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Introduction

We have identified the need for better language support for specifying and implementing software
analysis and transformation tools. In this document we embark on a design of a domain-specific
language that is intended to provide a comprehensive and easy to use set of concepts for that domain.
The goals of the envisaged language (with working name Rascal) are:

* Providing a successor of ASF+SDF that has of al its benefits and fixes al of its shortcomings.
 Separating pure syntax definitions (SDF) from function definitions.

» Easy syntax-directed analysis of programming languages.

 Easy fact extraction.

 Easy connection of fact extraction with fact manipulation and reasoning.

» Easy feedback of analysis results in source code transformation.

« Efficient and scalable implementation.

 Unsurprising concepts, syntax and semanticsfor awide audience. Where possiblewewill stay close
to C and Java notation.

Many of the above goals are to a certain extent already met in the current design of ASF+SDF,
and the current design of RScript. What is missing is the connection (and to be honest: an efficient
implementation of relational operators). Alas, any bridge between the two languages is both complex
to manage and an efficiency bottleneck. Thiswork is an attempt to consolidate this engineering trade-
off. This basically means that we include most features of the RScript language into ASF+SDF.
Although we take these languages as conceptual starting point, Rascal isacompletely new design that
has an imperative semantics at it's core rather than a functional semantics. As a whole, Rascal is a
simpler but more expressive language.
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Rascal for various audiences

In this section we enumerate numerous facts about Rascal that advertise it to different audiences

Generic arguments

What is good about Rascal in afew words?

Rascal is a DSL for source code analysis and transformation. It provides a pletora of high level
statements and expressions, taking away the boilerplate of implementing and debugging tools that
mani pul ate programs.

Rascal combines the best features of imperative programming with the best features of functional
programming and term rewriting.

» Simplestructured statementsfor control flow and variable assignmentsfor dataflow are powerful
and simple features of the imperative programming paradigm. They allow control flow and data
flow to be understandable and traceable.

* From functional programming we borrow that all values areimmutable and non-null. Issueswith
aliasing and referential integrity, such as frequently occur in imperative and OO programming
therefore do not exist in Rascal.

» The Rascal type system is as powerful as most functional languages (higher-order polymorphic
functions), however to make the language debuggable and understandable it, in principle, does
not provide type inference.

* Fromterm rewriting weinherit powerful pattern matching facilities, integration with context-free
parsing and concrete syntax.

Rascal supports both a scripting experience, and a compiled program experience.
Rascal is type safe, but flexible. It's type system prevents common programming errors, but still
allows ample opportunity for reusable code. The reasons are that we allow co-variance in the sub-

typing relationship, high-order polymorphic functions and parameterized data-types.

Rascal allows different styles of programming. From extremely high level specification, down to
straight imperative programming.

Rascal was inspired by and borrows from several other DSL's for program analysis and
transformation in academia and industry, namely ASF+SDF, Rscript, TXL, TOM, DMS, Stratego,
Elan, Maude, Grok, Haskell, ML and SETL.

Rascal integrates seemlessly with Eclipse IMP and The Meta-Environment.

Rascal for ASF+SDF programmers

Rascal is the successor of ASF+SDF. What's the difference? What's the same?

Rascal has roughly all the high level features of ASF+SDF and some more. Old ASF+SDF
specifications can be transformed to Rascal programs using a conversion tool.

Rascal still uses SDF for syntax definition and parser generation.

Rascal has a module system that is independent of SDF. Rascal modules introduce a namespace
scope for variables and functions, which can be either private or public. Rewrite rules are global
as in ASF+SDF. Modules can have type parameters as in SDF, which are instantiated by import
statements.
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» In Rascal, patterns and variables in concrete syntax may optionally be quoted and escaped, and
support explicit declaration of the top non-terminal to solve ambiguity.

Caution
How?

* In ASF+SDF the execution order of the elements of equations is left-hand side (for matching),
conditions, and right-hand side (for constructing a normal form). In Rascal the elements of rules
read in amore natural order that corresponds with the order of execution.

 Rascal has primitive and efficient implementations for sets, relations and maps

 Rascal can be used without SDF, supporting for exampleregular expressions and abstract datatypes
(pure ATerms)

» Rascal has primitive support for functions, which have a fixed syntax, always return a value and
have abody consisting of imperative control flow statements. Adding afunction will not trigger the
need for regenerating parse tables asis the case in the current ASF+SDF implementation. Function
types can be polymorphic in their parameters and also allow functions as arguments to implement
reusable algorithms.

» Theimperative nature of Rascal allowsyou to factor out common code and nest conditionals, unlike
in ASF+SDF where alternative control flow paths have to be encoded by enumerating equations
with non-overlapping conditions.

» Rascal isanimperative language, which natively supports I/O and other side-effects without work-
arounds. When backtracking occurs, for example during list matching, Rascal makes sure that most

side-effects are undone, and that 1/0 is delayed until no more backtracking can occur. Even rewrite
rules support side-effectsin Rascal.

Caution

Clarify the above.

» Rascal has native support for traversals, instead of the add-on it used to be in ASF+SDF. The
visit statement is comparable to a traversal function, and is as type-safe as the previous, and more
programmeable.

* Instead of accumulator values of traversal functionsin ASF+SDF, Rascal simply supports|lexically
scoped variables that can be updated using assignments.

 Rascal adds specific expressions for relational calculus, all borrowed directly from RScript.

» When programming using Rascal functions, instead of rules, the control flow of aprogram becomes
easily traceable and debuggable. It is simply like stepping through well structured code.

» Rascal isbased onaJavainterpreter, or aJavarun-timewhen compiled. Sothe codeismore portable.

Rascal for imperative and object-oriented
programmers

Rascal is an imperative DSL with high level statements and expressions specifically targeted at the
domain of analysis and transformation of source code:

» Rascal is safe: there are no null values, and all values are immutable. Source code and abstract
syntax trees, and the facts extracted from them areimmutable. The Rascal interpreter and compiler
make sure this is implemented efficiently. Without mutability it is easy to combine stages of your
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programs that analyse or annotate with stages that transform. Sharing a value does not introduce a
coupling like in OO, simply because changes are only visible to the code that changes the values.

» Rascal isextrasafe: it hasatype system that prevents casting exceptions and other run-timefailures.
Still the type system specifically allows many kinds of combinations. For example, unlikein Javaa
set of integersis a subtype of a set of numbers (co-variance), which alows you to reuse algorithm
for sets of numbers on sets of integers. It aso providestrue polymorphic and functions (no erasure),
and functions can safely be parameters to other functions.

» Rascal provides high level statements and expressions for:
« Visitorsin all kinds of orders, expressed very concisely, and type safe.
 Pattern matching and construction (with concrete syntax!)
» Equation/constraint solving
» Relational calculus
» Rewrite rules for normalization/canonicalization of any kind of data-structure

e Support for parsing using context-free grammars (via importing modules from the SDF
language).

e (de)Serialization of values
» Communication with databases

 Rascal provides typed data constructors for common mathematical structures, such as:
+ terms (ak.a abstract data types, tree nodes)

* parse trees (derivations of context-free grammars, for concrete syntax and direct manipulation
of source code)

* relations
e sets

* maps

« graphs
* tuples

 In Rascal you can implement high-fidelity source-to-source transformations. Without too much
overhead, programs can do extensive rewriting of the source code without the loss of particular
layout standards or source code comments.

