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Abstract—Image-text matching is an interesting and fasci-
nating task in modern AI research. Despite the evolution of
deep-learning-based image and text processing systems, multi-
modal matching remains a challenging problem. In this work,
we consider the problem of accurate image-text matching for
the task of multi-modal large-scale information retrieval. State-
of-the-art results in image-text matching are achieved by inter-
playing image and text features from the two different processing
pipelines, usually using mutual attention mechanisms. However,
this invalidates any chance to extract separate visual and textual
features needed for later indexing steps in large-scale retrieval
systems. In this regard, we introduce the Transformer Encoder
Reasoning Network (TERN), an architecture built upon one
of the modern relationship-aware self-attentive architectures,
the Transformer Encoder (TE). This architecture is able to
separately reason on the two different modalities and to enforce
a final common abstract concept space by sharing the weights
of the deeper transformer layers. Thanks to this design, the
implemented network is able to produce compact and very rich
visual and textual features available for the successive indexing
step. Experiments are conducted on the MS-COCO dataset,
and we evaluate the results using a discounted cumulative gain
metric with relevance computed exploiting caption similarities,
in order to assess possibly non-exact but relevant search results.
We demonstrate that on this metric we are able to achieve state-
of-the-art results in the image retrieval task. Our code is freely
available at https://github.com/mesnico/TERN.

I. INTRODUCTION

Recent advances in deep learning research brought to life
interesting tasks and applications which include joint process-
ing of data from different domains. Image-text matching is an
interesting task that consists in aligning information coming
from visual and textual worlds, in order to benefit from the
complementary richness of these two very different domains.

Visuals and texts are two important modalities used by hu-
mans to fully understand the real world. While text is already a
well-structured description developed by humans in hundreds
of years, images are basically nothing but raw matrices of
pixels hiding very high-level concepts and structures. If we
want to obtain an informative textual description of a visual
scene we are required not only to understand what are the
salient entities in the image, but we need also to reason about
the relationships between the different entities, e.g. ”The kid
kicks the ball”. In this respect, it is necessary not only to
perceive objects on their own but also understanding spatial
and even abstract relationships linking them together.
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Fig. 1. Overview of the presented architecture. Image and text are seen
respectively as sets of image regions and sequences of words, and they are
processed using a transformer-based reasoning engine.

This has important implications in many modern AI-
powered systems, where perception and reasoning play both
important roles. In this work, we concentrate our effort on
the cross-modal information retrieval research field, in which
we are asked to produce compact yet very informative object
descriptions coming from very different domains (visual and
textual in this scenario).

Vision and language matching has been extensively stud-
ied [1]–[5]. Many works employ standard architectures for
processing images and text, such as CNNs-based models
for image processing and recurrent networks for language.
Usually, in this scenario, the image embeddings are extracted
from standard image classification networks, such as ResNet
or VGG, by employing the network activations before the
classification head. Usually, descriptions extracted from CNN
networks trained on classification tasks are able to only capture
global summarized features of the image, ignoring important
localized details.

Although these networks demonstrated noticeable perfor-
mances in the image-text matching task, they are not able
to infer what an object really is. The objectness prior is an
important feature of the perception system that helps filtering
out irrelevant zones in the images while focusing the attention
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on entities of interest. As far as the matching problem is
concerned, finding entities of interest inside the image helps
in creating a representation that has a level of abstraction
comparable with the related text. In fact, a visual object present
in an image, such as a dog, can be matched in an almost one-
to-one relationship with the nouns dog, or animal present in
the corresponding image caption. Furthermore, the objectness
prior is the first step towards higher-level abstraction tasks
such as reasoning about inter-object relationships.

We are to tackle this important problem with the goal
of finding compact cross-modal descriptions of images and
texts which can incorporate detailed relational insights of
the scene. Compact and informative descriptions are required
in the context of large scale retrieval systems, where image
and text embeddings can be compared and indexed using a
simple similarity function (e.g., cosine similarity) defined on
a common embedding space.

Some works have recently tackled the matching problem
using a relational approach, trying to reason on substructures
of images and texts (regions and words respectively) using
attention and self-attention mechanisms [3], [5], [6], or graph
networks [7].

