, τo, is adopted. This provides
greater versatility and generalization, since it accommodates
also the scenario of having position and orientation patterns
with different temporal duration during execution.

During the collaborative object transfer we assume the
robot grasps the object rigidly and compensates its weight,
while a F/T sensor is mounted at its end-effector. The
external force/torque exerted by the human is calculated by
subtracting from the F/T sensor’s measurement the object’s
wrench. It is assumed that no other contacts with the envi-
ronment occur, as this would require additional sensors to
discriminate contact forces from the human intended forces.
A velocity controlled robot is considered, implying that any
reference velocity can be accurately tracked. The core idea
is to design a control scheme that will: 1) render the robot
compliant to the forces/torques exerted by the human so that
he can move the object along the trajectory intended by him,
2) make the robot proactive in the tracking of the intended
trajectory, by estimating online the target and time-scaling,

in order to minimize the effort required by the human.
To achieve this objective we propose the control scheme
depicted in Fig. 1 where:
• The DMP based reference model takes as input the

external force/torque exerted by the human, and using
the current state p, ṗ,Q,ω (pose, velocity) and the esti-
mates of the target pose and time scalings, p̂g, Q̂g, τ̂p, τ̂o
generates a DMP-model based estimated trajectory, that
is shaped by the external force/torque.

• The DMP based EKF takes as input the force/torque
exerted by the human and the current state to produce
estimates of the target pose and time-scaling.

In the subsequent sections we dwell on the formulation
and design of the reference model and the observer.

Fig. 1: Proposed approach.

III. REFERENCE MODEL

The reference model for position is formulated as:

Mpp̈ = Mp
ˆ̈p+ fext (3)

ˆ̈p =
1

τ̂2p
(αzβz(p̂g − p)− αz τ̂pṗ+ gf (t/τ̂p)K̂pgfp(t/τ̂p))

where fext is the force exerted by the human, Mp =
diag(mx,my,mz) > 0 is the reference model’s inertia
which weights the effect of fext on the reference model’s
trajectory and ˆ̈p is the estimated acceleration based on the
position DMP model (1), using the estimated target p̂g and
time scaling τ̂p.

Similar to position, the reference model for orientation is
formulated as:

Moω̇ = Mo
ˆ̇ω + τext (4)

ˆ̇ω = vec{2(Jq′ q̇
′ + Jq′ ˆ̈q

′) ∗ Q̄′ − 1

2

[
||ω||2
03×1

]
} (5)

with

ˆ̈q′ =
1

τ̂2o
(αzβz(q̂

′
g − q′)− αz τ̂oq̇′ + gf (t/τ̂o)K̂qgfo(t/τ̂o))

(6)
where Mo = diag(Ix, Iy, Iz) > 0 is the reference model’s
inertia, τext is the torque exerted by the human and ˆ̇ω
is the estimated rotational acceleration corresponding to
the estimated acceleration ˆ̈q′ (see (20) from Appendix A).



Finally vec{.} denotes the vector part of a quaternion.
Equation (6) is derived from (2) using the estimated target
q̂′g = log(Q̂g ∗ Q̄0) and time scaling τ̂o.

Remark 3: Further to remark 1, notice that in (4), (5), if
q′ = log(Qg ∗ Q̄) was used instead of q′ = log(Q ∗ Q̄0)
then apart from q̂′g , all other terms would also be dependent
on Q̂g (and some of them on its derivative too). This would
complicate the design of the reference model and the results
of the stability analysis in Section V would most likely be
inconclusive.

IV. DMP-BASED EKF OBSERVER FOR TARGET AND TIME
SCALE PREDICTION

We assume that the trajectory generated from the reference
model (3), (4) corresponds to the trajectory produced by the
DMP models (1), (2) for constant target pg,Qg and time-
scalings τp, τo, which we want to estimate. This assumption
is reasonable because, as highlighted in Section II, we focus
on tasks where the motion pattern is essentially the same, but
the initial/target poses and time duration of the movement
can be different leading to the spatio-temporal scaling of
the motion pattern. To this end, we construct a DMP-based

EKF with states θp =
[
pTg τp

]T
, θo =

[
q′g
T
τo

]T
with the

following state and measurement equations for i ∈ {p, o},:

θ̇i = 04×1 (7)

zi = hi(θi, si, t) (8)

where zp = p̈, zo = ω̇, sp = [pT ṗT ]T , so = [Q
′T ωT ]T

and:

hp(θp, sp, t) ,
1

τ2p
(αzβz(pg−p)−αzτpṗ+gf (

t

τp
)Kpgfp(

t

τp
))

ho(θo, so, t) , vec{2(Jq′ q̇
′ + Jq′ q̈

′) ∗ Q̄′}

with q̈′ given by (2).
For each system i ∈ {p, o} in (7)-(8) we construct a fading

memory EKF observer [14], [15] with projection [15] and
normalization [16]:

˙̂
θi = Ki(zi − ẑi) (9)

ẑi = hi(θ̂i, si, t) (10)

where θ̂i is the state estimate of the ith observer and Ki ∈
R4×3 is a time varying gain matrix given by:

Ki = Ni(t)Pi(t)C̄
T
i (t)R−1i (11)

where Ni(t) is a projection matrix which ensures the esti-
mates respect certain bounds, Pi(t) is given by the solution
of the the following equation [14], [15]:

Ṗi =


2apPi + (KiRi − PiC̄T

i )R−1i (KiRi − PiC̄T
i )T

+Qi − PiC̄T
i (t)R−1i C̄iPi , ||Pi||≤ ρ2

0 , otherwise
(12)

ap > 0, Ri, Qi are the measurement and process noise
covariance matrices and C̄i(t) the linearized measurement

equation matrix with normalization found by C̄i(t) =

Ci(t)/cn,i, where Ci(t) = ∂hi(θi,ui,t)
∂θi

∣∣∣
θi=θ̂i

and cn,i =√
1 + λmax(Ci(t)CT

i (t)). Normalization is used to ensure
the boundedness of the observer’s update law, irrespec-
tive of the boundedness of si [16]. Notice that Ci(t) =
∂hi(θi,ui,t)

∂θi

∣∣∣
θi=θ̂i

can be computed analytically, similarly
to [9], but its analytical expression is omitted here due to
space restrictions. It is worth mentioning that if log(Qg ∗
Q̄) was used instead of q′g , then the analytic derivation
becomes practically intractable and one would have to re-
sort to numerical differentiation, increasing the observer’s
computational complexity and possibly compromising its
performance. The design constant ρ2 > 0 is used to ensure
that the covariance matrix remains bounded. The projection
matrix Ni is derived from the constraints Diθi ≤ di based
on a least squares approach [15], where di = [θ̄Ti −θ

T
i ]T and

Di =
[
I4 − I4

]T
. Bounds θ̄i, θi stem from the physical

interpretation of the estimated parameters, i.e. the target
position is constrained by the robot’s workspace. Moreover,
the time scalings are positive and finite. The projections
matrix Ni is then given by [15]:

Ni =
(
I4 − D̄T

i (D̄iD̄
T
i )−1D̄i

)
(13)

with the active constraints satisfying D̄iθ̂i = d̄i and
D̄i,j

˙̂
θi > 0, where D̄i,j is the jth row of D̄i and D̄i, d̄i are

subset of the rows of Di,di respectively.
Finally, the measurement error can be obtained from (3),

(4), i.e. zp−ẑp = p̈− ˆ̈p = M−1
p fext and zo−ẑo = ω̇− ˆ̇ω =

M−1
o τext. Therefore, for the update law (9) we can utilize

the following expression:

˙̂
θi = KiM

−1
i

νi
cn,i

(14)

where νp = fext and νo = τext.
Remark 4: For an observer of the form (9), the covariance

matrix P satisfies [17] Ṗ = (KR − PCT )R−1(KR −
PCT )T +Q− PCTRCP for any matrix K. In the case
of the fading memory filter [15], [14] the term apP , ap > 0
is added to Ṗ . The Kalman gain is derived by minimizing
Ṗ w.r.t. K which yields K = PCTR−1. When projection
is employed, the Kalman gain is further modified by the
projection matrix N [15], resulting in (11) which in turn
yields the covariance matrix update (12).

Remark 5: We chose specifically the EKF with fading
memory since is has been shown to be robust against non-
linearities (see [14] and Chapter 7.4 from [15]). Moreover,
we compared it to the UKF (Unscented Kalman Filter) and
we found the EKF to perform slightly better in our case,
which has also been observed in other applications [18]–
[20].

V. STABILITY ANALYSIS

Due to the nonlinearity of the motion pattern with respect
to the target and time scaling, the estimates of the EKF are
guaranteed to converge to the actual ones locally, as studied
in [9]. Thanks to the projection however the estimates remain



bounded. However, this does not imply that the reference
model’s state (hence the robot’s state) will remain bounded,
which is crucial. Concerning this, the following theorem can
be proven regarding the reference model:

Theorem 1: The model reference given by (3), (4) along
with the observer based on the EKF given by (14) ensures
that p, ṗ,Q,ω ∈ L∞ if fext, τext ∈ L∞ ∩L2.