 Rascal issyntax-safe. When you use Rascal to generate or transform source code, it statically detects
whether the resulting source code is syntactically correct.

» Rascal is executed by an interpreter written in Java, or it can be compiled to Java classes.

Requirements

* R1: Runtime speed: large-scale analysis of facts is expensive (frequently high-polynominal and
exponential algorithms). A factor speedup can mean the difference between a feasible and an
unfeasible case.

* R2: Old ASF+SDF programs are translatable to Rascal.
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R3: Edit Rascal and SDF and compile complex programs within a few minutes maximally
(parsetable generation isamajor bottleneck in current ASF+SDF. This needsto be fixed.)

R4: Concrete syntax: for readability and easy parsing of awide range of source languages.
R5: Filel/O.

R6: Easily accessible fact storage (similar to a heap, but remember the details of backtracking, see
R19).

R7: List matching (because of R2, also very handy for manipulating lists in concrete syntax).

R8: Nesting of data-structures: relations can be nested to model nested features of programming
languages (such as scoping), allowing to factor out common code.

R9: Syntax trees can be elements of the builtin data-structures (but not vice versa).

R10: Try to keep features orthogonal: try to keep the number of ways to write down a program
minimal, thisis not alaw since other requirements take precedence

R11: Minimize possible syntactic ambiguities; resolve them by type checking.

R12: Integrates well with refactoring infra-structure (i.e. can provide appropriate interfaces with
pre-condition checking, previews and commits as found in interactive refactoring contexts)

R13: No 'null’ values, preventing common programming errors

R14: All valuesimmutable, preventing common programming errors and allowing for certain kinds
of optimizations

R15: Should be ableto match and construct stringsusing regular expressions (for making thesimpler
things simple, if you can do without a grammar, why not?)

R16: Can get/set data from databases, such as the pdb from Eclipse IMP, but possibly also from
ODBC/JDBC data sources.

R17: Type safe, but flexible. We want a type system that prevents common programming errors,
but still allows ample opportunity for reuse.

R18: Syntax safe, programmers should not be allowed to construct programs that are syntactically
incorrect w.r.t a certain context-free grammar.

R19: Backtracking safe, programmers should not have to deal with the mind boggling feature
interactions between side-effects and backtracking.

R20: Traceable/debuggable, programmers should be able to easily trace through the execution of
a Rascal program using the simplest of debugging tools, like printf statements, and the use of a
simple debugging interface which allows to step through the source code and inspect valuesin a
transparent fashion.

R21: Minimize the use of type inference, such that the programmer must always declare her
intentions by providing types for functions, data-types and variables. This makes debugging easier
and providing clear error messages too. When variables are implicitly bound by pattern matching
or related functionality, exceptions to this requirement might be made in favor of conciseness.

R22: Allow the implementation of reusable modules and functions (i.e. parametric polymorphism
and or functions as parameters).

R23: We need something like rewrite rules for implementing data-types that are aways
canonicalized/normalized. For some analysis algorithms this allows the programmer to implement
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domain specific optimizations over plain relational calculus or tree visiting that actually needed for
scalahility.

Rascal at a glance

Rascal consists of the following elements:

Modules to group definitions, proving scopes and visibility constructs.

A type system and corresponding values, providing parameterized types, polymorphic functions
and higher-order parameters.

Variables to associate a name with a value in some scope.
Parameterized functions.

Abstract patterns, regular expression patterns and syntax patterns to deconstruct (match) values and
to construct (make) them.

Expressions provide the elementary computations on values.

Statements provide structured control flow and more advanced control flow in computations, such
asvisitors and fixed point computations

These elements are summarized in the following subsections.

Modules

Modules are the organizational unit of Rascal. They may:

Import another Rascal module (suffix: . ras) using i npor t . Imports are not transitive. We do
alow circular imports.

Import SDF modules (suffix: . sdf ) usingi nport .
Import Java modules (for the benefit of functions written in Java, suffix . j ava) usingi nport.

Extend another Rascal module using ext end. This includes a verbatim copy (similar to
#i ncl ude) of the-module-to-be-extended in the current module. We alow redefinitions of
declared names. We do not allow circular extension.

Define data, views on data, types, rules or functions.

Be parameterized with the names of formal types that are instantiated with an actual type when the
module isimported.

Contain a main function that is the starting point of execution. We alow several flavours of main
function:

public void main() { ... }
does not give access to program arguments while
public void main(list[str] argv) { ... }

gives access to all program arguments. We may add extra types that help in parsing command line
arguments.

Declarations may be either privateto amodule or public to all modul esthat import the current module.
Rules are always public and are globally applied.
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Modulesintroduce anamespace and qualified names (using the : : operator) may be used to uniquely
identify elements of a module from the outside. Inside the module, this qualification isimplicit. The
qualified name consist of two parts: a directory name (alist of names separated by / ) and a module
name.

Rascal modules are located in a file with the name of the module, with suffix . r as. They should be
located in a directory corresponding to the directory part of the module name. From other modules,
M : F denotes function F from module M

Names

Rascal aims at seamless integration with Java and its names adhere to the following conventions:

e A Rascal Name is identical to a Java Indentifier except that we do allow -- for reasons of
compatibility with namesin SDF -- dashes (- ) but do not allow the dollar sign ($) in names. In the
initial implementation all reserved words in both Java and Rascal cannot be used as a Name. For
better syntax errorsit is probably better to warn for Java keywords later on.

» Sortsand Symbolsareinherited from SDF but we extend sort (that may only start with an uppercase
letter in SDF) to be amore liberal, and allow Names instead.

Types and Subtypes
Types

The type system (and notation) are mostly similar to that of Rscript, but
» We have atype hierarchy that defines a partial order on types.

* Thereisasingletop for thistype hierarchy, itiscaled "val ue" and asingle bottom that is called
"voi d".

e Therearebuilt-intypes (bool ,i nt,doubl e,str, | oc).

» Symbols (as defined by an SDF module) are also types.

Note

The currently supported subset of SDF symbols contains: single and double quoted literal,
character class, sort name, lists with and without separator, alternative, and option. This
subset will be extended on demand.

Note

There is no automatic mapping between the built-in types and types generated by an SDF
module. The programmer is responsible for conversion. Typical library functions that are
helpfull are:

e unparseToSt ri ng converts any value of an SDF type to a string.
e t ol nt converts strings to integers.
« t oDoubl e converts strings to doubles.

» All syntactic types are a subtype of the typet r ee that corresponds to an Universal Parse Tree
Representation (UPTR). Wewill use AsFix as UPTR. Up casts from a subtype to an enclosing type
are automatic. Thetypet r ee is"specia" in the following sense:

» Parsers generate values of typet r ee.
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 Although the typet r ee can be defined in Rascal, its definition is built-in in order to preserve
the consistency with the parser.

Types for sets, maps, relations and tuples can be formed from types, Maps, relations and tuples
can have optiona column names. Note that a map resembles a function and differs from a binary
relation: for each domain value in amap only asingle range value is allowed.

Functions can be polymorphic in their parameters as well asin their return type.

Function parameters can be function types, meaning that the name of a properly typed function or
alocally defined anonymous function can be passed as a parameter.

