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Abstract:This paper presents an l1-norm penalized bias 

compensated linear constrained affine projection (l1-BC-CAP) 

algorithm for sparse system identification having linear phase 

aspectin the presence of noisy colored input. The motivation 

behind the development of the proposed algorithm is formulated 

on the concept of reusing the previous projections of input signal 

in affine projection algorithm (APA) that makes it suitable for 

colored input. At First, l1-CAP algorithm is derived by adding zero 

attraction based on l1-norm into constrained affine projection 

(CAP) algorithm. Then, the proposed l1-BC-CAP algorithm is 

derived by addinga bias compensator into the filter coefficient 

update equation of l1-norm constrained affine projection (l1-CAP) 

algorithm to alleviate the adverse consequence of input noise on 

the estimation performance. Hence, the resulting l1-BC-CAP 

algorithm excels the estimation performance when applied to 

linear phase sparse system in the existence of noisy colored input. 

Further, this work also examines the stability concept of the 

proposed algorithm 

 

Keywords: Affine projection, bias compensator, linear 

constraint, sparsity. 

I. INTRODUCTION 

Use of linear constrained adaptive filtering in many digital 

signal processing applications has been on a steady rise 

owing to their utility in considering the prior knowledge 

about the framework to be estimated. The estimation of the 

frameworkrelays on some linear constraints which are 

available in advance. Some examples of linear constrained 

adaptive filtering are adaptive beam forming, linear phase 

system identification, code division multiple access and 

many more. [1-3].These applications have powered deep 

interest in developing linear constrained adaptive filters. 

The constrained least mean squares (CLMS) algorithm has 

gained a lot of attention in linear constrained adaptive 

filtering due to ease and simplicity in implementation [4]. But 

CLMS algorithm has poor performance in the presence of 

colored inputs. Moreover, the constrained affine projection 

algorithm (CAPA) is developed to consider the colored input 

[5]. As CAPA reusesthe previous projections of input signal, 

hence it has better performance for colored input. However, 
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CAP algorithm does not take into account the sparsity of the 

system.  

Later several sparsity aware affine projection algorithms 

have been developed to consider the sparsity of the system 

[12-13]. These algorithms append a zero attraction in 

conventional affine projection algorithms. These algorithms 

do not consider linear constraint of applications in 

development. This paper first develops l1-norm constrained 

affine projection (l1-CAP) algorithm that appends the zero 

attraction based on l1-norm to consider the sparsity of the 

system.  

The above mentioned algorithm performs well for 

constrained applications in the presence of noiseless colored 

input. However, the performance of l1-CAP algorithm is 

deteriorated in the presence of input noise. Moreover, the 

input noise adds a bias in numerator as well as in 

denominator of l1-CAP algorithm. Also it is to be noted that 

in case of l1-CAP algorithm, both the estimation performance 

and the stability of the algorithm are influenced by input 

noise. However, the deterioration of the performance of the 

proposed algorithm is caused largely by the bias in the 

numerator [10]. 

To solve the problem of input noise, bias 

compensation criterion has been developed [6-10]. Some of 

the bias compensation criterion based adaptive algorithms 

proposed in past are: bias compensated normalized least 

mean square (BC-NLMS), bias-compensated robust 

set-membership NLMS (BC-SM-NLMS), bias-compensated 

normalized sub-band adaptive filter (BC-NSAF), bias 

compensated affine projection like (APL), bias compensated 

affine projection (APA) [6-10].These algorithms add a bias 

compensator to make the estimation unbiased for noisy input.  

However, these algorithms do not deal with sparsity and 

linear constraint of the system simultaneously. 

Based on the above concept of bias compensation, this paper 

presents l1-norm penalized bias compensated constrained 

affine projection (l1-BC-CAP) algorithm that takes into 

account the input noise. The proposed work adds a bias 

compensator into update equation of l1-CAP algorithm to 

mitigate the unfavorable impact of input noise on the 

estimation performance in constrained applications against 

colored input. The rest of the paper is divided as follows. In 

section II, the l1-norm penalized constrained affine 

projection (l1-CAP) algorithm is derived. 
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 Section IIIdemonstrates the derivation of l1-BC-CAP 

algorithm. Section IVillustrates the convergence behavior of 

the proposed algorithm. Simulations and results are discussed 

in Section V, and hence it is concluded in Section VI. 

II. L1-NORM PENALIZED LINEAR CONSTRAINED 

AFFINE PROJECTION (L1-CAP) ALGORITHM 

This section derives l1-norm penalized linear constrained 

affine projection (l1-CAP) algorithm for linear constrained 

filtering problem.  

