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proposed DMP is theoretically analyzed and compared with
the original one. Its benefits are demonstrated experimentally
in an assembly by insertion scenario inspired by a real case.

The rest of this paper is organized as follows: section II
provides an overview on original DMP. In section III the
proposed DMP formulation is presented and its properties
are detailed in section IV. Experimental results are presented
in section V and conclusions are drawn in section VI. In
the appendix, the correspondence between the proposed and
original DMP formulations is analyzed and preliminaries on
unit quaternions are provided.

II. DYNAMIC MOVEMENT PRIMITIVES PRELIMINARIES

DMP consist of a transformation system which generates
a trajectory and a canonical system for controlling the
system’s temporal evolution [15]. The transformation system
is composed of a second order linear attractor to a goal
and a non-linear forcing term which has to be learned in
order to encode a desired kinematic behavior. Aggregating
the different variants that have been proposed in the literature
in a more generic formulation a 1-DoF DMP is given as
follows:

τ2ÿ = αzβz(g − y)− αzτ ẏ + gf (x)(g − y0)fs(x) (1)
τ ẋ = h(x) (2)

or expressing (1) in state equations introducing z = τ ẏ:

τ ż = αzβz(g − y)− αzz + gf (x)(g − y0)fs(x) (3)
τ ẏ = z (4)

where y, ẏ is the position and velocity, g the target, y0 the
initial position. The phase variable x is used to avoid direct
dependency on time and τ > 0 is a temporal scaling pa-
rameter, typically set equal to the movement’s total duration
T = tf − t0, where t0 is the initial and tf the final time
instant. The forcing term fs(x) is given by:

fs(x) = φ(x)Tw (5)

where φ(x)T = [ψ1(x) · · · ψN (x)]/
∑N
i=1 ψi(x), with

ψi(x) = exp(−hi(x − ci)
2). The gating function gf (x)

ensures that the forcing term eventually vanishes thus (1)
acts as a spring-damper and converges asymptotically to the
goal g.

The canonical system’s evolution is determined by (2),
with h(x) chosen so that x evolves monotonically from its
initial value x(0) = x0 to its final value x(tf ) = xf . Many
options are available, e.g. a linear canonical system τ ẋ = 1
for x ≤ 1 and τ ẋ = 0 otherwise, with x0 = 0 and xf = 1;
an alternative choice is an exponential one τ ẋ = −axx with
x0 = 1 and xf = 0+. For the gating function gf (x) there are
many choices as well, such as linear, exponential or sigmoid
gating, to name but a few. Regarding the choice of αz, βz a
typical approach is to set βz = αz/4 > 0 to render the linear
part of (1) critically damped. To achieve good approximation
during learning, a general heuristic is to place the centers
ci of the Gaussian kernels in (5) equally spaced in time.
A typical choice is to then set the inverse widths of the

Gaussians as hi = ah
(ci+1−ci)2 , hN = hN−1, i = 1, · · · , N ,

where ah > 0 is a scaling factor controlling the overlapping
between the kernels.

III. A REVERSIBLE DYNAMIC MOVEMENT PRIMITIVE

Reversibility of DMP means that the generated system’s
trajectory will be identical in forward and backward motion.
Given a goal attractor dynamics e.g. (1), it is however impos-
sible to have global stability and reversibility simultaneously
as also noted in [13]. Original DMP are indeed not reversible
as shown at the end of Appendix A. In order to produce
a reversible DMP the authors in [13] suggest a non-linear
system with two equilibria, an attractor and a repeller, and
build their proposed formulation around it. This formulation
achieves partial reversibility if the solution stays within a
region and becomes unstable beyond. As the solution cannot
be guaranteed to stay within the permitted region, which is
expected as the basic dynamics are non-linear, the authors
finally resort to using two forcing terms to ensure global
stability. Instead of having a goal attractor as a foundation of
the transformation system we base our proposed formulation
on a linear system with a global asymptotically stable origin.
Inspired by linear trajectory tracking dynamics we propose
the following DMP structure for 1-DoF:

ÿ = ÿx −D(ẏ − ẏx)−K(y − yx) (6)
ẋ = h(x)/τ , x(t0/τ) = x0 , x(tf/τ) = xf (7)

where K,D are positive scalars, h(x) evolves monotonically
from x0 to xf and must be zero for x outside of the
interval defined by x0 and xf (the canonical system examples
presented in Section II are appropriate choices); lastly, yx
is the desired spatially and temporally scaled trajectory,
generated by:

yx , ks(fp(x)− fp(x0)) + y0 (8)

ẏx(t) = ksḟp(x) (9)

ÿx(t) = ksf̈p(x) (10)

where
ks ,

g − y0
fp(xf )− fp(x0)

(11)

is the spatial scaling term and

fp(x) = φ(x)Tw (12)

encodes the demonstrated position trajectory through a
weighted sum of Gaussians, with w = argminwJ(fp(x), yd),
where J can be any objective cost function, e.g. the Least
Squares (LS) or the Locally Weighted Regression (LWR)
objective [15]. The derivatives of fp(x) can be calculated
analytically from ḟp(x) = (∂φ∂x ẋ)Tw and f̈p(x) = (∂

2φ
∂x2 ẋ

2 +
∂φ
∂x ẍ)Tw.

Forward reproduction of the learned trajectory is accom-
plished integrating (6)-(7). For backward reproduction only
the sign of ẋ needs to be flipped, i.e. ẋ = −h(x)/τ ,
x(t0/τ) = xf .

Denoting e = y − yx and considering that D,K > 0 it
follows from (6) that e, ė, ë→ 0. What is more, as yx and its



derivatives are bounded by construction, y, ẏ, ÿ are bounded
as well. In forward reproduction, (7) implies that x → xf
and ẋ, ẍ → 0, and from (8)-(10) and (11) we can conclude
that yx → g, ẏx, ÿx → 0. Therefore, y → g, ẏ, ÿ → 0.
In backward reproduction from any x 6= x0, ẋ = −h(x)/τ
implies x→ x0 and ẋ, ẍ→ 0, which from (8)-(10) and (11)
implies that yx → y0, ẏx, ÿx → 0, hence y → y0, ẏ, ÿ → 0.

Notice that (6) can also be written as ÿ = K(g − y) −
Dẏ + f ′(x), where f ′(x) = ÿx +Dẏx −K(g − yx), which
is a linear system modulated by the nonlinear forcing term
f ′(x) which fades to zero as t→∞ and consequently it has
a GAS point attractor like the original DMP.

For Cartesian position encoding the above formulation is
readily extended as each DoF can be encoded separately and
synchronization can be achieved using the same canonical
system (7) for all DoFs. Regarding Cartesian orientation, a
formulation analogous to (6) is adopted, which makes use
of the quaternion logarithm as in [16] (a brief summary on
unit quaternions is provided in Appendix B). Introducing
η , log(Q ∗ Q̄0), where Q is the current, Q0 the initial
orientation expressed as unit quaternions, ∗ denotes the
quaternion product, (̄.) the quaternion inverse and log(.)
the quaternion logarithm, the proposed DMP formulation for
Cartesian orientation is given by:

η̈ = η̈x −D(η̇ − η̇x)−K(η − ηx) (13)

with the canonical system given by (7). The matrices K, D
are diagonal positive definite stiffness and damping matrices.
The desired spatially and temporally scaled trajectory is
given by:

ηx ,Ksfq(x) (14)

where Ks , diag (ηg./fq(xf )) with ηg , log(Qg ∗ Q̄0),
Qg is the target orientation and ./ denotes the element-wise
division. The desired motion is learned based only on the
demonstrated orientation ηd = log(Qd ∗ Q̄d,0), where Qd

andQd,0 are the demonstrated and initial orientation, through
fq(x) which is a weighted sum of Gaussians:

fq(x) = Wφ(x) (15)

where W = [wx wy wz]
T , with wi being the weights for

each coordinate i ∈ {x, y, z}. The desired scaled velocity
η̇x and acceleration η̈x are obtained by differentiating ηx(t)
as in (9), (10). The orientation Q, rotational velocity, ω
and acceleration ω̇ can be obtained from η, η̇, η̈ using
Q = exp(η) ∗Q0 and (30), (31) from Appendix B. Finally,
the stabilty analysis for 1-DoF is readily extended to the
orientation formulation (13), as each DoF in η is decoupled.