The last parameter of afunction may be of theform 1 i st [ T] Nane. .. andindicatesavariable
list of remaining parameters of typeT.

Data declarations may introduce new structured types and have the form
data N Patl1 | Pat2 |

where N is the name of the datatype and Pat1, Pat2, are prefix patterns describing the variants of
the datatype. For instance,

data Bool btrue | bfalse | band(Bool L, Bool R) | bor(Bool L, Bool R);

defines the datatype Bool that contains various constants and constructor functions.

Note

Weassumethat all constructorsfor adatatypelead to acorresponding function to construct
aterm of that datatype. This eliminates the need to quote abstract termsin statements.

Note

Constructor names of datatypes may be quoted in order to avoid clashes with reserved
words or illegal names.

We have views on data types that define templates or overlays over an existing type. A view defines
a (possibly complex) pattern that matches the structure of another datatype. A view provides an
aternative (and possibly simplified) access mechanism for existing data structures. A standard
example is to define a view on a parse tree that suppresses all auxiliary information and better
reflects the actual abstract tree that is represented asin

view Bool <: tree and appl(...) | or appl(...)

Thisdefinesthe type Bool asaview on treeswith two alternatives named and and or . Each view
should be of typet r ee. Viewsfor the same type are exclusive.

Caution

Maybe, the following needs further discussion.
Parse trees are implicitly defined by a data declaration and we provide APIGEN-like functionality
to access their elements by automatically providing views for each SDF rule:
« Elements of an SDF syntax rule may be explicitly labelled asin:

| hs1: EXP "+" | hs2: EXP -> EXP {left}

In this case the selectors | hs1 and | hs2 are provided that can be used to select (or replace)
one of the subtrees of thisrule.
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« If these labels are absent, an automatic naming scheme is used:
 For each sort in the SDF rule, a selector with the same name is provided.
» Syntactic lists get the name of the element sort, followed by "- 1 i st ™.
« Optionals get the name of the element sort, followed by "- opt .

In case there are more occurrences of the same syntactic element, the provided selector namesare
consecutively numbered, e.g., EXP1, EXP2 or STATEMENT- | i st 1, STATEMENT- | i st 2.

Types may include type variables like &T asin Rscript with the following refinement:

* Inthetyperel [ & T], the type variable &T is bound to the tuple type of the relation, i.e. an
actual typerel [int, str] will bind &* T tothetypet upl e[int, str].

« Composition of tuple typesisonly allowed in the result type.

* Inasimilar fashion, in map[ & T] , thetype variable & T is bound to the tuple type of the map.
A type declaration introduces a name for a new type that is a subtype of agiven type, e.g.,

type rel [ node, node] G aph

introduces the type Gr aph asasubtype of r el [ node, node] . There are no built-in subtypes.

The name that is introduced by a type declaration may even be parameterized with one or more
typevariables, e.g.,

type rel [ &Node, &Node] G aph[ &Node]

Of course, the type variables that are used in the type in the left part should occur as parametersin
the right part of the definition and vice versa.

Types may be declared only once and are mutually exclusive.

Subtypes

The type hierarchy leads to a subtype relation <: that can be defined (in ASF+SDF) as follows:

%% Subt ypi ng rules (<:) on Types

[let00] void < T = true

[let0l] T <: val ue = true

[let02] T < T = true

[let03] T <: &N = true

[let04] T <: &N < T =T< T
[let05] N &T] <: N &Y = true

[letO6] list[T] <: list[T] =T< T
[let07] set[T] <: set[T] =T< T
[1et08] tuple[ ONTs] <: tuple[ ONTs'] = ONTs <: ONTs'

10
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[let09] map[Ti, T2] < map[T1l', T2'] TL < T1' & T2 < T2

[let10] map[Ti, T2] < rel[T1', T2'] TL < T1' & T2 < T2

[letll] rel [ONTs] <: rel [ONTS'] = ONTs <: ONTs'
[let12] rel [ONTs] <: set[tuple[ONTs']] = ONTs <: ONTs'
[let13] set[tuple[ONTs]] <: rel [ ONTs'] = ONTs <: ONTs'
[letld] T < T == true, %% covari ant

ONTs' <: ONTs == true %% cont r avari ant

fun T N (ONTs) < fun T' N (ONTs') = true
[defaul t-1et]

T< T fal se

Here T, T1, T2, T' etc represent types, and ONTs, ONTsS etc represented lists of
OptionallyNamedTypes, e.g., atypethat optionally followed by a name. We omit the definition of <=
on OptionallyNamedTypes. The above rules also describe certain equivalences between types, e.g., a
map can be compared with arelation, arelation can be compared with a set of tuples, and the like.

We throw the names in types away in the subtype relation.

The subtyping relation for function typesistricky and treatsresult type and argument typesdifferently.
We have, for instance, that

set[int] f(int i) < fun set[&T] f(int i) %Absince int < &T

int f(nunmber x) <: fun nunber f (int Xx) %% assumi ng i nt <: nunber
but not that

nunber f(int x) <: fun nunber f (number x) %% assumi ng int <: nunber

In addition to the above rules for subtyping, each type definition introduces an additional subtype
relation, e.g., the previous definition for Graph,

type rel [ node, node] G aph
introduces the following subtype relation:

Graph <: rel[node, node]

Type Equivalence

Types are compatible if they occur on the same path from void to value in the type lattice. Thisisa
middle road between structural and nominal type equivalence, we call it intensional structural type
equivalence. An example can illustrate this. Assume we have the following definitions for general
graphs, control flow graphs and data flow graphs:

type rel [ node, node] G aph
type G aph CFG aph
type G aph DFG aph

CFG aph and G aph are compatible, and the same holds for DFG- aph and G- aph. Thisimplies
that thetypes CFGr aph and Gr aph (resp. DFG- aph and Gr aph) can befreely passed as parameter,
assigned, returned and value. This is, however, not true for CFGraph and DFGraph since they are
incompatible. Passing a value from the one to the other type can only be done via the common type
G aph. This uncomventional type scheme allows flexible conversion between subtypes (without

11
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casting or runtime checks) while preserving the opaqueness of digjoint subtypes of the same ancestor
type.

Attributes

Attributes are adornments of data and programs and come in two flavours:
« value annotations that allow associating one or more named values to another value.

 declaration tags that allow associating one or more named values to a declaration in a Rascal
program.

The former are intended to attach application data to values, like adding position information or
control flow information to source code or adding visualization information to a relation. The latter
are intended to add metadata to a Rascal program and allow to influence the execution of the Rascal
program, for instance, by adding memoization hints or database mappings for relations.

Value annotations

Annotations may be associated with any value and are represented by a mapping of type
map|[ st r, Type] ,i.e, annotation names are strings and annotation values are values of atypethat is
explicitly declared. Any value of any named type can be annotated and the type of these annotations can
be declared precisely. For instance, we can add to the graph datatype introduced earlier, the annotation
with name Layout St r at egy that defines which graph layout algorithm to apply to a particular

graph, e.g.,

anno Graph Layout Strategy "dot" | "tree" | "force" |
“hi erarchy" | "fisheye"

Note that the type that can be used in annotation declaration is identical to a type used in a
data declaration. In a similar way, we can add to certain syntactic constructs of programs (e.g.,
STATEMENT) an annotation with name posi nf o that contains location information:

anno STATEMENT posinfo | oc

or location information could be added for all syntax trees:

anno tree posinfo |oc

. Thefolllowing two operators are provided for handling annotations:

* Val @ Anno: retrieves the value of annotation Anno of value Val .

e Var @ Anno = Val : set the value of annotation Anno of the value of variable Var to Val .