In particular [3], [4], [6] try to learn a scoring function
s = φ(I, C) measuring the affinity between an image and a
caption, where I is an image, C is the caption and s is a
normalized score in the range [0, 1]. The problem with this
approach is that it is not possible to extract compact features
describing images and texts separately. In this setup, if we
want to retrieve images related to a given query text, we have
to compute all the similarities through the φ function, and then
sort the resulting scores in descending order. This is unfeasible
if we want to retrieve images from a large database in few
milliseconds.

For this reason, we propose the Transformer Encoder Rea-
soning Network (TERN), a transformer-based architecture able
to map images and texts into the same common space while
preserving important relational aspects of both modalities. In
doing so, we avoid cross-talking between the two pipelines,
so that it remains possible to separately forward the visual
and the language pipeline to obtain compact image/caption
descriptors.

The general transformer architecture [8] was introduced to
process sequential data, like natural languages. However, the
encoder part of the transformer has no sequential prior hard-
coded in its architecture. Therefore, it is a good candidate for
processing also image regions: with the very desirable self-
attention mechanism it incorporates, the transformer encoder
can be employed to link together different image regions,
effectively constructing a powerful visual reasoning pipeline.

Concerning the evaluation of the proposed matching proce-
dure in an information retrieval setup, the Recall@K metric is
usually employed, where typically K = {1, 5, 10}. However,
in common search engines where the user is searching for
related images and not necessarily exact matches, the Re-
call@K evaluation is too rigid and unable to capture high-level
semantic similarities between the retrieval results.

For this reason, we propose to measure the retrieval abilities
of the system through a discounted cumulative gain metric
with relevance computed exploiting caption similarities work-
ing at a high conceptual level, proceeding in a similar way to
[2].

The contributions of this paper are:
• We introduce the Transformer Encoder Reasoning Net-

work (TERN), a transformer-based architecture able to
map both visual and textual modalities into the same
common space, preserving the relational content of both
modalities. The learned representations can be used for
efficient and scalable multi-modal retrieval.

• We introduce a novel evaluation metric able to capture
non-exact search results, by weighting different results
through a relevance measure computed on the caption
similarities.

• We show that our architecture reaches state-of-the-art
performances with respect to other architectures on the
introduced metric, for the image retrieval task.

II. RELATED WORK

In this section, we review some of the previous works
related to image-text matching and high-level relational rea-
soning. Also, we briefly summarize the evaluation metrics
available in the literature for the image-caption retrieval task.

Image-Text matching

Image-text matching is often cast to the problem of inferring
a similarity score among an image and a sentence. Usually,
one of the common approaches for computing this cross-
domain similarity is to project images and texts into a common
representation space on which some kind of similarity measure
can be defined (e.g.: cosine or dot-product similarities).

Concerning image processing, the standard approach con-
sists in using Convolutional Neural Networks (CNNs), usu-
ally pre-trained on image classification tasks. In particular,
some works [9]–[13] used VGGs, others [1], [14]–[16] used
ResNets. The problem with these kinds of CNNs is that they
usually are able to extract extremely summarized and global
descriptions of images. Therefore, a lot of useful fine-grained
information needed to reconstruct inter-object relationships for
precise image-text alignment is permanently lost. To overcome
this problem, the authors in [17] worked on a fine-grained
level, defining the image-sentence matching score on the basis
of the similarities among the common abstract concepts found
in the two modalities.

Recent works, instead, exploited the availability of pre-
computed region-level features extracted from state-of-the-art
object detectors. In particular, following the work by [18],
the authors in [5], [7] used bottom-up features extracted from
Faster-RCNN. The bottom-up attention mechanism resembles
the attentive mechanism present in the human visual system,
and it is an important feature for filtering out unimportant
information. This lays the foundations for a more precise and
lightweight reasoning mechanism, downstream of the bottom-
up perception module, which should carefully process the



resulting image regions to obtain an expressive representation
of the overall scene.

Concerning sentence processing, many works [1], [4], [5],
[7], [16] employed GRU or LSTM recurrent networks to
process natural language.

Recently, the transformer architecture [8] achieved state-
of-the-art results in many natural language processing tasks,
such as next sentence prediction or sentence classification. In
particular, the BERT embeddings [19] emphasized the power
of the attention mechanism to produce accurate context-aware
word descriptions.