IV. PROPOSED DMP PROPERTIES

A. Standard DMP properties

The proposed DMP formulation retains all desirable prop-
erties of the original DMP. Global asymptotic stability at the
target has already been discussed in the previous section. It
is also clear that the stable coordination of multiple DoFs
is similar to the original DMP, using a common canonical
system for all DoFs.

Spatial and temporal scaling of the novel DMP, i.e.
generation of trajectories that are qualitatively similar or
topologically equivalent [15] when there is a change in the
initial/target position or the temporal scaling parameter τ ,
follows straightforwardly from the mathematical correspon-
dence between the two as detailed in Appendix A. It can
also be easily verified through simulations that for differ-
ent initial/target poses or temporal scaling, the trajectories
produced by the proposed DMP coincide with those of the
original one.

Robustness to perturbations is also a trait of the proposed
formulation. Such perturbations could be for instance an
external disturbance. In this case, as in the original DMP,
the phase stopping mechanism is employed, which results
in the slow down or even halt of the trajectory generation
by modifying the canonical system’s evolution. Denoting the
disturbance by d(t), phase stopping can be implemented by
modifying the canonical system’s evolution as follows:

τ ẋ =
h(x)

1 + ad|d(t)|
(16)

with ad > 0. Other phase stopping types are also possible,
like a sigmoid stopping [17]. Another type of perturbation is
the change of the target position on the fly. The DMP will
modulate its trajectory to reach the new target.

Another appealing property of DMP is the capability of
incorporating coupling terms, so as to modify online the
dynamical system’s trajectory based on external signals,
obviating the need of trajectory replanning. Coupling terms
have been applied to adjust online the DMP’s trajectory
based on the external force measurements [7], to enforce
position/joint limits [18], for obstacle avoidance [19] and
other. These coupling terms, can also be included in the
proposed DMP, to attain the desired behaviour. For limit
avoidance, we can introduce the state z = ẏ, to rewrite the
novel DMP in the form of state equations and then add the
repulsive force at the velocity level as in the original DMP:

ẏ = z − γ

(yL − y)3

ż = ÿx −D(z − ẏx)−K(y − yx)

where yL is the limit and γ > 0 controls the effect of the
repulsive force. Obstacle avoidance can also be achieved as
in [19]. Denoting po the obstacle’s position, the term fo =
γRẏφe−βφ can be added to the DMP’s acceleration, where
γ, β > 0, R is a rotation around the axis k = (po − y)× ẏ
by angle π/2 and φ = cos−1( (po−y)T ẏ

|(po−y)||ẏ| ).

B. Additional Properties

Apart from reversibility, the proposed formulation de-
couples the DMP’s effective stiffness and damping from
the temporal scaling parameter τ (see (6) compared to
(22) for the original one), which can affect the system’s
response in the presence of perturbations or other coupling
terms. Moreover, training in the novel DMP requires only
position measurement, whereas the original DMP requires
additionally velocity and acceleration measurements, which



are usually noisy affecting the accuracy of the learning
process. Hence, computational load and memory resource
demand is reduced with the proposed formulation. Apart
from those advantages, two additional properties detailed
below are supported.

Decoupled teaching of path and velocity profile:
Demonstrating a desired trajectory using kinesthetic guid-

ance can prove to be quite cumbersome, as one has to pay
attention to guide the robot accurately along the desired
path, while at the same time imposing the desired speed of
execution (velocity profile). This places a lot of cognitive
load to the user and can deteriorate the quality of the
demonstration. Moreover, there are tasks where accuracy
in the demonstrated path is of great essence. A two phase
learning approach was initially presented in [20], which uses
the original DMP and learns the velocity profile and stiffness
in the second phase. With the proposed DMP, velocity profile
teaching can also be utilized in a second phase and is easily
realized, with a slight modification of the canonical system.
In particular, after the careful demonstration of the path
(phase 1), in phase 2 the robot is under position control,
following the output produced by (6) which generates the
path demonstrated during phase 1, but with different speed
according to the following modified canonical system:{