Declaration tags

All declarations in a Rascal program may contain (in fixed positions depending on the declaration
type) one or more declaration tags (t ag). A tag is defined by declaring its name, the declaration type
towhich it can be attached, and the name and type of the annotation. The declarationtypeal | , makes
the declaration tag applicable for al possible declaration types. All declaration tags have the generic
format @Name{ ... 1}, witharbitrary text between the brackets that is further constrained by the
declared type. Here is an example of alicense tag:

tag nodule license str
Thiswill allow to write things like:

nodul e Bool eans
@icense{This nodule is distributed under the GPL}

12
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Other examples of declaration tags are:

tag all todo str %% a todo note for all declaration types
tag function deprecated void %% marks a deprecated function
tag function nmeno int %% bounded nenoi zati on of
%0 function calls
tag all doc str %% docunent ati on string

tag function primtive str %Woa primtive, built-in, function
Here are two examples from the standard library:

public &T first(list[&T] L)
throws enpty list(str nsQ)
@loc{First elenment of list: first}
@rimtive{"List.first"}

public &T nmax(set[&T] R)
@loc{ Maxi mum of a set: nax}
{

&T result = arb(R);
for(&T E : R{

result = max(result, E);
}

return result;

Variables

Variables are names that have an associated scope and in that scope they have a value. A variable
declaration consists of atypefollowed by the variable name and---depending on the syntactic position-
--they arefollowed by an initialization. There are no null values, which impliesthat all variables must
beinitialized at declaration time. Also, thisimpliesthat all expressions must return avalue. Especially
for functions, this means that all execution paths of afunction must have areturn statement.

Variables may be introduced at the following syntactic positions:

» Asformal parameters of afunction. Their scopeisthe function and they get their initial value when
the function is called.

 Local variablesin afunction body are declared and initialized. Their scope is the function body.
» Variablesin patterns. For patterns in match positions, declared variables are initialized during the
match and their scope is the rule in which they occur. For used variables, their value is substituted

during the match.

* For variables introduced by pattern matching in conditional statements (if-then, and while), if the
condition succeeds, the scope of the variables are the block of code that is executed conditionally.

» Variablesin anti-patterns are never visible, but nevertheless their names are reserved in the scope
that they would have had when the pattern was a normal positive matching pattern.

» Variables that are introduced by generators in comprehensions or for statement, have the
comprehension, respectively, for statement as scope.

 Global variables are declared and ALWAY Siinitialized at the top level of each module and these
initialization may not contain circular calls.

» Functions that use a global variable have to be explicitly declare it as well. The value of a global
variable can be used and replaced by all functions that have locally declared it.
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Caution
Bas: Shadowing?

We will see below that there are certain contexts in which assignments to variables are undonein the
case of failure.

Functions

Overview

A function declaration consistsof avisibility declaration, result type, afunction name, typed arguments
and a function body. Functions without aresult type have typevoi d.

A visihility declaration is one of the keywords publ i ¢ or pri vat e (default).

A function body isalist of statements, each terminated by a semi-colon. Each unique control flow path
through afunction must have areturn statement, such that each function alwaysreturns aproper value.

Functions can raise exceptions and these may -- for documentation purposes -- optionally be declared
as part of the function signature (i.e., we have unchecked exceptions in contrast with checked
exceptions in Java).

Functions with thetag "j ava" have abody written in Java. They have the following properties:
» Arguments and result are pure Rascal values.

» Javafunctions cannot accesthe global state of the Rascal program. Their only interfaceisviainput
parameters and aresult value. They cannot access Rascal global variables.

 Side effects caused by Java functions in the Java state, are not undone in the case of backtracking.
Note

These Java functions are primarily intended for implementing library functions and for
interfacing with Eclipse.

Functionswith thetag @reno are memo functionsthat cache previous arguments/result combinations.

Overloading

Functionsmay be overloaded, i.e., functionswith the same name but with different argument and result
types can be declared. Overloading is subject to the restriction that if several versions of a function
are declared with the same name, then one or more of the following conditions should hold:

* the number of parameters differs;

* thereis at least one parameter position with incomparable types w.r.t. the type hierarchy, i.e., not
(A <: B) and not (B<:A).

The result type does not play a role in these conditions and overloading on result types is thus
forbidden.

Here are some examples.

%6 OK, since int and doubl e are inconparable

int +(int a, int b) { ... }
doubl e +(double a, double b) { ... }

14
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%6 NOT OK, since int is conparable to val ue

Wo(int is -- like all types -- a subtype of val ue)
int +(value a, value b) { ... }
int +(int a, int b) { ... }

%6 OK since for every two definitions selected fromthis

%0 set there is at | east one paraneter position different;
%6in this exanple the overloading on result types will never
%6 be used to select the function

i nt +(int a, int b)
doubl e +(int a, double b)
doubl e +(double a, int b)
doubl e +(doubl e a, doubl e b)

%% NOT OK, since argunments cannot be resol ved.

i nt randomval ue()
str randonVal ue()

How should overloading be resolved in the presence of type parameters? Our approach is simple but
effective: a type parameter &T is taken to be of type val ue, unless it is explicitly constrained to
be smaller than (or smaller than or equal to) another type U by writing &T <: U. For the sake
of overloading resolution, a constrained type parameter will be considered to have the type of the
congtraint, i.e.,infun F(&T < U) we assume the &T to be of type U.

Here are more examples:

%6 NOT OK, because &T might be any type (i.e. value),
%% whi ch is conparable to int

str f(int x)
str f(&T x)

%6 NOT OK, since both T's may bind to conparabl e types and
%0 val ue and int are conparabl e

int f(&T x, value y)
int f(&T y, int Xx)

%6 OK, since the second argunents have inconparabl e types

int f(&T x, int y)
int f(&T y, double x)

Formal description of overloading

Given the subtype relation <=: defined earlier, we can easily formalize overloading resolution
by defining two predicates: i nconpar abl e describes when two lists of OptionallyNamedTypes
can be compared and may- over | oad describes when two function types satisfy the overloading
restrictions:

%% | nconpar abl e

[coml] inconparabl e(ONTs, ONTs') =
not ((ONTs <: ONTS') | (ONTs' <: ONTs))
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%% May- over | oad

[mo-1] may-overload(fun T N (ONTs), fun T" N (ONTs')) =
not(N == N ) |
i nconpar abl e( ONTs, ONTs')

Anonymous Functions

We aso allow anonymous functions, i.e., functions that are declared locally and can be passed as
argument to another function, be returned as value of afunction, or even be stored as value in a set
or relation.

Caution

Causes diasing; How does this interfere with backtracking? We may forbid write access to
globals outside the current context.
When such functions are called they are called in the lexical scope in which they were defined. For
instance, the Rascal standard Library definesamapper function that appliesafunctionto alist or set.
An anonymous function can be used to define such function arguments. Here is afunction addOne,
that adds 1 to each element of its argument list:

list[int] addOne(list[int] L)
return mapper (L, fun int (int N { return N +1 })

fun fun(int) -> int nakeAdder(int n)
return fun int (int x) { return x + 1}

Caution

The above needs further editing/explanation.