Given the enormous flexibility of the transformer encoder
architecture, some works [3], [6] tried to apply the attention
mechanism of the transformer encoder architecture to process
visual inputs and natural language together. The main idea
behind visual processing using the transformer encoder is to
leverage its self-attention mechanism to link together different
image regions to catch important inter-object relationships.
However, the systems proposed in this direction are not able to
extract separate visual and textual features for use in similarity
search applications.

The authors in [7] were able to achieve very good results
in caption/image retrieval learning separate visual and textual
features. They introduced a visual reasoning pipeline built of
a Graph Convolution Networks (GCNs) and a GRU to se-
quentially reason on the different image regions. Furthermore,
they impose a sentence reconstruction loss to regularize the
training process. Differently from their work, we leverage on
the reasoning power of the transformer encoder, both for the
visual and linguistic pipelines.

High-level reasoning

Another branch of research is focused on the study of
relational reasoning models for high-level understanding. The
authors in [20] proposed an architecture that separates per-
ception from reasoning. They tackled the problem of Visual
Question Answering by introducing a particular layer called
Relation Network (RN), which is specialized in comparing
pairs of objects. Object representations are learned using a
four-layer CNN, and the question embedding is generated
through an LSTM. Recently, the authors in [21], [22] extended
the RN for producing compact features for relation-aware
image retrieval. However, they did not explore the multi-modal
retrieval setup.

Other solutions try to stick more to a symbolic-like way
of reasoning. In particular, some works [23], [24] introduced
compositional approaches able to explicitly model the reason-
ing process by dynamically building a reasoning graph that
states which operations must be carried out and in which order
to obtain the right answer.

Recent works employed Graph Convolution Networks
(GCNs) to reason about the interconnections between con-
cepts. In particular, the works by [25]–[27] used GCNs to
reason on the image regions for image captioning, while others
[28], [29] used GCN with attention mechanisms to produce the
scene graph from plain images.

Retrieval evaluation metrics

All the works involved with image-caption matching eval-
uate their results by measuring how good the system is
at retrieving relevant images given a query caption (image-
retrieval) and vice-versa (caption-retrieval). In other words,
they evaluate their proposed models using a retrieval setup.

Usually the Recall@K metric is used [1], [3], [6], [7], [30],
where typically K = {1, 5, 10}. On the other hand, the authors
in [2] introduced a novel metric able to capture non-exact
results by weighting the ranked documents using a caption-
based similarity measure. We embrace their idea, and we
extend it bringing to life a powerful evaluation metric able
to capture high-level semantic aspects. Furthermore, relaxing
the constraints of exact-match similarity search is an important
step towards an effective evaluation of modern search engines.

III. REVIEW OF TRANSFORMER ENCODERS (TES)

Our proposed architecture is based on the well established
Transformer Encoder (TE) architecture, which relies heavily
on the concept of self-attention. The basic attention mecha-
nism, as described in [8], is built upon three quantities: queries,
keys, and values. The attention mechanism maps a query and
a set of key-value pairs to an output, where the query, keys,
values, and output are all vectors. The output is computed as
a weighted sum of the values, where the weight assigned to
each value is computed using a softmax activation function
over the inner product of the query with the corresponding
key. More formally,

Att(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (1)

where Q ∈ Rt×dk ,K ∈ Rs×dk and V ∈ Rs×dv ; s is the
input sequence length and t is the length of the conditioning
sequence that drives the attention. The factor

√
dk is used

to mitigate the vanishing gradient problem of the softmax
function in case the inner product assumes too large values.

The self-attention derives trivially from the general attention
mechanism when either V , K, and Q are computed from the
same input set, i.e., when the set that we use to drive the
attention is the same as the input set. In this case, in fact,
t = s and the scalar product QKT ∈ Rs×s is a square matrix
that encodes the affinity that each element of the set has with
all the others elements of the same set.

In the self-attention case, Q, K, and V are computed by
linearly projecting the same input embeddings using three
different matrices WQ ∈ Rdk×di ,WK ∈ Rdk×di and
WV ∈ Rdv×di , where di is the dimensionality of the input
embeddings.

Then, a simple feedforward layer on the Att(Q,K, V )
vectors, with a ReLU activation function, further processes
the vectors produced by the self-attention mechanism. A
schematic view of a transformer encoder layer is shown in
Figure 2.

