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Abstract: In this paper neural networks applications in 

engineering design are discussed. The question for stability of 

their steady states is also considered. Some new efficient criteria 

are proposed. Since neural networks are relevant systems applied 

in various engineering design tasks, including many optimization 

and control problems, the results can be useful in design of such 

systems of diverse interest. 
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I. INTRODUCTION 

Neural networks (NNs) are ones of the key crowdsourcing 

technologies for engineering design and development [1]. 

They are recognized as ones of the best techniques for solving 

optimization problems, pattern recognition, control and 

forecasting in product design. In addition, the methods of 

collecting design information are very important factors in 

modern product development process [2] due to their:  

 Learning ability 

 Storage ability 

 Fault tolerance 

 Inductive ability 

 Parallel handling ability. 

The opportunities for applications of NNs in engineering 

design have been object of numerous investigations during 

the last decades. For example, the book [3] offers an excellent 

overview of the state-of-the-art of the research activities, 

network concepts and techniques to design and 

manufacturing.  Since 1993 NNs have been used in certain 

classes of optimal design problems [4- 6], in the automation 

design processes [7, 8], in retrieval processes, simulations, 

decision making, pattern recognition and prediction [9-15], 

including some recent contributions [16, 17, 18]. In addition 

to these [19- 21] are very good sources where the latest 

application of artificial intelligence and integrated intelligent 

systems for concurrent integration and collaboration of the 

design of a product and its related processes are presented.  

Stability is one of the main properties in a neural network 

dynamics. It is related to the opportunity of huge variations in 

the output values as a result of small perturbations in the 

initial data. The main goal of the stability analysis is to find 

efficient criteria that guarantee that small perturbations of 

initial data lead to small variations in outputs at a later time 

(short or long period of time). It is worth to note that stability 
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is also related to control of the qualitative properties of a 

neural network model.  

Due to the importance of the concept, stability analysis of 

neutral systems has received considerable attention of many 

authors. See, for example, [22-28] and the references therein. 

However, to the best of our knowledge, there has not been any 

work so far considering a stability strategy for a neural 

network model used in engineering design, which is very 

important in theories and applications and also is a very 

challenging problem. That is exactly what is planned in the 

proposed research.  

Among the existing methods for stability analysis, the 

Lyapunov function method seems to be very effective in 

applications since no knowledge for the solution is required. 

The method, also known as second or direct method of 

Lyapunov, is based on the existence of an auxiliary function 

with certain properties. The Lyapunov function technique 

[29] and its modifications have been greatly applied in the 

stability analysis of numerous dynamical systems [23, 30-34], 

including NNs [24, 27, 28, 35- 40].  

In this paper, a Lyapunov-based approach is adapted to 

analyze the stability behavior of a generalized NN model used 

for the form design of product image [4].  

The paper is organized as follows. Section II provides 

information on main issues related to neural network models. 

Section III describes the structure of a generalized 

Hopfield-type neural network model considered in this paper. 

In Section IV after some preliminaries, a Lyapunov-based 

stability analysis is proposed to provide stable design process. 

The paper concludes in Section V. 

II.  NEURAL NETWORKS 

NNs are non-linear models that are widely used to examine 

the complex relationship between input variables and output 

variables [4, 41]. The connections between the input variables 

and output variables are weighted. In many NNs, the 

architecture allows one or more layers (hidden layers) 

between the layer of the input and the layer of the output 

variables. Fig. 1 shows a NN with a hidden layer. In it 

nxxx ,...,, 21 are the input variables, pyyy ,...,, 21  are the 

output variables, and ijw , jkw are the connections weights.  
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Fig. 1. Three-layer NN [4]. 

The variables (nodes, neurons, units) in each layer are 

their structural elements. A typical graph of a neuron which 

process information by its dynamic state is given in Fig. 2.  

 
Fig. 2: A model of a neuron [42]. 

An activation (transfer) function for each neuron defines 

the output of the neuron. The sigmoid function 

xe
xf




1

1
)(  that assumes a continuous range of values 

from 0 to 1 is the most commonly used activation function in a 

NN architecture.   

Neural nets thus mimic the human brain. They lead to the 

design principles for constructing human-brain-like machines 

[15]. The inputs correspond to the signals to the synapses of a 

biological neuron, while each weight corresponds to the 

strength of a single biological synaptic connection.  