Patterns

We distinguish four kinds of patterns:

» Abstract patterns: prefix dataterms that are generated by a signature.

* Regular expression patterns; conventional regular expressions

» 9Yyntax patterns: textual fragments that are generated by a context-free grammar.

* Lexical patterns: a special case of syntax patterns dealing with lexical notions like identifiers,
numeric constants, and the like.

Patterns may contain variables and can occur in two syntactic positions:

» Match positions where the patternsis matched against another term and the variables in the pattern
are bound when the match is successfull. Examples of match positions are:

* Inacase construct, immediately after thecase, acase or r case keyword.
¢ Theleft-hand side of ar ul es or ar ul es statement.
¢ Inagenerator, where generated values are matched against the pattern.

» Make positions where the pattern is used to construct a new term (after replacing any variablesin
the pattern by their values. Examples of make positions are:

* Inacase construct, immediately after the => operator.

e Theright-hand side of ar ul es or ar ul es statement.
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« Asan ordinary expression in the form of a quoted syntax pattern, or a call to a constructor for
adataterm.

In make positions, patterns may also contain function calls (written between < and >) that are replaced
by their value during the construction of the pattern. Example:

<subst (V1, El, Ea)>
Note

To avoid syntactic complications, we currently refrain from alowing arbitrary expressions

inside patterns, e.g., using notation like#{ ... }.However, sincefunction argumentscan

be arbitrary expressions, thisis hardly arestriction.
A pattern may beturned into an anti-pattern by prefixing it with the symbol ! . An anti-pattern matches
in al cases where the original pattern does not match. A match of an anti-pattern cannot bind any
variables but these variables are nonetheless reserved in the corresponding scope.

Abstract Patterns

Data declarations introduce a signature of abstract terms and abstract patterns can be used to perform
matching on them. The same terms that or in a data delcaration, possibly including typed variables
that play a similar role as pattern variables in syntax patterns, may be used as abstract patterns at the
same position where concrete patterns are allowed. Lists, sets and tuples may also occur in abstract
patterns. Here are some examples of abstract patterns:

%6 Assumi ng:
%% dat a Bool band(Bool L, Bool R);

%% Bool B2;
%6 An abstract pattern matchi ng a band node:

band( bt rue, B2)

%0 The variable B2 can al so be decl ared inside the pattern:
band(true, Bool B2)

%6 Assumi ng:

%6 data Pl CO VALUE intval (int) | strval (str);
%6 An abstract pattern matching an intval:

i ntval (int nl)

%6 Assumi ng:

Woint P, Q

Wolist[int] Numsl, Nuns2;

[Numsl, P, Q Nuns2]

%0 This can al so be witten as:
[list[int Numsl], int P, int Q list[int] Nuns2]

%6 M xtures of variables declared outside the pattern
%6 and i nside the pattern are al so all owed:

[Numsl, int P, int Q Nunms2]

An abstract pattern may be preceeded by the key word abs, in order to resolve ambiguities with
syntax patterns.
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Regular Expression Patterns

Regular expression patterns are ordinary regular expressions that are used to match a string value and
to decomposeit in parts and al so to compose new strings. Regular expression patterns bind variables of
type st r when the match succeeds, otherwise they do not bind anything. Their syntax and semantics
parallels abstract and concrete syntax patterns as much as possible. This means that they can occur
incasesof vi sit and swi t ch statements, on the left-hand side of the match operator (~~) and as
declarator in generators.

We use aregular expression language that extends the lexical syntax rulesfound in SDF towards Java
regex with the following exceptions:

» Regular expression are delimited by / and / optionally followed by a modifier (see below).
» Character classes are written in the SDF way.

 Java regular expressions might have optional groups, which may introduce null bindings. Since
null pointers are not allowed in Rascal, we limit the kinds of expressions one can write here by not
alowing nesting of named groups.

» Weadlow named groups, syntax <Name: Regex>, which introduce avariable of type st r named
Name.

» We dlow name use in aregular expression: <Nanme> which inserts the string value of Nane in
the pattern.

» We alow function callsinside aregular expression: <F( . . . ) > which inserts the string value of
the function call in the regular expression.

» Named groups have to be outermost, such that they can only bind in one way.

* Unlike Perl, Java uses the notation ( ?Opt i on) inside the regular expression to set options like
multi-line matching ( ?m) , case-insensitive matching ( ?i ) etc. We let these options follow te
regular expression.

» We omit some more esoteric features of Java regex like (octal and hex constants, look ahead and
look behind) but these can always be added.

» Wehave an explicit grammar for the regular expression language that facilitates translation to Java
regex.

Here are some examples of regular patterns.

/\brascal \ b/i

does a case-insensitive match (i ) of the word rascal between word boundaries (\ b). And
[N *?2<wor d: \ w+><rest:.*$>/m

does a multi-line match (), matches the first consecutive word characters (\ w) and assigns them to
the variable wor d. The remainder of the string is assigned to the variabler est .

Syntax Patterns

There is a notation of a syntax pattern: a (possibly quoted) concrete syntax fragment that may
contain variables. We want to cover the whole spectrum from maximally quoted patterns that can
unambiguously describe any syntax fragment to minimally quoted patterns as we are used to in
ASF+SDF. Therefore we support the following mechanisms:

* A pattern variable declaration, written as <TYPE NAME> declares a new variable with a scope
determined by the syntactic context of the pattern.
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» A pattern variable use, written as <NAME>, uses the value of an already declared variabele during
the use of the pattern.

* Quoted patterns enclosed between [ | and | ] . Inside afully quoted string, the characters <, > and
| can be escaped as\ <, \ >,\ | . Fully quoted patterns may contain pattern variable declarations
and pattern variable uses.

A quoted pattern may be optionally preceeded by an SDF symbol to defineitsdesired syntactic type.

» Unquoted patterns are (unquoted) syntax fragments that may contain pattern variable declarations
and pattern variable uses.

* Inside syntax patterns, layout isignored.
Quoted and unquoted patterns form the syntax patterns that are supported in Rascal.
Examples are:
» Quoted syntax pattern with two pattern variable declarations:
[| while <EXP Exp> do <{STATEMENT ";"}* Stats> od |]
* Quoted syntax pattern with two pattern variable uses:
[| while <Exp> do <Stats> od |]
* ldentical to the previous example, but with a declaration of the desired syntactic type:
STATEMENT [| while <Exp> do <Stats> od |]
» Unquoted syntax pattern with two pattern variable declarations:
whi | e <EXP Exp> do <{STATEMENT ";"}* Stats> od
» Unquoted syntax pattern with two pattern variable uses.
whi | e <Exp> do <Stats> od

Obvioudly, with less quoting and type information, the probability of ambiguities increases. Our
assumption is that a type checker can resolve them.