Proof: The proof for the boundedness of p, ṗ given
that fext ∈ L2 ∩ L∞ is identical to the proof in [11]. The
orientation is also bounded since Q ∈ S3. For the rotational
velocity from (4), (5) we get:

ω̇ = vec{2(Jq′ q̇
′ + Jq′ ˆ̈q

′) ∗ Q̄′ − 1

2

[
||ω||2
03×1

]
}+M−1

o τext

Substituting ω̇ from (20), replacing Q by Q′ and q by q′

we can arrive after some mathematical calculations at:

Jq′(q̈
′ − ˆ̈q′) =

1

2
Text ∗Q′

where Text = [0 (M−1
o τext)

T ]T . Multiplying both sides by
JQ′ and using the identity JQ′Jq′ = I3 [13], we arrive at:

q̈′ − ˆ̈q′ =
1

2
JQ′(Text ∗Q′)

Substituting ˆ̈q′ from (6) we obtain:

τ̂2o q̈
′ = −αzβzq′ − αz τ̂oq̇′ + τ̂2od (15)

where d = 1
τ̂2
o

(αzβzq̂
′
g + gf (x̂)K̂qgfo(x̂) + 1

2JQ′(Text ∗
Q′)) can be viewed as a time varying bounded disturbance
since τ̂o, q̂

′
g,Text,Q

′,JQ′ ,fo(x̂) ∈ L∞. It is important to
highlight that the derivation of (15) was made possible by the
modified orientation DMP introduced in this work (Appendix
B). Thus, for the rest of the proof we can follow [11], to show
that q′, q̇′ ∈ L∞ hence q, q̇ ∈ L∞, therefore from (19) we
conclude that ω ∈ L∞.

The proof for the boundedness of q, q̇ is provided for
completeness in Appendix C.
Notice that fext, τext → 0, (14) implies ˙̂

θi → 0, and from
(3), (4) p → p̂g , ṗ → 0, Q → Q̂g , ω → 0. Considering
that the condition fext, τext → 0 is met iff the human
has reached the desired target pose, this further implies that
p̂g → pg , Q̂g → Qg .

Remark 6: Theorem 1 holds for any observer combined
with the reference model (3), (4) as long as it produces
bounded estimates and the estimation update law is bounded
and has bounded energy, i.e. θ̂ ∈ L∞ and ˙̂

θ ∈ L∞ ∩ L2.

VI. EXPERIMENTAL RESULTS

The experimental setup consists of a Kuka LWR4+ robot
equipped with an ATI F/T sensor at its wrist. A rectangular
long box is mounted at the robot’s wrist as shown in Fig. 2.
The object’s dynamics were identified offline and were com-
pensated during the experiments. The training phase involved
a single demonstration by kinesthetically guiding the robot
holding the box from the other side, and training a DMP
for position and orientation. During the collaborative object
transfer to new targets from different initial poses the robot is

under velocity control and is driven by the reference velocity
produced by the proposed approach DMP+EKF (3), (4). We
have further implemented an admittance controller for com-
parison. The control cycle was set to 2ms. The parameters
chosen for the DMP are N = 30, αz = 40, βz = 10, for
the reference model Mp = 2I3, Mo = 0.1I3, and for the
observer Pp(0) = Po(0) = diag(1, 1, 1, 10), Rp = Ro =
2000I3, Qp = Qo = 0.001I4, ap = 1.001, ρ2 = 10000,
θ̄p = [0.75 0.7 0.95 60.0]T , θp = [−0.75 −0.7 −0.2 1.0]T ,
θ̄o = [2π 2π 2π 60.0]T , θo = [−2π − 2π − 2π 1.0]T . For
the EKF the discrete implementation was employed [15].
The admittance model MV̇ + DV = Fext, with V =
[ṗT ωT ]T and Fext = [fText τ

T
ext]

T was utilized with the
following parameters, tuned manually for best performance:
M = diag(1.3I3, 0.08I3) and D = diag(25I3, 0.6I3). In
all scenarios, the desired target pose is about 1 cm from the
placing surface, so that no contact forces emerge.

Results for three different collaborative object transfers are
shown in Fig. 3. In all cases the initial target estimate was
set equal to the robot’s initial pose. The initial time scaling
estimate was set to 6, while the demonstrations duration was
4.7 sec. Thus we make a more conservative initial estimate
of the time scaling by assuming that the motion will be
executed slower than in the demonstration. The DMP clock
and the estimation process commence when ||Fext||> 1 N, to
synchronize the robot with the human interaction. Notice that
the estimates converge to a small region around the actual
target either before the end of the motion (e.g. p̂g,y and q̂′x in
experiment 1) or by evolving towards the right direction (e.g.
p̂g,y and q̂′z in experiment 2). This is crucial as it contributes
considerably to the reduction of the human’s effort, as can
be seen in Fig. 4, where the absolute power required by
the user using DMP+EKF (blue graphs) is compared to
using admittance (red graphs). Concerning the times scaling,
increase in the estimates means that the estimator infers that
the motion is to be executed slower, while decrease implies
the converse. Moreover, all time scaling estimates converge
ultimately to a steady state value.