      Consider the desired output      of an unknown 

systemas         
          ,where   is unknown 

system coefficients vector of dimension NX1,          is 

the noise free input vector and z(k) is the observation noise of 

channel. 

Consideringw(k) as the adaptive filter coefficient vector of 

length N, the cost function of l1-norm penalizedlinear 

constrained affine projection (l1-CAP) algorithm can be 

drafted as: 

 

                              

Subject to                and        (1)where 

         is input matrix consist of previous L-1 

projection  and current input vector  

    is desired output vector of dimension Lx1consisting of  

previous L-1 and current output of the unknown system 

andL is the projection order of l1-norm penalizedconstrained 

affine projection (l1-CAP) algorithm;   is sparsity 

regularizer. 

The parameter  represents NxP constraint matrix while f 

represents a vector which comprises of the P constrained 

output values. 

With the help of Langrage multiplier approach, the 

unconstrained cost function of l1-CAP algorithm can be 

drafted as: 

 

                       
          

  
                                               (2) 

where 

  and   are Lagrange multipliers, and   is sparsity 

regularizer. 

Taking the gradient of cost function in (2), we have 

     
      

    
                         

         (3)                 

Setting derivate equal to zero in (3), the coefficient recursive 

equationof l1-CAP algorithm can be written as:  

            
 

 
           

 

 
   

    

 
  (4)  

   

The value of Langrage multiplier   can be computed as: 

           
   

 
           

   

 
   

      

 
   

                     (5)  

                                       (6)  

      

Now the value of   is calculated as: 

                
 

 
          

 
 

 
                

                        

 
    

 
                     (7)  

     

Taking into account the error signal               

      –           and error vector                

      –          , we can find   as 

                
  
      

 

 
                 (8) 

    

Hence  

                             
  
     

                   
  
                          

                        (9)      

Therefore; the coefficient recursive equation of  l1-CAP 

algorithm becomes: 

       

     
 

 
                    

  
                    

                 
  
      

 

 
                 

  
                  (10)     

where 

 

 Q = I-  ( T  )
-1   T 

  (11)                                                                                                                                     

H =   ( T  )
-1

h                    (12) 

 

By considering, 

                   
  
         (13) 

Consider 0<µ<1 be the step size for the stability of algorithm 

[11,14]. 

Therefore, the coefficient recursive equation of l1-norm 

penalized linear constrained affine projection (l1-CAP) 

algorithm becomes: 

       

       
  

 
           

µ k  k  k 1 k+    (14)  

III. L1-NORM PENALIZED BIAS COMPENSATED 

LINEAR CONSTRAINED AFFINE PROJECTION 

ALGORITHM 

This section will consider noisy input,           

    , where     is input noise with variance   
 and zero 

mean.Fig. 1 shows the system identification problem in the 

presence of input noise.  
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Hence, the noisy input matrix,                 

consists of previous (L-1) projection of input signal and input 

noise. The input noise matrix,                 

1  …     L  ],  a priori error ek=  k 0+ k– 

                         , a priori error vector 

                     …       L       are considered 

for derivation. The equation (14) can be rewritten for noisy 

input as: 

 

       

       
  

 
           

µ k  k  k 1 k+         (15)    

       

       
  

 
           

µ k  k  k 1 k+µ kQ  k  k 1 k+       

 (16)          

The extra term in (16) shows the bias in the numerator as well 

as in the denominator. This will hamper both the estimation 

performance and stability aspect of the algorithm. However, 

the deterioration of the performance is caused largely by the 

adverse impact on the numerator term. Hence, the proposed 

work compensates the bias in numerator to excel the 

estimation performance in the presence of input noise. 

 

Fig. 1. Adaptive System Identification in the presence 

of input noise 

Hence, to overcome the effect of bias generated by noisy 

input, a bias compensator      is added in the above weight 

update equation which is given as:     

                 
  

 
           

               

              
  

                         (17) 

In order to find the value of bias compensator D(k), the 

sparsity of the system is not taken into account.  

Hence, the weight update equation (17) becomes: 

w(k+1)  = Q      
               

              
         (18)      

Defining weight misalignment vector as: 

                     (19) 

where     is optimum weight vector. 