Note

Implementation hint (used to check the examples in this document). For every sort Sin the
syntax definition add the following rules:

S -> Pattern
"<M"S'? Nane M>" -> S

Lexical Patterns

A special case of syntax patterns, are lexical patterns that describe lexical notions such as identifiers,
numeric constants and the like. Lexical patterns can appear as part of a concrete syntax pattern. Our
solutionisamiddleroad between the original solution used in ASF+SDF (simple but not type safe) and
the current solution in ASF+SDF (complex but type safe). Thekey ideaisthat aconstructor functionis
implicitly created for every lexical definition, i.e., when the SDF definition definesthe lexical sort LS,
then the following lexical constructor function | s (the sort namein lower case) isimplicitly defined:

| s( LEXARGS ) -> LS
LEXARGS consist of zero or more:

* String constants.
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» Typed Variables enclosed in angle brackets (as used in other patterns).

The LEXARGS argument combined should form a strings of sort LS.

Note

The current solution in ASF+SDF requires that all intermediate lexical constructors are
explicitly written in the pattern. Here we relax this requirement.

For instance, given alexical syntax for numbers (part of an SDF definition):

sorts DIG T NAT- CON
| exi cal syntax
[ 0-9] ->DIAT
DG T+ -> NAT-CON
A rule that would remove leading zeros looks like this:

nat con("0" <Dl G T+ Ds>) => nat con(<Ds>)

Note

Unlike the ASF+SDF solution, it is not necessary to make a distinction between ordinary
variables, lexical variables, and layout variables. Here, all variables are treated equal and
their syntactic position determines how they are used.

We also alow arbitrary character classes astype in a pattern variable, e.g., one could also write:

nat con("0" <[0-9]+ Ds>) => natcon(<Ds>)
Caution

Make lexical patterns and regular patterns more similar to each other.

According to conventions imposed by the SDF implementation, for each lexically defined sort S the
sorts S- Lex (lexical definition of S) and S- CF (context-free definition of S) are created together
with the inclusion rule

S-Lex -> S-CF
For precise typing of lexical patterns, one may have to resort to these generated types.

Caution

How do we parameterize layout?

i mport Java[ LAYOUT => JAVA- LAYQUT]

Statements

The different statement types are described in the following subsections.

Declaration and assignment

Rascal provides variable declarations with optional initialization. If the initialization is missing, no
control flow path may exist with use before definition. An assignment statement assigns avalue to a
variable. The left-hand side is of syntactic type Assi gnabl e, and may be a simple variable, index
of variable, field selection of variable, or acombination of these. Assignments may be undone in the
context of afailing case of a switch or visit statement.

An assignment may also contain one of the assignment operators +=, - =, *=,/ =, &=, and | =.
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Standard control statements
Rascal supports the following standard control statements:
* |f-then statement and if-then-else statement.
* A whi | e statement to repeat ablock of code while a given Predicate istrue.
» Af or statement repeats ablock of code for each value produced by a generator.

» A et ur n statement returns avalue from afunction, or just returns (for functions with result type
void). Note that return jumps out of an entire function, even if it is nested in a complicated control
flow statement such as visit.

Solve statement

Rascal provides a solve statement for the solution of sets of simultaneous linear equations. The format
is:

sol ve (Expression) {
Assi gnabl el Expr essi onl;
Assi gnabl e2 Expr essi on2;

}

The solve statement is executed by performing the assignments in its body as long as the value of
at least one assignable at the left-hand side of an assignment changes. The optional Expr essi on
directly following the sol ve keyword, gives an upperbound on the number of iterations.

Exception handling

At ry statement can be used to execute astatement and to catch any exception raised by that statement
and resembles the corresponding Java construct:

try Statenment
catch Patternl : Statenentl
catch Pattern2 : Statenent?2

finally: Statenent

A throw statement can raise an exception.

Switch and fail statement
A swi t ch statement is similar to a switch statement in C or Java and has the form:

switch ( Expression ) {
case Rul el;
case Rul e2;

defaul t:

}

The value of the expression is the subject term that will be matched by the successive cases in the
switch statement. This corresponds to the matching provided by the left-hand sides of a set of rewrite
rules. However, the switch statement provides only matching at the top level of the subject term and
does not traverse it. The type of the pattern in each case must be identical to the type of the subject

term (or be a subtype of it). If no case matches, the switch acts as a dummy statement. There is no
fall through from one case to the next.

Each case contains a Rule that can have one of the following forms:

21



Rascal Requirements and Design Document

Synt axPatternl => Synt axPattern2

When the subject matches Synt axPatternl, SyntaxPattern2 is returned from the
enclosing function (after proper substitution).

Abstract Patternl => AbstractPattern2 or PatternVari abl e

When the subject matches Abst r act patt ernl, Abstract Pat t er n2 is returned from the
enclosing function (after proper substitution). When the right-hand side consists of a single
Pat t er nVari abl e, itsvalueisreturned.

RegExpPattern => StringLiteral or PatternVariabl e

When the subject matches RexExpPatternl, StringLiteral (or the single
Pat t er nVari abl e) isreturned from the enclosing function (after proper substitution).

Pattern : Statenent

Thisisthe most general case. When the subject matches Pat t er n, the St at ement is executed.
The execution of St at enent should lead to one of the following:

< Execution of ar et ur n statement that returns a value from the enclosing function.

» Execution of af ai | statement: all side effects of St at enent are undone and the next case
istried.

» None of the above: execution continues with the statement following the switch.
Note
In the future we intend to unify the first three alternatives into:

Patternl => Pattern2

Right now, we stick to these three alternatives to reduce the number of syntactic ambiguities.

Flow of control and local alternatives

Theflow of control in Rascal ismoreor lesstraditional, except that in somesituations|ocal alternatives
may exist. Thisisin particular the case when using patterns that contain list or set patterns. In those
cases, more than one match may be possible and the flow of control is such that these matches can be
handled appropriately. We have the following:

The"if" and "while" statement provide ordinary flow of control and their condition may not contain
list patterns, set patterns or generators.

The for-statement also provides ordinary flow of control and its condition is a generator.
We have break and continue statements.

The "switch" and "visit" construct introduce a save/commit barrier before and after each case.
Executing a fail in the code associated with a case leads to undoing side-effects and continuation
with the next case.

We aready have "forall" (suggestion: rename thisto "all") and "exists" as predicates that test that
al (or at least one element) satisfies a predicate.

TO BE DISCUSSED: The new statement constructs "all" and "exists' have a list or set pattern as
condition. They establish asave/commit barrier around each iteration. When an iteration completes
normally all its side-effects are made permanent and execution continues with the next iteration
(al) or the next statement (exists). When "fail" is encountered during execution, al side-effectsare
undone and execution continues with the next iteration.
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Expressions

Table 1. Operatorson Datatypes

bool int |double| str loc list tuple set map rel
equal |== == == == == == == == == ==
nequal |!= I= 1= I= I= I= 1= I= I= I=
less |< < < < < < < < < <
lesseq |<= <= <= <= <= <= <= <= <= <=
greater |> > > > > > > > > >
greatered >= >= >= >= >= >= >= >= >= >=
and/ |&& & & &
inter
of I | | |
union
not |!
add/ + + + + +
conc
sub/diff - - - - - -
prod * * * * * *
div / /
in in in in in in in
notin notin notin |notin |notin |notin | notin
*_ * *
closure
+- + +
closure
project [_] [ B [_]
Note

Some operators do not fit nicely in this scheme since they do not operate on the basic data
types:

e (@get annotation value
e ~~match
e | ~ no match

e _? _ : _ conditional expression

Basic values

Constantsof typebool ,i nt ,doubl e,str and|l oc areexpressions. All operatorsfor all datatypes
are summarized in Table 1, “Operators on Datatypes’ [23].