We argue that the transformer encoder self-attention mech-
anism is able to drive a simple but powerful reasoning mecha-
nism able to spot hidden links between the vector entities given
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Fig. 2. Simplified view of a transformer encoder layer. Add&Norm skip
connections present in the original architecture are not shown here for ease
of viewing.

in input to the encoder, whatever nature they have. Also, the
encoder is designed in a way that multiple instances of the
same architecture could be stacked in sequence, producing a
deeper reasoning pipeline.

IV. VISUAL-TEXTUAL REASONING USING TRANSFORMER
ENCODERS

Our work relies almost entirely on the TE architecture, both
for the visual and the textual data pipelines.

The TE takes as input sequences or sets of entities, and
it can reason upon these entities disregarding their intrinsic
nature. In particular, we consider the salient regions in an
image as visual entities, and the words present in the caption
as language entities.

More formally, the input to our reasoning pipeline is a set
I = {r0, r1, ...rn} of n image regions representing an image I
and a sequence C = {w0, w1, ...wm} of m words representing
the corresponding caption C. Following, we will describe the
methodology we adopted to extract ri from images and wj

from captions.

Region and Word Features

I and C descriptions come from state-of-the-art visual and
textual pre-trained networks, Faster-RCNN with Bottom-Up
attention, and BERT respectively.

Faster-RCNN [31] is a state-of-the-art object detector. It
has been used in many downstream tasks requiring salient
object regions extracted from images. The authors in [32]
introduced bottom-up visual features by training Faster-RCNN
with a Resnet-101 backbone on the Visual Genome dataset
[33]. Using these features, they were able to reach remarkable
results on the two downstream tasks of image captioning and
visual question answering. Therefore, in our work we employ
the bottom-up features extracted from every image as image
description I = {r0, r1, ...rn}.

Concerning text processing, we used BERT [19] for ex-
tracting word embeddings. BERT already uses a multi-layer
transformer encoder to process words in sentences and capture

their functional relationships through the same powerful self-
attention mechanism. BERT embeddings are trained on some
general natural language processing tasks such as sentence
prediction or sentence classification and demonstrated state-
of-the-art results in many downstream natural language tasks.
BERT embeddings, unlike word2vec [34], capture the context
in which each word appears. Therefore, every word embedding
carries information about the surrounding context, that could
be different from caption to caption.

Transformer Encoder Reasoning Network (TERN)

Our reasoning engine is built using a stack of transformer
encoder layers; the overall architecture is shown in Figure 3.

The reasoning module continuously operates on sets and
sequences of n and m objects respectively for images and
captions. The objective is to produce a compact representation
of the n processed regions and of the m processed words
suitable for the downstream task of image-text matching in a
common space with fixed dimensionality. One of the easiest
ways to proceed is to pool the elements of the set/sequence
using symmetric functions like sum or avg, or, like [7],
growing a meaningful aggregated representation inside the
hidden state of a recurrent network (GRU or LSTM).

Our method, instead, follows the approach by BERT [19]:
we reserve a special token both at the beginning of the regions
set and of the words sequence (I-CLS and T-CLS) devoted to
carrying global information along the two pipelines. For this
reason, we effectively expand the number of image regions
to n + 1 and the number of words to m + 1, with r0 and
w0 reserved for this purpose. Initially, w0 is set to the T-
CLS BERT token, while r0, i.e., I-CLS, is a zero vector. At
every reasoning step, this information is updated attentively
by the self-attention mechanism of the TEs. In the end, our
final image and caption features will be r0 and w0 in output
from the last transformer encoder layer. In the last layers of
the TERN architecture, the abstracted representations of the
visual and textual pipelines should be comparable. To enforce
this constraint, we share the weights of the last layers of the
TEs before computing the matching loss Lm on the common
space.