Hence, 

               
                

              
        

              (20)    

Using                                   

                       , we can write (20) as: 

               
                

              
      (21)    

Taking expectation of (21) on both sides while considering 

the availability of the matrix   (k), the recursion equation of 

the weight-misalignment vector becomes: 

                  

                     
                

              
         

               (22)   

To achieve unbiased estimation, the criterion [10] is applied 

as: 

E[           (k)]= E[         (k)] =0                      (23)         

Hence 

  
                

              
                          (24)             

 

and 

 

  
                

              
           

               

              
         

  
                    

              
         (25)              

 

The bias compensator is derived on basis of given below 

assumptions: 

Assumption 1: Input noise     , input signal     and 

measurement noise      are considered to be white Gaussian 

process having zero mean and variance   
 ,   

 and 

  
 .respectively. 

Assumption 2: The signals                   and       

are statistically independent. 

Considering the above assumptions, the first term on right 

side of (25) reduces to, 

 

  
               

              
         

  
                                   

             
           (26) 

And the second term on right side of (25) leads to:     

  

  
                    

              
          

  
                                    

              
          (27)  

Using the above assumptions,  

  
                    

              
           

    
       

              
         (28)     

    

Therefore, 



 

L1-Norm Penalized Bias Compensated Linear Constrained Affine Projection Algorithm  

1812 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: C4815029320/2020©BEIESP 

DOI: 10.35940/ijeat.C4815.029320 

                 
    

       

              
         (29)                 

   

     
     

       

              
    (30)          

Hence, the coefficient recursion equation of the proposed 

l1-norm penalized bias compensator constrained affine 

projection algorithm becomes: 

w(k+1)  = Q      
  

 
           

               

              
    

     
       

              
         (31) 

Since (31) requires variance   
  of the input noise, an 

estimation of the same should be calculated as it is not 

available in practice. In this paper, the method of estimation 

of   
 proposed by Haiquan Zhao and ZongshengZheng [9] is 

used. 

Consider measurement noise free error         as: 

                      (32)                           

                                (33)  

where 

                   (34)                                                                                    

Taking the expectation of square of (33) and considering the 

above assumptions, we have 

      
     

                   (35)                        
     

 
      
    

             
     

  
       

      
    

  
    

    (36)                                              Hence, 

an estimate    
     can be written as: 

   
     

      
    

  
    

     (37) 

where 

      
             

                 
      

 (38)  
          

                         (39)                                                                           

and parameters    and   are close to unity.  

IV. CONVERGENCE ANALYSIS 

For the convergence analysis, we are considering the jointly 

Gaussian distribution of any two elements of weight 

misalignment vector,      . 

Let        and        be the two elements of      . 

Hence we can define the jointly Gaussian distribution as: 

                           
     

       

where 

                       (40) 

                 (41)                                                                            

  
        

               
    (42)                                                                             

  
        

               
    (43)                                                                           

                                         (44)                                                                          

The optimum weight vector woptfor the constrained APA can 

be defined as: 

                                           (45) 

where  

             (46) 

             and    (47) 

               (48) 

Subtractingwopt both sides from (31), we have 

       = Q       
  

 
           

               

              
  

     
       

              
  (49)                     

                    –                    

  (k)    + k–   k k    k k   k    + k     

         (50)              

       

Therefore, 

   (k+1)  = Q         
  

 
             

µ k  k  kX k    k µ k  k    X k    k+µ k kX k 

   k+µL  v2    ( )  k    k+µL  v2        k   

 k(51)             Taking Expectation of (51) yields 

     (k+1)]  = Q          
  

 
              

Eµ k  k  kX k    k Eµ k  k    X k   

 k+Eµ k kX k    k+ µL  v2    ( )  k    k+ µL 

 v2        k    k(52)              Considering the above 

assumptions, (52) reduces to 

    (k+1)]  = Q          
  

 
              

µE k  kX k    k    k]+µL  v2     k  k    k     

(53)              
We can find the value of               as [15]: 

                                        

   
         

     
     (54) 

where                            (55)  

and  

    is CDF of Normal distribution. 

As               is bounded, hence we are not considering 

this term in the stability analysis of the proposed algorithm. 

Hence 

           

        
             

              
   L   

   
 

              
            

                     (56) 

The square of symmetric matrix Q is also Q i.e. 

                       (57) 

and 

                   (58)                 

 Considering (57) and (58), we can write (56) as: 

             

       
                

                
   L   

   
 

                
           

  (59) 

Considering  

                 (60)   
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Rewriting (60) using (59) yields 

             

       
             

           
   L   

   
 

           
          (61)                                        

             

       
             

           
   L   

  

              
         (62) 

Considering 

          
             

           
   L   

  

             
  (63) Hence  

                                                    (64) 

    

                              

                        (65)   

The term         should be less than equal to one so that the 

proposed algorithm will converge. 