Structured values

Vaues of the structured types | i st, set, tuple, rel and nap are expressions and can be
constructed as follows:
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 Lists are enclosed between [ and | and the elements are separated by comma's, eg. [ "abc",
"def"] or[true, false, false, true].Forlistsof integers, aspecia shorthand exists
to describe ranges of integers:

e [ F.. L] rangesfrom first element F to (and including) last element L with increments of 1.

« [F,'S,..E], ranges from first element F, second element S to (and including) last element L
with incrementsof S- F.

» Sets are enclosed between { and } and the elements are separated by comma's, eg. {"abc",
"def"} or{true, false}.

e Tuples are enclosed between < and > and the elements are separated by commas, e.g. <1,
"twee", 3>.

» Relations are sets of tuples.

» Maps are a special form of binary relation and satisfy the constraint that the first element of each
tuple is unique. Maps model functions. To distinguish between map tuples and tuples in general
relations, we write them as<E1 -> E2>.

Anindex operator R N] canbeappliedtovaluesof typeslist, tuple, string and returnsthe N-th element.
It throws the exception out _of _range(str nsg) whentheindex valueisout of range.

For amap M MN], returns the single image value corresponding with N. This expression may also
occur as left-hand side of an assignment:

MN =V

which first removes from Mthe tuple with domain value N and then adds the tuple <N -> V>. The net
effect isthat a new map value is assigned to M

For al structured values, we provide comprehensions for lists of the form:
[ E] &, ..., & ]
and for sets, maps and relations of the form:
{ E|] &, ..., &}
Tree values
Syntax trees are expressions and generators in comprehensions may range over syntax trees.
Generators may have a strategy option to indicate:
* top-down
* t op- down- br eak
» bott om up (thisisthe default)
e bott om up- break

The two other strategy options (i nner nost and out er nost ) are only meaningfull in the context
of avi si t expression.

Predicates

Predicates are expressions that yield a value of type bool and include == (equal), ! = (not equal), <
(less), <= (less or equal), > (greater), >= (greater or equal). Predicates are used in control statements
and in conditional expressions written as

Predi cate ? Expressionl : Expression2
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Other predicates are:
e i n,noti n: membership test.
e ~~match

e | ~ nomatch

Visit expression and insert statement
A vi si t expression corresponds to atraversal function in ASF+SDF and has the form:

Strategy visit ( Expression ) {
case Rul el;
case Rul e2;

def aul t:
}

Given a subject term (the current value of Expr essi on) and a list of cases (resembling rewrite
rules) it traverses the term. Depending on the precise rules it may perform replacement (mimicking
atransformer), update local variables (mimicking an accumulator) or a combination of these two. If
any of the cases containsani nsert statement, the value of the visit expression is a new value that
is obtained by successive insertions in the subject term by executing one or more cases. Otherwise,
the value of the subject term is returned.

Thevisit expressionisoptionally preceeded by one of thefollowing strategy indicationsthat determine
the traversal order of the subject:

* top-down

* t op- down- br eak

* bott om up (thisisthe default)
* bott om up- break

e i nner nobst =compute afixed-point: repeat abottom-up traversal aslong asthetraversal function
changes values.

» out er nost = compute afixed-point: repeat atraversal traversal aslong as the traversal function
changes values.

The execution of the casesis similar to the casesin a switch statement with the following exceptions:

» The three Rule cases of the form ... => ... insert their result in the subject (instead of returning a
value).

* Inthefourthcase Pattern : Statenent, executing St at ement should lead to one of the
following:

e Execution of an i nsert statement of the form i nsert Expressi on. The vaue of
Expr essi on replaces the subtree of the subject that is currently being visited. Note that a copy
of the subject is created at the start of the visit statement and all insertions are made in this copy.
As a consequence, insertions cannot influence matches later on.

Note

Ani nsert statement may only occur insideavi si t expression.

* Executionof af ai | statement: all sideeffectsof St at enent areundone, noinsertionismade,
and the next case istried.
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» Execution of ar et ur n statement that returns a value from the enclosing function.

Each case keyword may be followed by atype constraint of the form [ Type] that limits the type of
the tree nodes to which the case applies.

The precise behaviour of the visit statement depends on the type of the subject:

» For type tree, al nodes of the tree are visited (in the order determined by the strategy).
SyntaxPatterns and AbstractPatterns directly match tree nodes. RexExpPatterns match only values
of type string.

* For structured types (list, set, map, rel), the elements of the structured type are visited and matched
against the cases. When inserts are made, a new structured valueis created.

Caution

Have strategies any effect for non-tree subjects?

Global rules

The Rulesthat we have already encountered in switch and visit statement, can a so be defined globally
and are the closest to rewrite rules as we will get in Rascal. Unlike functions that are always called
explicitly when needed, global rulesare aways applied implicitly, i.e., whenever avalue of sometype
iscreated and there are rules defined for that type, they areimmediately applied. In principle, rulescan
be used to define arbitrary computations. In practice, they are mostly used to guarantee that certain
constraints are satisfied whenever avalue of some typeis created.

Rules have the genera form:

rul e Nane Rul e

Hereis an example for concrete Booleans:

rule al true & <Bool B2> => <B2>

and here for abstract Booleans:

rul e al band(btrue, <Bool B2>) => <B2>

Aswehave seen before, thereplacement part may also havetheform colon (: ) followed by an arbitrary
statement. During execution of rules the following applies:

* Rulesare applied non-deterministically, and in any order of matching.

e The right hand side of rules can contain fail statements, which cause backtracking over the
dternative rules for a certain constructor.

* When the right-hand side is a statement, a return statement determines the value of the actual
replacement.

As with cases, the rule keyword may be immediately followed by a type constraint to limit its
applicability.

Caution

Default rules?

Failure and side-effects

There are two contexts in which side-effects, i.e., assignment to variables, have to be undone in case
of failure. These contexts are arule in a switch or visit statement. If the pattern on the |eft-handside
of the rule matches there are various possihilities:
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All control flow paths through the right-hand side of the rule end in areturn statement. In this case,
therulecan not fail and all side-effects caused by the execution of theright-hand side are committed.

One or more control path can fail. This can be caused by an explicit fail statement or an if-then
statement with missing else-branch (the missing el se-branch acts asafail). In the case of failure all
side-effects (of local and global variables) are undone.

If arulefailsthere are two possibilities:
« theleft-hand side contains alist pattern that has more matching options; the next option istried.

« theleft-hand side contains alist patterns that has no more matching options or it contains no list
pattern at all; the next ruleistried.

The possible choice points are;

¢ caseinaswitch, visit statement.

match of left-hand side of rule.

 Selection of abinding of list variables during list matching, except if thereis one possibility left.
* Selection of an element by a generator.

The possible failure points are:

« fail statement

 apredicate used as generator in a comprehension.

The possible success points are;

e return (jumpsout of function scope and pops al choice points).

e insert (jumpstoenclosing switch or visit or rule choice)

« true predicate in comprehension (jumps to next assignment of generator).

On failure, the currently active choice point is used to undo side-effects and to continue execution.

Side effects caused by built-in functions (like file i/o, socket communication, etc.) are not undone.

Examples

Here we list experimental examples of Rascal code to try out features.