If we use only bottom-up features without any spatially
related information, the visual reasoning engine is not able to
reason about spatial relationships. This is a fairly important as-
pect to capture since lot of textual descriptions contain spatial
indications (e.g. on top of or above). In order to include spatial
awareness also in the visual reasoning process, we condition
the early visual pipeline with the bounding-boxes coordinates.
To this aim, we compute the normalized coordinates and the
normalized area for each region, as follows:

c =

{
x1
W
,
y1
W
,
x2
H
,
y2
H
,

(x2 − x1)(y2 − y1)

WH

}
. (2)

Then, we concatenate c with the original bottom-up feature.
In the end, we forward this information through a simple
Linear-ReLU-Linear stack (sharing weights among all the n
regions) to obtain the final spatial-aware bottom-up feature.
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Fig. 3. The proposed TERN architecture. TE stands for Transformer Encoder and its architecture is explained in detail in [8]. Region and words are extracted
through a bottom-up attention model based on Faster-RCNN and BERT respectively. BERT already employs positional encoding for representing the sequential
nature of words, therefore this step is not reported in the figure. Concerning regions, the extracted bottom-up features are conditioned with the information
related to the geometry of the bounding-boxes. This is done through a simple fully connected stack in the early visual pipeline, before the reasoning steps.
Lm is the matching loss, defined as in [1]. The final weight sharing between TE modules guarantees consistent processing of the high-level concepts..

Learning

In order to match images and captions in the same common
space, we use a hinge-based triplet ranking loss, focusing the
attention on hard negatives, as in [1], [7]. Therefore, we used
the following loss function:

Lm(i, c) = max
c′

[α+ S(i, c′)− S(i, c)]++

max
i′

[α+ S(i′, c)− S(i, c)]+,
(3)

where [x]+ ≡ max(0, x). The hard negatives i′ and c′ are
computed as follows:

i′ = arg max
j 6=i

S(j, c)

c′ = arg max
d6=c

S(i, d),
(4)

where (i, c) is a positive pair. S(i, j) is the similarity function
between image and caption features. We used the standard
cosine similarity as S(·, ·). As in [1], the hard negatives are
sampled from the mini-batch and not globally, for performance
reasons.

V. EVALUATION METRIC FOR NON-EXACT MATCHING

Many works measure the retrieval abilities of their visual-
linguistic matching system by employing the well known
Recall@K metric. The Recall@K measures the percentage
of queries able to retrieve the correct item among the first
k results.

However, in common search engines where the user is
searching for related images/captions and not necessarily exact
matches, the Recall@K evaluation often proves to be too

rigid, especially when K is small. In fact, in the scenarios
where K = {1, 5, 10}, we are measuring the ability of the
system to retrieve exact results at the top of the ranked list
of images/captions. Doing so, we are completely ignoring
other relevant but not exact-matching elements retrieved in the
first positions. These elements still contribute to a good user
experience in the context of search engines. The Recall@K
metric is fully unable to capture this simple yet important
aspect. Furthermore, Recall@K is unable to capture high-
level semantics of sentences and images during the retrieval
evaluation phase.

For this reason, inspired by the evaluation method pre-
sented in [2], we employed a common metric often used in
information retrieval applications, the Normalized Discounted
Cumulative Gain (NDCG). The NDCG is able to evaluate the
quality of the ranking produced by a certain query by looking
at the first p position of the ranked elements list. The premise
of NDCG is that highly relevant items appearing lower in a
search result list should be penalized as the graded relevance
value is reduced proportionally to the position of the result.

The non-normalized DCG until position p is defined as
follows:

DCGp =

p∑
i=1

reli
log2(i+ 1)

, (5)

where reli is a positive number encoding the affinity that the
i-th element of the retrieved list has with the query element.
The DCG is agnostic upon how the relevance is computed. The
NDCGp is computed by normalizing the DCGp with respect to
the Ideal Discounted Cumulative Gain (IDCG), that is defined



as the DCG of the list obtained by sorting all its elements by
descending relevance:

NDCGp =
DCGp

IDCGp
. (6)

IDCGp is the best possible ranking. Thanks to this normal-
ization, NDCGp acquires values in the range [0, 1].

Computing reli values

We concentrate our attention on image-retrieval, given that
is the most common scenario in real-world search engines.
Therefore, in our work, we consider a caption as a query,
while the retrieved elements are images.

Being a cross-modal retrieval setup, the relevance should
be a value obtained from a function operating on an image
Ii and a caption Cj . In principle, it could be possible to use
the φ(Ii, Cj) learned by methods like in [3], [6]. The problem
is that φ is a complex neural network, and Ii, Cj are drawn
from a dataset of thousands of elements, in the best case.
This means that constructing a Nc × Ni relevance matrix is
computationally unfeasible, where Nc is the number of total
captions and Ni is the total number of images in the dataset.