Considering SVD decomposition for transformed 

matrix             as 

                     (66)                   

where         is a rectangular diagonal matrix having 

singular values of      on its main diagonal ,           

and          are unitary matricessuch that the columns of 

     and the columns of       show the left-singular 

vectors and right-singular vectors of       , respectively. 

Hence, we can write (63) as: 

     

     
                             

                           
  

µL  v2  k  (k)  k k (k)  k (67)      

As               and                  

Therefore, 

     

     
                    

                  
   L   

  
 

                  
  (68)                                           

                            
  
           

                                (69) 

 

Assuming              exists, then the 

term   L   
              will be bounded 

and                            will be a diagonal 

matrix such that 

                        
            

                    
  (70) 

                                      

                         (71) 

E           

µ k k  k (k)    k  k   µ k k  k (k)    k  

k  k (72)        

E               

µ) k k  k (k)    k  k  k 

              

           

   µ) k  k (k)    k k2(73) where k=  k  k 

For acuate stability of the proposed algorithm,   should be 

zero or two, but for practical purpose        should be 

adopted [14]. 

V. RESULT AND DISCUSSION 

In this section, simulations are taken in MATLAB software 

to justify the estimation behavior of the proposed algorithm 

in linear constrained sparse system identification against 

noisy input. The unknown finite impulse response (FIR) 

system  and adaptive filter have same dimension N . Here we 

have considered N=163. The system coefficients are 

considered symmetric. The unknown sparse system 

coefficients are Gaussian distributed with linear phase aspect. 

For symmetric and odd condition, the linear phase constraint 

is defined as[2]: 

Θ 

 
 
 
 
 
 
 
 
 
        
      …  
           
              …       
         
     …   
         
             …     
             …       

 
 
 
 
 
 
 
 

  

    
 

  

         

 (74) 

 

 h = [0 0 … 0] 
T
(75)  

 

Here    
 

is an identity matrix of order
   

 
 and   is the identity 

matrix having all rows turned around. The colored input is 

produced by passing thewhite input through a system, 

      
 

        
. The measurement noise, z(k) is considered 

white. The assessment criterions for estimation performance 

are taken as: normalized mean square deviation (NMSD) and 

convergence speed. Here K is the sparsity constant that tells 

the number of non-zero coefficients among others. 

First the proposed algorithm is compared with constrained 

affine projection (CAP) [5], affine projection algorithm (APA) 

[11] , bias compensator APA (BC-APA) [10] and l1-norm 

penalized  constrained affine projection (l1-CAP) algorithms 

against Gaussian input noise  and Laplace input noise for  

different values of sparsity constant, K={3,13,53} in figs. (2) 

and (3). The other parameters taken in this experiment are: 

step size µ =0.05, Input noise variance   
 =0.08, Channel 

SNR=20dB; sparsityregularizer         and projection 

order L=6. 
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Fig. 2.NMSD of the proposed l1-BC-CAP, CAP, 

BC-APA, CAP, APA and l1-CAP algorithms with 

different K={3,13,53} in the presence of Gaussian 

inputnoise (µ =0.05,   
 =0.08, SNR=20dB,   

            

 

Table- I: Comparison of transient NMSD of proposed 

algorithm with other algorithms for K=3 from fig. 2 

Algorithm Transient NMSD 

(dB) 

Iteration 

Number 

l1-BC-CAP -21.78 746 

BC-AP -13.19 746 

CAP -11.53 746 

l1-CAP -12.08 746 

APA -10.47 746 

 

Table- II:  Comparison of steady state NMSD of proposed 

algorithm with other algorithms for K=3 from fig. 2 

Algorithm Steady State NMSD 

(dB) 

Iteration 

number 

l1-BC-CAP -27.3 1120 

BC-AP -15.86 1602 

CAP -12.29 1404 

l1-CAP -12.43 1361 

APA -18.9 2338 

 

Table I and II compare the transient NMSD and steady state 

NMSD of the proposed l1-BC-CAP algorithm with other 

APA variants for sparsity constant K=3 and Gaussian input 

noise. Table I confirms the lowest transient NMSD of the 

proposed algorithm. Table II, it is evident that the proposed 

achieves the lowest steady state NMSD with largest 

convergence rate among others. Similar types of results can 

be obtained for Laplace input and other values of K. 

However, for higher sparsity level the estimation 

performance of the proposed algorithm degrades but still it is 

better than other algorithms. 