Feedforward NNs and recurrent or feedback NNs are the 

most typical categories of NNs. In feedforward networks 

nodes are updated starting with the input layer, and then 

updated layer by layer to the output layer (Fig. 1). In recurrent 

or feedback networks where there is no such direction in the 

flow of control, computation is a relaxation in which the 

nodes are updated until a specified point is reached after 

which updating has no effect [15]. 

 Training the network to perform well with reference to a 

training set is one of the main issues in building a NN model. 

Training a neural net refers to determining the proper values 

of all the weights in the architecture, and is accomplished 

most commonly through backpropagation [43]. 

III. GENERALIZED HOPFIELD-TYPE NEURAL 

NETWORK MODELS IN ENGINEERING DESIGN 

Several authors suggested the use of Hopfield-type NNs for 

engineering design tasks. For example, in the paper [15] a 

model of the type 

         ,1,)(sgn)1( nikxwkx
j

jiji 













                     (1) 

where sgn is the sgn )1( function, )(kx j is the state of the 

input j  at time k , ,...2,1,0k , ijw are the connection 

weights, has been applied to model a design retrieval problem 

encountered in batch production systems. The initial values  

                            )0(ix , ni 1   

are the elements of the input design pattern. The model (1) 

offers the opportunity to make design retrieval based not only 

on shape but other technological factors as well. The 

developed design storage and retrieval system (1) is 

interactive, since based on the initial responses, the designer 

can refine the query at any step. 

A similar model is proposed in [4] to determine how the 

product form elements can be best combined to match a 

desirable product image. For this task the authors considered 

a three-layer NN shown in Fig. 1. In training the network, a set 

of input patterns or signals, ),...,,( 21 nxxx , is presented to 

the network input layer. The network then propagates the 

inputs from layer to layer until the outputs are generated by 

the output layer. This involves the generation of the outputs 

jy  of the neurons in the hidden layer as follows 

           .1, njxwfy j
i

iijj 







                            (2) 

The neurons in the output layer are then given as 

          .1, pkxwfy k
j

jjkk 













                         (3) 

The authors used a sigmoid activation function in (2) and 

(3), j  and k are threshold values, ijw and jkw represent 

the weights for the connection between neuron i  

),...,2,1( ni  and neuron j  ),...,2,1( mj  , and between 

neuron  j ),...,2,1( mj  and neuron k  ),...,2,1( pk  , 

respectively. 

In this paper, a generalized models is proposed described 

by the following discrete time Hopfield neural network 

system 

        ,))(()()1( i
j

jjijiii Jkxgwkxckx                (4) 

where ,,1 nji   n corresponds to the number of nodes in 

the NN, )(kx j  is the state of the input j  at time k , 

,...2,1,0k , ijw are the connection weights, 

))(( kxg jj denotes the activation function of the neuron  

j ),...,2,1( nj  , iJ is an external bias. 

In the proposed model we take into account the 

opportunity of the neuron  j ),...,2,1( nj   to resets its 

potential to the resting state when isolated from other nodes 

and inputs with a constant rate ic . In most cases 
hia

i ec


   

where 0ia  and 0h is small enough [38].  

In addition, a specific activation function for each node is 

proposed.  

System (1) can be regarded as a discrete time analogue of 

the continuous time delayed 

Hopfield neural networks 

studied extensively in the 
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literature. See, for example, [36, 44, 45, 46] and the 

references therein. 

IV. STABILITY CRITERIA 

A. Preliminaries 

In this section efficient criteria for stability of the neural 

network model (4) will be presented. First we will need some 

notations and definitions.  

A state ),...,,( **
2

*
1

*
nxxxx  is said to be an equilibrium 

(steady state) of the NN (4) if it satisfies the following relation 

 

                i
j

ijijiii Jxgwxcx  )( *** .                          (5) 

The equilibrium points are very important in the stability 

analysis. For example, in solving of optimization problems, 

the equilibrium position is the optimal solution solution. 

When a NN is applied in the pattern recognition, the 

equilibrium position is the pattern. The stability of an 

equilibrium (pattern) means that the states will approach the 

pattern independently of the initial data.  

One of the most important concepts in the stability analysis 

of NNs is the global asymptotic stability of the equilibrium 

points. If an equilibrium of a NN is globally asymptotically 

stable, it means that it is an attraction point for the whole 

space and the convergence is in real time. This is significant 

both theoretically and practically. Such NNs are known to be 

well-suited for solving some class of optimization problems. 

In fact, a globally asymptotically stable neural network is 

guaranteed to compute the global optimal solution 

independently of the initial data, which in turn implies that the 

network is devoid of spurious suboptimal responses [33].  