Usually, in the considered datasets, images come with a cer-
tain number of associated captions. Thus, instead of computing
φ(Ii, Cj), we could think of computing τ(C̄i, Cj) instead,
where C̄i is the set of all captions associated with the image Ii.
With this simple expedient, we could efficiently compute quite
large relevance matrices using similarity between captions,
which in general are computationally much cheaper.

As a result, for our image-retrieval objective we define
reli = τ(C̄i, Cj), where Cj is the query caption and C̄i are
the captions associated with the i-th retrieved image.

In our work, we use ROUGE-L [35] and SPICE [36] as
functions τ for computing captions similarities. These two
metrics capture different aspects of the sentences. In particular,
ROUGE-L operates on the longest common sub-sequences,
while SPICE exploits graphs associated with the syntactic
parse trees, and has a certain degree of robustness against
synonyms. In this way, SPICE is more sensitive to high-level
features of the text and semantic dependencies between words
and concepts rather than to pure syntactic constructions of the
sentences.

VI. EXPERIMENTS

We train the Transformer Encoder Reasoning Network and
we measure its performance on the MS-COCO [37] dataset,
by measuring the effectiveness of our approach on the image
retrieval task. We compare our results against state-of-the-art
approaches on the same dataset, using the introduced metric.

The MS-COCO dataset comes with a total of 123,287
images. Every image has associated a set of 5 human-written
captions describing the image.

We follow the splits introduced by [4] and followed by
the subsequent works in this field [1], [7], [15]. In particular,
113,287 images are reserved for training, 5000 for validating,
and 5000 for testing.

At test time, results for both 5k and 1k image sets are
reported. In the case of 1k images, the results are computed
by performing 5-fold cross-validation on the 5k test split and
averaging the outcomes. We set the NDCG parameter p = 25
as in [2] in our experiments.

A. Implementation Details

We employ the BERT model pre-trained on the masked
language task on English sentences, using the PyTorch im-
plementation by HuggingFace 1. These pre-trained BERT
embeddings are 768-D. For the visual pipeline, we used the
already available bottom-up features extracted on the MS-
COCO dataset. They are freely available on GitHub 2 and
they are 2048-D. In the experiments we used the fixed-size
descriptors, selecting for each image the features of the top
36 most confident detections. However, our pipeline can work
with a variable-length set of regions for each image, by
appropriately masking the attention weights in the TE layers.

Concerning the reasoning steps, we used a stack of 4 non-
shared TE layers for visual reasoning. Instead, we found the
best results when fine-tuning the pre-trained BERT, so we
did not introduce any further non-shared TE layers for the
language pipeline. We used 2 final TE layers with weights
shared among the visual and textual pipelines. All the TEs
feed-forward layers are 2048-dimensional and the dropout is
set to 0.1. Weight sharing in the last TE layers is possible if the
input vectors from both visual and textual pipelines share the
same number of dimensions. For this reason, before entering
the last shared-weight TEs, both the visual and textual vectors
are linearly projected to a 1024-D space, which is also the
dimensionality of the final common space, as in [1].

We trained for 30 epochs using Adam optimizer with a
learning rate of 0.00002. The α parameter of the hinge-based
triplet ranking loss is set to 0.2, as in [1], [7].

We used a batch size of 90, instead of 128 as in previous
works, due to hardware limitations.

B. Results and Discussion

We report the results obtained on the MS-COCO dataset on
both 5k and 1k image test sets, and we compare them against
the state-of-the-art on the image retrieval task. For VSRN [7]
and VSE [1] we used the original code and pre-trained models
provided by the authors, updating the evaluation protocol by
including the NDCG metric.

Concerning VSRN, in the original paper the results are
given for an ensemble of two independently trained models.
In our case, we did not consider model ensembling. For this
reason, we evaluated VSRN using the best snapshot among
the two provided by the authors.

Results are reported in Table I. For the sake of completeness,
we report also the values for the Recall@K metric. Our
TERN architecture can reach top performance on the NDCG
metric with the SPICE-based relevance. Due to the high-level
abstraction nature of the SPICE metric, this result confirms

1https://github.com/huggingface/transformers
2https://github.com/peteanderson80/bottom-up-attention

https://github.com/huggingface/transformers
https://github.com/peteanderson80/bottom-up-attention


Query: A large jetliner sitting on top of an airport runway.