ẍ = −dxẋ+ fv , for x < 1

ẍ = ẋ = 0 , for x ≥ 1
(17)

with x(0) = 1, ẋ(0) = 0, where dx > 0, fv = nTfext
with n = ∂y/∂x

|∂y/∂x| being the unit vector pointing along the
direction of the motion, y denotes the Cartesian position and
fext is the external force provided by the robot’s F/T sensor.
At the end of this process, the recorded robot’s Cartesian
pose is used to retrain the DMP.

Bidirectional drivability along the path:
A similar modification of the canonical system can also

be used for phase stopping and bidirectional drivability along
the path:

ẍ = −dx(ẋ− ẋd) + fv (18)

where ẋd = s 1
τ(1+ad||Fext||) with x(0) = 0, s = 1 for

forward and s = −1 for reverse execution. Essentially, (18)
is obtained by combining (16) and (17). In the absence
of external disturbances, it follows that ẋ → s/τ and
the motion evolves autonomously. When external forces are
applied, phase stopping ensures that ẋd → 0 and the motion
evolves according the force along the path fv . Bidirectional
drivability along the path can prove useful in many scenarios,
e.g. to allow manual inspection of the executed trajectory,
driving the robot back/forth along the learned path.

V. EXPERIMENTAL RESULTS

In this section we demonstrate the usefulness of the pro-
posed DMP in a ring-in-hole (RiH) assembly. This assembly
is inspired by a real case of a car starter assembly. The task
involves the insertion of sliding rings with flexible contact
wings shown in Fig. 1 into pallets consisting of a series of
holes. We use the actual sliding rings and 3D printed pallets,

from the CAD model of the actual pallets (Fig. 1). The high
flexibility and elasticity of the contact wings adds to the
difficulty of the task as grasping the ring from the table and
inserting it with the correct orientation is important because
the contact ’wings’ of the ring should be properly aligned
with the side walls of the pallet for the subsequent moulding
operation to be successful.

Fig. 1: Ring in hole.

Fig. 2: Ring in hole scene.

Based on this real case scenario, we have devised the task
shown in Fig. 2 for the insertion of 2 rings into corresponding
pallets. We use a UR5e robot, which provides measurements
of external wrenches, and an RG2FT gripper attached at its
wrist.

During teaching, the geometric constraints due to the
pallet’s shape and the tight boundaries of the hole make it
difficult for a human to demonstrate the insertion as he/she
may have to wiggle the object before it fits properly in the
hole and the sockets. This however deteriorates the quality of
the demonstration. We resolve this problem by demonstrating
the disassembly trajectory (shown in the video), starting with
the ring already properly aligned and inserted into a pallet.
By flipping the collected data the encoding of the forward
trajectory is then performed. The second phase of the training
procedure (section IV-B) is then utilized to learn the velocity
profile (shown in the video). Notice that in order for the
DMP to generalize the learned motion pattern properly to
new targets (pallet poses), the DMP is encoded w.r.t. the
target pose (pallet pose). Further notice that by demonstrating
the reverse, the retraction motion will respect the geometric
constraints.

The trained DMP is used for executing all the required
motions of the task in sequence, starting from the initial
robot pose, shown in Fig. 2, and moving to the pick/ insertion
target poses. Notice that all poses in Fig. 2 are different from



those employed during the demonstration. When the target
is reached, the gripper closes (opens) for pick (insertion) and
the robot retracts to its initial pose along the same (reverse)
path. The latter is particularly important in the cluttered
environment of the real case. To control the phase variable
we use (18), applying also a dead-zone of 10N to Fext
when the distance to the target is below 1.5cm so that the
robot can apply the required inserting force without stopping
prematurely by the ’phase-stopping’ mechanism.