We have further conducted experiments of a collaborative
object transfer to a new target with 5 users. Each user
repeated the experiment 5 times to extract some statistical
measures. In all cases the initial target estimate was set equal
to the robot’s initial pose. In Fig. 5 the average power ±
the standard deviation over five repetitions are depicted for
each user. Using DMP+EKF the total absolute work for all
users varied within [1.28, 2.11] J , the mean L2 norm of
the force [0.77, 1.17] N and the mean L2 norm of the
torque [0.13, 0.17] Nm. In contrast, with admittance, the
work varied within [7.1, 11.9] J , the mean L2 norm of the
force [4.26, 6.36] N and the mean L2 norm of the torque
[0.42, 0.71] Nm.

VII. CONCLUSIONS

In this work a DMP-based reference model and an EKF
observer for predicting the target pose and time scaling
for assisting the human proactively in the transportation
of an object was proposed. The stability analysis that was



Fig. 2: Experimental setup.

carried out proves that the proposed scheme guarantees the
boundedness of the reference model and observer. Experi-
mental results validate the proposed approach, highlighting
its practical benefits and efficiency with respect to human
effort minimization. In this work the object’s weight was
assumed known a priori and only human exerted forces were
considered. Our future work is oriented towards the extension
of the proposed method to handle unknown object dynamics
and the discrimination of human wrenches from the wrenches
emerging due to contact with the environment.

APPENDIX A - UNIT QUATERNION PRELIMINARIES

Given a rotation matrix R ∈ SO(3), an orientation can
be expressed in terms of the unit quaternion Q ∈ S3 as
Q = [w vT ]T = [cos(θ) sin(θ)kT ], where k ∈ R3, 2θ ∈
[0 2π) are the equivalent unit axis - angle representation. The
quaternion product between the unit quaternions Q1, Q2 is

Q1∗Q2 =

[
w1w2 − vT1 v2

w1v2 + w2v1 + v1 × v2

]
. The inverse of a unit

quaternion is equal to its conjugate which is Q−1 = Q̄ =
[w −vT ]T . The quaternion logarithm is q = log(Q), where
log : S3 → R3 is defined as:

log(Q) ,

{
2 cos−1(w) v

||v|| , |w|6= 1

[0, 0, 0]T , otherwise
(16)

The quaternion exponential is Q = exp(q), where exp :
R3 → S3 is defined as:

exp(q) ,

{
[cos(||q/2||), sin(||q/2||) q

T

||q|| ]
T , ||q||6= 0

[1, 0, 0, 0]T , otherwise
(17)

If we limit the domain of the exponential map exp : R3 →
S3 to ||v||< π and the domain of the logarithmic map
to S3/([−1, 0, 0, 0]T ), then both mappings become one-to-
one, continuously differentiable and inverse to each other.
The equations that relate the time derivative of q and the
rotational velocity ω and acceleration ω̇ of Q are [13]:

q̇ = JQ(Ω ∗Q) (18)

Ω = 2(Jqq̇) ∗ Q̄ (19)

Ω̇ = 2(Jqq̇ + Jqq̈) ∗ Q̄− 1

2

[
||ω||2
03×1

]
(20)

where Ω = [0 ωT ]T and

JQ = 2
[
θ cos(θ)−sin(θ)

sin2(θ)
k θ

sin(θ)I3
]

(21)

Jq =
1

2

[
− sin(θ)kT

sin(θ)
θ (I3 − kkT ) + cos(θ)kkT

]
(22)

APPENDIX B - DMP PRELIMINARIES

A. Cartesian position encoding

A DMP for encoding a Cartesian position point-to-point
motion can be expressed as [21]:

p̈ =
1

τ2
(αzβz(pg − p)− αzτ ṗ+ gf (x)Kpgf(x)) (23)

τ ẋ = 1 , x(0) = 0 (24)