Query: An eating area with a table and a few chairs.

Fig. 4. Example of image retrieval results for a couple of query captions. The red marked images represent the MS-COCO ground truths, and they are not
necessarily the best results in these scenarios. In fact, in the very first positions, we find non-matching yet relevant images. These are common examples
where NDCG really succeed over the Recall@K metric. .

TABLE I
IMAGE RETRIEVAL RESULTS ON THE MS-COCO DATASET.

Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE

1K Test Set

VSE0 [1] 43.7 79.4 89.7 0.702 0.616
VSE++ [1] 52.0 84.3 92.0 0.712 0.617
VSRN [7] 60.8 88.4 94.1 0.723 0.620
TERN (Ours) 51.9 85.6 93.6 0.725 0.653

5K Test Set

VSE0 [1] 22.0 50.2 64.2 0.633 0.549
VSE++ [1] 30.3 59.4 72.4 0.656 0.577
VSRN [7] 37.9 68.5 79.4 0.676 0.596
TERN (Ours) 28.7 59.7 72.7 0.665 0.600

the ability of our system to understand complex patterns and
abstract concepts both in the visual and textual inputs. The
NDCG metric with the SPICE relevance tries to measure the
high-level perception and relational understanding abilities of
the model directly on the downstream image-retrieval task. We
obtain the best gap on the 1K test set, where we improve the
current state-of-the-art by 5.3%.

Concerning the NDCG metric with the ROUGE-L computed
relevance, our TERN architecture performs slightly worse
than VSRN. Overall, the gap between VSRN and our TERN
architecture is very subtle, confirming the ability of those
architectures to be comparable when we focus on the syntactic
and less abstract features of the language.

Despite VSRN performing better in terms of Recall@K, we
demonstrated through the NDCG metric that our architecture
is better at finding non-exact matching yet relevant elements
in the top p positions of the ranked images list. The results
on the new evaluation metric confirm the power of the TERN
architecture to construct high-level visual-textual descriptions
useful for similarity search in cross-modal environments.

Figure 4 shows an example of image retrieval using fea-
tures computed through our TERN architecture. The reported
examples show two typical situations in which the NDCG
evaluation succeeds over the Recall@K. The figure show
how the ground truth images from the MS-COCO dataset,
highlighted in red, are not necessarily the best retrieval results
for the probed query sentences.

Having observed the qualitative and quantitative results,
we argue that the Recall@K and NDCG metrics should
be weighted appropriately when evaluating a cross-modal
retrieval system. A system validated and tested only using
Recall@K becomes strongly sensible to exact-matching ele-
ments only. This would result in a scenario where non-exact
yet relevant matches are pulled away during the training phase,
with no indicators to monitor this strongly unwanted scenario.
We think that these are very important considerations to keep
in mind during the validation of cross-modal search engines.

VII. CONCLUSIONS

In this work, we addressed the problem of image-text
matching in the context of efficient multi-modal information
retrieval. We argued that many state-of-the-art methods do
not extract compact features separately for images and text.
This is a problem if we want to employ relationship-aware
visual and textual features in the subsequent indexing stage
for efficient and scalable cross-modal information retrieval.
To this aim, we developed a relationship-aware architecture
based on the Transformer Encoder (TE) architecture to reason
about the spatial and abstract relationships between elements
in the image and the text separately. The final weight sharing
between TE modules guarantees consistent processing of the
high-level concepts.

In the vision of employing this architecture for efficient
multi-modal information retrieval in real-world search engines,
we measured our results using an NDCG metric assessing
possibly non-exact but relevant search results. The relevance
among images and captions has been evaluated by employing
similarity measures defined over captions, ROUGE-L and
SPICE respectively. We demonstrated that our relation-aware



approach for reasoning and matching visual and textual con-
cepts achieved state-of-the-art results with respect to current
multi-modal matching architectures on the proposed retrieval
metric, for the task of image retrieval.

In the near future, we manage to enforce some reconstruc-
tion constraints for better shaping the common space, like
reconstructing the sentences from the visual features, as in
[7], or recovering the image regions from the captions. Also,
major interest should be given to the optimization objective.
In particular, it would be interesting to attenuate the very
aggressive behavior of the hinge-based triplet ranking loss for
better appreciating non-exact matches at training time.
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