The global exponential stability is a specific case of the 

global asymptotic stability that guarantees the fast 

convergence rate. 

Definition 1. An equilibrium point  ),...,,( **
2

*
1

*
nxxxx  is 

globally exponentially stable, if there exist constants 1  

and 1  such that 

            kxxxkx   ||)0(||||)(|| ** , ,...2,1,0k , 

where  is the convergent rate.  

In the above definition |.|  is the norm of the 

n-dimentional vector . In this paper we will use the following 

norm 

       


n

i
ii xkxxkx

1

** |)(|||)(|| , ,...2,1,0k . 

B. Lyapunov-based Stability Analysis 

Lyapunov approach is related to the choice of a positive 

auxiliary function 0)( kV for any ,...2,1,0k  for which the 

difference )()1()( kVkVkV  is nonnegative. Such 

functions is known as Lyapunov (candidate) function [23, 

29]. The same idea is also used for continuous systems, where 

instead of the difference )(kV  the derivative of the 

Lyapunov function V  with respect to the corresponding 

system is used. For more information about the Lyapunov 

direct method see, for example, [23-40, 45, 46]. 

We make the following assumptions in this paper: 

A1. There exists an equilibrium ),...,,( **
2

*
1

*
nxxxx  for 

system (4). 

A2. Any system output  )(kx  can be measured and its 

initial values are assumed to be in a compact set. 

A3. The activation functions ig  are such that  

               |||)()(| vuLvgug ii   

for any ni 1  and any real numbers u  and v , where L is 

a positive constant.  

A4. The constants  0ic for ni 1 . 

A5. The connection weights ijw and external biases 

iJ are real numbers for nji  ,1 . 

Theorem 1. Assume that A1-A5 hold and the systems’ 

parameters satisfy 

                1||maxmax
11

















 j
jii

nj
i

ni
wLc                           (6) 

for any nji  ,1 . 

Then the equilibrium ),...,,( **
2

*
1

*
nxxxx   of the NN model 

(4) is globally exponentially stable. 

Proof. Let )(kx  be a system output with initial data that 

belong to a compact set. 

Consider the Lyapunov function 

         


n

i
ii xkxxkxkV

1

** |)(|||)(||)( . 

Since ),...,,( **
2

*
1

*
nxxxx   is an equilibrium from (4) and 

(5) we have 

       


n

i
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1
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where 
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ni
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1
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 j
jii

nj
wL ||max

1
 . 

From the condition (6) of Theorem 1 it follows that we can 

find a positive 


1
 such 

 

 that 1 , 



1

0  and 

                      )()1( 1 kVkV   .                              (7) 

From (7) we first have that 

                0)()1()(  kVkVkV  

for any ,...2,1,0k , so the 

Lyapunov function is decreasing. 
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Also, by induction on ,...2,1,0k  we have that 

                               
kVkV  |)0()(  

or 

          kxxxkx  ||)0(||||)(|| ** , 

which proves that the equilibrium ),...,,( **
2

*
1

*
nxxxx   of the 

NN model (4) is globally exponentially stable and 1 . 

 

In the next results we will use the following notation. Let 

)(Q  denotes the spectral radius of the matrix )( ijqQ   and 

0ijq  for nji  ,1 . 

Theorem 2. Assume that A1-A5 hold and 1)( Q for 

nnijqQ  )( , )1/(|| iijjij cwLq  where 10  ic , 

nji  ,1 . 

Then the equilibrium ),...,,( **
2

*
1

*
nxxxx   of the NN model 

(4) is globally exponentially stable. 

The proof of Theorem 2 is similar to that of Theorem 1 

following [36] and [46], and we will omit it here. 

Remark 1. Theorems 1 and 2 provide Lyapunov-based 

criteria for global exponential stability of a generalized 

Hopfield-type NN model used in engineering design. The 

proposed technique is very efficient, since no knowledge for 

the solution is required. Also, it achieves high accuracy while 

the stability is guaranteed. 

V. CONCLUSION 

In this paper the stability behavior of a generalized NN 

model used for the form design of product image is analyzed. 

A Lyapunov-based approach is applied which is very 

effective and achieves high accuracy. The practical meaning 

of the proposed results is as follows: if the system parameters 

satisfy the conditions of Theorem 1 and Theorem 2, then the 

equilibrium state of the model is globally exponentially 

stable. The obtained criteria are very easy for application. The 

proposed technique can be applied for other NN models used 

in engineering design.    
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