 
Fig. 3.NMSD of the proposed l1-BC-CAP, CAP, 

BC-APA, CAP, APA and l1-CAP algorithms with 

different K={3,13,53} in the presence of Laplace input 

noise (µ =0.05,   
 =0.08, SNR=20dB,               

 

Table- III:  Comparison of simulation time of proposed 

algorithm with existing variants 

Algorithms Simulation Time Per 

Run (Second) 

l1-BC-CAP 0.141553 

BC-APA 0.117227 

CAP 0.056583 

l1-CAP 0.086993 

APA 0.035812 

 

Table III compares the simulations time of proposed 

algorithm with its variants. Although the proposed algorithm 

needs the highest simulation time, yet the estimation 

performance is superior to other algorithms.  

 
Fig. 4.Performance of l1-BC-CAP algorithm under 

various step sizes(Gaussian input noise,   
 =0.08, 

SNR=20dB, K=13,               

 

Next experiment shows the step size’s impact on the 

performance of the proposed algorithm. The convergence 

speed and NMSD error are related inversely to step size as 

shown in fig. 4.Therefore, the step size should be selected 

very carefully to make a balance between convergence speed 

and NMSD error. Here, the step size µ=0.05 is selected to 

take care of both.  
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The minimum MSD error is obtained for µ=0.01 and the 

highest convergence speed is for µ=0.2. 

Figure 5 shows the performance of the proposed l1-BC-CAP 

algorithm under different input noise variance. Here 

Gaussian input noise is considered for simulation. Four 

values of input noise variance,  
 =[0.05 0.08 0.2 0.4] are 

considered in this experiment.  As the variance of the input 

noise increases, the performance of the proposed algorithm 

l1-BC-CAP is degraded slightly since the proposed algorithm 

has unbiased the bias produced due to the input noise, 

therefore its performance is not significantly degraded by 

increasing the value of input noise variance. 

 
Fig. 5.Performance of l1-BC-CAP algorithm under 

various input noise variance (Gaussian input noise, µ 

=0.05, SNR=20dB, K=13,               

 
Fig. 6.Performance of the proposed algorithm under 

various channel SNR on the estimation (Gaussian input 

noise,   
 =0.08,  µ =0.05, K=13,               

In fig. 6, the performance of the proposed algorithm is tested 

for varying SNR values of channel noise. The channel noise 

and input noise are considered as white Gaussian noise. The 

other parameters are taken as: step size µ =0.05, input noise 

variance   
 =0.08, sparsity constant K=13; sparsity 

regularizer         . Here four different values of SNR 

of channel noise, SNR= [30dB 20dB 10 dB 5dB] are adopted 

to check the performance of the proposed algorithm. 

As the value of SNR rises up, the performance improves and 

as it goes down, the performance degrades. So the channel 

SNR has severe impact on the performance of the proposed 

algorithm. 

In next simulation, the impact of sparsity regularizer  on the 

performance of the proposed algorithm is tested. The other 

parameters are taken as: step size µ =0.05, input noise 

variance   
 =0.08, sparsity constant K=13; channel SNR 

     . 

 
Fig. 7.Performance ofl1-BC-CAP algorithm under 

various sparsity regularizer (Gaussian input 

noise   
 =0.08,   =0.05,                  

            

 

From fig. 7, it is clear that when the value of the parameter   

decreases from       to       , the performance 

improves considerably. However, as it goes below   

10 5to 5 10 6, the performance starts to deteriorate. 

Therefore, the parameter   should therefore be chosen wisely 

as it directly affects the amount of zero attraction on the 

system coefficients. 

VI. CONCLUSION 

This paper presents an l1-norm penalized bias compensated 

linear constrained affine projection (l1-BC-CAP) algorithm. 

The proposed algorithm is used to identify a sparse system 

with linear phase aspect in the presence of colored input, 

corrupted by the additive input noise and channel noise. From 

table 1, it is clear that the l1-BC-CAP achieves -27.3 dB 

NMSD errors in just 1120 iterations than other APA based 

algorithms. Thus, the convergence speed is higher than other 

algorithms as shown in table 1. The simulation time is 

slightly higher than other algorithms as shown in table 2. 

However, the increase in simulation time is mainly due to 

addition of bias compensator term. Further, the performance 

is also tested for several sparsity levels and different input 

noise variances. The impact of several other parameters like 

step size µ, output SNR, sparsity regularizer   is also 

illustrated. The proposed algorithm outperforms for different 

sparsity levels and input noise variances. Thus the 

l1-BC-CAP algorithm has the ability to replace the existing 

adaptive algorithms in many practical implementations 

which involve combined effect of linear constrained adaptive 

filtering, sparseness characteristics, and colored input 

corrupted by input noise 
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