We showcase the usefulness of the reversibility and bi-
directional drivability (18) of the proposed DMP formulation
in the context of manual trajectory inspection and automatic
error recovery from faulty sensor measurements, exploring
two specific scenarios. Specifically, during the execution of
the first insertion, the user intervenes by driving the robot
back/forth along the path to inspect the learned trajectory
near the target. During the second insertion, a purposely
wrong target is provided, which can be hypothetically at-
tributed to perception errors of a vision sensor. This results
in a collision with a surface generating a contact force and
a premature stop, due to (18). Then we signal a partial
retraction, utilizing (18) for reverse execution until the phase
variable x reaches 0.2, and then provide the correct target
pose and resume the insertion, restoring s to its initial value.
Notice that the detection for triggering this procedure could
be automated by a higher level perception system, leveraging
vision and/or force and proximity sensors. However, such
detection schemes are beyond the scope of this work.

0 10 20 30 40
0

0.5

1

0 10 20 30 40
-1

0

1

0 10 20 30 40
0

0.5

1

0 10 20 30 40
-20

0

20
Inspection

RetractionInsertion

Fig. 3: Ring 1 insertion and retraction: Position and orientation
trajectories along z-axis with user inspection.

Results are presented in Fig. 3-6. During the insertion of
1st ring the user intervenes (Fig. 3) to inspect the trajectory
driving the robot back/forth along the path at t = 3.8−28 sec.
During the 2nd ring insertion in Fig. 4, a collision occurs at
t = 8.9 and the robot stops as it can be seen from the phase
variable x and the response along the z-direction followed by
a retraction until x = 0.2 at t = 11.6, and finally resumes the
insertion to the correct target at t = 17 sec. The 3D Cartesian
position and orientation paths for pick and insertion of both
rings are plotted in Fig. 5 and 6. The orientation is visualized
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Fig. 4: Ring 2 insertion: The initial target pose is wrong, leading
to a collision. The robot retracts and then reattempts the insertion
with the correct target.

Fig. 5: Position paths for all pick/insertions for forward motion with
solid green line and reverse motion with red dotted line. During
insertion at pallet 2, depicted with solid blue line, collision occurs
due to having a wrong target. The robot retracts (dotted yellow line)
and resumes insertion provided with the correct target.

using the quaternion logarithm η = log(Q ∗ Q̄0). Both the
forward and reverse motion are constrained on the same path
during the course of the entire experiment.

VI. CONCLUSIONS

In this work, a reversible Dynamic Movement Primitive
(DMP) formulation was proposed which ensures global
asymptotic stability of the target in both forward and back-
ward motion. All favourable properties of the original DMP
formulation are retained with a few additional desirable prop-
erties supported. The usefulness of the proposed formulation
was showcased in RiH experiments.

APPENDIX A - NON-REVERSIBILITY OF THE ORIGINAL
DMP AND CORRESPONDENCE WITH THE PROPOSED DMP

First we are going to examine the correspondence be-
tween the original and the proposed DMP. In particular,



Fig. 6: Orientation paths for forward and reverse motion for all
pick/insertions, using η = log(Q ∗ Q̄0)

we will show that (1) can written in the form of (6). Let
yd(t1), ∂yd∂t1

, ∂
2yd
∂2t1

, t1 ∈ [t0,d tf,d] be the trajectory with
duration τd = tf,d − t0,d, goal gd and initial position yd,0,
that is generated by the trained forcing term (5). The forcing
term of (1) is thus given by:

fs(x) =
τ2d

∂2yd
∂2t1
− αzβz(gd − yd) + αzτd

∂yd
∂t1

gf (x)(gd − yd,0)
(19)

τdẋ = h(x) (20)

x = x0,d +H(t1/τd) , t1 ∈ [t0,d tf,d] (21)

where H(t/τ) ,
∫ t/τ
t0/τ

h(x(σ))dσ. The dependency of

yd,
∂yd
∂t1

, ∂
2yd
∂2t1

on t1 is omitted for simplicity. Substituting (19)
in (1) and after simple mathematical manipulations, we get:

ÿ = ÿref −
αz
τ

(ẏ − ẏref )− αzβz
τ2

(y − yref ) (22)

yref (t) , k′s(yd(t1)− yd,0) + y0 (23)

ẏref (t) = k′skt
∂yd(t1)

∂t1
(24)