The desired motion is encoded by the forcing term, f(x) =∑N
i=1Wiψi(x)∑N

i=1 ψi(x)
which is the weighted sum of N Gaussian

kernels, with ψi(x) = exp(−hi(x − ci)
2). The matrix

W ∈ R3×N , with Wi denoting the ith column, contains in
each row the weights for each Cartesian coordinate, which
can be learned using Least Squares or Locally Weighted
Regression (LWR) [22] based on the demonstrated data.
The DMP evolves based on the phase variable x, used to
avoid direct time dependency. We use a linear canonical
system (24) as in [11]. The variable τ > 0 provides temporal
scaling of the encoded motion pattern and the matrix Kpg =
diag(pg − p0) provides spatial scaling. The sigmoid gating
gf (x) = 1

1+eag(x−cg) ensures that the forcing term fades to
zero at x = 1 as in [23], thus for x ≥ 1 (23) acts as a pure
spring-damper and converges asymptotically to the goal pg .
Integrating (24) and substituting x in (23) we get (1).

B. Cartesian orientation encoding

A formulation for orientation DMP that avoids undesired
oscillations during reproduction as opposed to [7] is proposed
in [13] and can be written as follows :

q̈′ =
1

τ2
(αzβz(q

′
g − q′)− αzτ q̇′ + gf (x)Kqgf(x)) (25)

τ ẋ = 1 , x(0) = 0 (26)

where, in [13], q′ = log(Qg ∗ Q̄) with Q, Qg the current
and target orientation in unit quaternions respectively and
Kqg = diag(log(Qg∗Q̄0)). However, q′ couples the DMP’s
state to Qg , which in our case is estimated online. Adopting
this would incur extra dynamics to the DMP, affecting the
execution and making the derivation of the proof in section V
not possible. Instead, we retain the formulation given by (25),
which exploits the use of the logarithmic map and define
q′ = log(Q ∗ Q̄0), where Q0 is the initial orientation. This
is also in line with the position DMP, which is also anchored
to the initial position, i.e. (23) can be also written as p̈′ =
1
τ2 (αzβz(p

′
g − p′)− αzτ ṗ′ + gf (x)Kpgf(x)), where p′ =

p− p0 and p′g = pg − p0. Integrating (26) and substituting
x in (25) we get (2).

APPENDIX C - PROOF OF THEOREM 1

In the following we complete the proof of Theorem 1 from
Section V.

Proof:
The system given by (15), with d being a time varying

bounded disturbance, can be decoupled in each dimension.
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Fig. 3: Estimation results for the three first object transfer experiments. The estimates of the target position and orientation are plotted
with solid blue lines and the corresponding robot’s position/orientation with dash-dotted green line. The time scaling estimates are plotted
with light brown lines. For orientation all quantities are expressed as the quaternion logarithm w.r.t the initial orientation Q0
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Therefore we will conduct the analysis for one element of
q′ with dynamics:

τ̂2o ÿ = −αzβzy − αz τ̂oẏ + τ̂2o d (27)

Introducing the state variable ζ = [y ẏ]T (27) can be
written in matrix form: ζ̇ = A(t)ζ + Bd where A(t) =

1
τ̂2
o

[
0 1

−αzβz −αz τ̂o

]
and B =

[
0
1

]
. Since αz, βz > 0

and τ̂o is positive and bounded, Re{λi(A(t))} ≤ −σs
∀t ≥ 0, i = 1, 2, where σs > 0 is constant. Taking into
account that C̄(t),P (t) ∈ L∞ and τext ∈ L∞ ∩ L2 it
follows from (14) that ˙̂τo ∈ L∞ ∩ L2. Moreover, Ȧ(t) =

A1(t) ˙̂τo, where A1(t) =

[
0 −2/τ̂3o

2αzβz/τ̂
3
o αz/τ̂

2
o

]
and since

||A1(t)||∈ L∞ and ˙̂τo ∈ L∞ ∩ L2 we will also have that
||Ȧ(t)||≤ ||A1(t)||| ˙̂τo|∈ L∞ ∩ L2. Finally, since A(t) is
differentiable and bounded, based on Theorem 3.4.11 from
[16], the origin is uniformly globally asymptotically stable
equilibrium for the system ζ̇ = A(t)ζ. Therefore there exist
matrices Π(t) = ΠT (t) > 0 and Q(t) = QT (t) > 0
with Π̇ = −AT (t)Π(t) − Π(t)A(t) − Q(t) satisfying
0 < π1 < ||Π(t)||< π2 and 0 < q1 < ||Q(t)||< q2 [24].
Consequently the system ζ̇ = A(t)ζ + Bd is uniformly
ultimately bounded, which can be shown easily using the
Lyapunov function V = ζTΠ(t)ζ. Hence, y, ẏ ∈ L∞.
The same analysis holds for each dimension, so q̇ ∈ L∞,
therefore from (19) we conclude that ω ∈ L∞.
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