ÿref (t) = k′sk
2
t

∂2yd(t1)

∂2t1
(25)

where k′s = (g − y0)/(gd − yd,0) is the spatial and kt =
τd/τ the temporal scaling factor. Notice that (22)-(25) is
in the form of the proposed DMP (6)-(10), since fp(x) is
trained based on yd(t1) hence fp(x) ≈ yd(t1) and in turn
ks ≈ k′s, while ḟp(x) ≈ ẏd(t1) = ∂yd(t1)

∂t1
ṫ1 = kt

∂yd
∂t1

, which
follows from ṫ1 = kt. In particular, solving (21) for t1 yields
t1 = τdH

−1(u), with u = x − x0,d. Its time derivative is
ṫ1 = τd

∂H−1(u)
∂u u̇ = τd (h(x))

−1
ẋ by applying the inverse

function Theorem (see theorem 2.9 in [21]). Substituting ẋ
from (2) we get ṫ1 = kt.

Remark 1: To validate that (24), (25) are the first and
second order time derivatives of yref notice that:

ẏref (t) = k′s
dyd(t1)

dt
= k′s

∂yd
∂t1

ṫ1 = k′skt
∂yd
∂t1

(26)

where we used the fact that ṫ1 = kt. Accordingly, taking the
time derivative of ẏref (t) it follows easily that ÿref (t) =

k′skt
d
dt

(
∂yd
∂t1

)
= k′skt

∂2yd
∂2t1

ṫ1 = k′sk
2
t
∂2yd
∂2t1

.
Despite the similarity in the form between the proposed

and the original DMP, their main difference is in the en-
coding term which in the proposed formulation utilizes only
the demonstrated position trajectory while in the original, a
combination of the demonstrated position velocity and accel-
eration trajectories are utilized (see (19)). The consequence is
the non-reversibility of the original formulation as we prove
in the following. Specifically, using the reverse canonical
system τ ẋ = −h(x) of (2) and following the procedure as
for deriving (22), we can conclude that (1) reduces to:

(ÿ − ÿrev) +
αz
τ

(ẏ − ẏrev) +
αzβz
τ2

(y − yrev) = −2
az
τ
ẏrev
(27)

where yrev = ks(yd(τdH
−1(x − x0,d)) − yd,0) + y0 hence

the DMP output y, ẏ, ÿ will not track faithfully the reverse
trajectory due to the existence of the term −2azτ ẏrev(t) at
the right hand-side of (27), which acts as a disturbance. It
can be easily verified by simulations that the reverse DMP
exhibits tracking errors and fails to reach the target at the
designated time duration.

APPENDIX B - UNIT QUATERNION PRELIMINARIES

Given a rotation matrix R ∈ SO(3), an orientation can
be expressed in terms of the unit quaternion Q ∈ S3 as
Q = [w vT ]T = [cos(θ) sin(θ)kT ], where k ∈ R3, 2θ ∈
[0 2π) are the equivalent unit axis - angle representation.
The quaternion product between the unit quaternions Q1,
Q2 is denoted as Q1 ∗Q2. The inverse of a unit quaternion
is equal to its conjugate which is Q−1 = Q̄ = [w − vT ]T .
The logarithmic η = log(Q) and exponential Q = exp(η)
mappings log : S3 → R3, exp : R3 → S3 respect the
manifold’s geometry and are defined as follows:

log(Q) ,

{
2 cos−1(w) v

||v|| , |w|6= 1

[0, 0, 0]T , otherwise
(28)

exp(η) ,

{
[cos(||η/2||), sin(||η/2||) η

T

||η|| ]
T , ||η||6= 0

[1, 0, 0, 0]T , otherwise
(29)

Denoting by Ω = [0 ωT ]T , the time derivatives of η, are
related to ω, ω̇ as follows [16]:

Ω = 2(Jηη̇) ∗ Q̄ (30)

Ω̇ = 2(Jηη̇ + Jηη̈) ∗ Q̄− 1

2

[
||ω||2 01×3

]T
(31)

Jη =
1

2

[
− sin(θ)kT

sin(θ)
θ (I3 − kkT ) + cos(θ)kkT

]
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