Hello world

Therritual first example:

nmodul e Hel |l o

public void main() {

}

printin("Hello, this is ny first Rascal program');

Table of squares

Another ritual example, printing atable of squares:

nodul e Squar es
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public void main(list[str] argv)({
int N=tolnt(argv[0]);
map[int,int] squares = {};
for(int I : [1 .. N){

squares[I] =1 l;
}

println("Table of squares from1 to ", N);
printl n(squares);

Caution
We need a mechanism to insert valuesin strings, e.g.

println("Table of squares from1l to <N>");

Table of word counts per file
nodul e Wor dCount

public void main(list[str] argv)({
map[str, int] counts = {};
for(str fileNane : argv){

try {
counts[fil eName] = wordCount (readFile(fileName));
}

catch: println("Skipping file <fil eName>");
}

println("ln total <sum(range(counts))> words in all files");
println("Wrd counts per file: <counts>");

}

i nt wordCount (str S){
int count = O;
%6the moption enables nmulti-Iine matching
for(/[a-zA-Z0-9] +/m S){
count += 1;
}

return count;

}

%WoHere is an alternative (but |ess desirable) declaration:
i nt wordCount2(str S){
int count = O;
%% \w mat ches any word character
%o <...> are groups and shoul d appear at the top |evel.
%6 mturns on nulti-line matching
while (/A *2<word: \w+><rest:.*$>/m ~~ S) {
count += 1;
S = rest;
}

return count;

}

%% Mai ntai n word count per word.
%% Not e how the += operator initializes each map entry
%oto an appropriate value (0 in this case)
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map[str,int] wordCount PerWord(str S){
map[str,int] allCounts = {};

for(/<word: M a-zA-Z0-9] +>/m S){
al | Counts[word] ? 0 += 1;
}

return all Counts;

}
Word replacement

Here are two versions of aword replacement function:

Caution

How does this example work?

nodul e Wr dRepl acenent

str capitalizel(str S){
return visit (S) {
%6\ b matches a word boundary
%61 turns on case-independent matching
case /\brascal\b/i => "Rascal "

H

str capitalize2(str S, str Pat, str Repl){
return visit (S) {
case /\b<Pat>\b/i => "<Repl>"
}i
}

The function capi t al i zel, replaces all occurrences of rascal (in al possible cases) by the
standard spelling Rascal . The function capi t al i ze2 isagenerdization of capi tal i zel: it
takes a subject string, a pattern string and a replacement string. Observe how the argument Pat is
inserted in the regular expression.

The call capitali ze2(Subject, "rascal", "Rascal") will have the same effect as
capitalizel(Subject).

Finding date-related variables

In year 2000 conversions, the starting point for analysis could be variables with a date-related name.
Here is how to find them:

nmodul e Dat eVar s

set[Var] get Dat eVar s(Program P) {
return {V | Var V : P,
/.*(date|dt|year|yr).*$/i ~~ toString(V)};
}

Booleans

It seemsthat every language specification effort hasto produce a specification of the Booleans at some
moment, so let'stry it now. Wetry several variations.

We use the following common syntax:
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nodul e Bool eans- synt ax
exports
sorts Bool

context-free syntax

"true" - > Bool

"fal se" - > Bool

Bool "&" Bool -> Bool {left}
Bool "|" Bool -> Bool {right}

Concrete Booleans defined with visit

Using the visit construct that we have described above, we can write the definitions for the functions
&and| asfollows:

nodul e Bool - exanpl esl
i mport | anguages/ Bool eans/ synt ax;

Bool reduce(Bool B) {

Bool Bl1, B2;
return bottomup visit(B) {
case true & <B2> => <B2>

case false & <B2> => false

case true | true => true
case true | false => true
case false | true => true
case false | false => fal se
}
}

Observe that there are two styles:

* Inthedefinition for & we use variables on the left-hand side: the visit is needed to fully normalize
the result.

* Inthedefinition of | , we use atruth table.

Abstract Booleans defined with visit

In the above example we used concrete syntax for Booleans expressions. It also possible to define
Booleans as abstract terms.

nodul e Bool - abstract

data Bool btrue;
dat a Bool bfal se;
dat a Bool band(Bool L, Bool R);
dat a Bool bor(Bool L, Bool R);

Bool reduce(Bool B) {

Bool B1, B2;
return bottomup visit(B) {
case band(btrue, B2) => B2 %0 Use Vari abl es
case band(bf al se, B2) => bf al se
case bor(btrue, btrue) => btrue %WoUse a truth table
case bor(btrue, bfalse) => btrue
case bor (bfal se, btrue) => btrue

case bor (bfal se, bfalse) => bfalse
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}s
}

First, type declarations are used to define the abstract syntax of the type Bool. Next, a similar reduce
function is defined as before, but now we use abstract patterns.

Abstract Booleans defined with rules

In ASF, values are alwaysreduced to anormal form beforethey are created. For some applicationsthis
normalization or canonicalization feature is very handy. We introduce the following syntax, which
can also help in the transformation of old ASF+SDF programsto Rascal:

nodul e Bool -rul es

dat a Bool btrue;
dat a Bool bfal se;
data Bool band(Bool L, Bool R);
dat a Bool bor(Bool L, Bool R);

rule al band(btrue, Bool B2) => B2
rul e a2 band(bfal se, Bool B2) => Dbfal se

rul e ol bor(btrue, btrue) => btrue
rul e o2 bor(btrue, bfalse) => btrue
rul e o3 bor(bfal se, btrue) => btrue
rul e o4 bor (bfal se, bfal se) => bf al se

These rules are applied on every Bool that is constructed. Like in ASF+SDF it is the responsibility
of the programmer to make sure the rules are confluent and terminating. A rule definition has the
same syntax and semantics as the switch construct, allowing backtracking, side-effects and checking
of conditions.

There are some issues here:

* It should be dissallowed to have private rules on public constructors; normalization isaglobal effect
on public data-structures. On the other hand, constructorsthat arelocal to a module may have some
private rules applied to them; but public rules on private constructors are dissallowed too.

Concrete Booleans defined with rules
In asimilar fashion, the concrete syntax version of Booleans can be defined using rules:

nodul e Bool - conc-rul es
i mport | anguages/ Bool eans/ synt ax;

rule al true & <Bool B2> = <B2>
rule a2 fal se & <Bool B2> => fal se

rule ol true | true => true
rule o2 true | false => true
rule o3 false | true => true
rule o4 false | false => fal se

Abstract Graph datatype

In the Meta-Environment we use an abstract data type to exchange data representing graphs. It can
be defined as follows.

nodul e G aph
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data Graph graph(NodelLi st nodes,
EdgeLi st edges,
Attributelist attributes);

type list[Node] Nodelist;

dat a Node node( Nodeld i d,
Attributelist attributes);

dat a Node subgraph(Nodeld id,
NodeLi st nodes,
EdgeLi st edges,
Attributelist attributes);

data Nodeld id(termid);
type list[Attribute] Attributelist;

data Attri bute boundi ng-box(Point first, Point second);
data Attribute col or(Col or color);

data Attribute curve-points(Pol ygon points);
data Attribute direction(Direction direction);
data Attribute fill-col or(Color color);

data Attribute info(str key, value val ue);
data Attribute | abel (str |abel);

data Attribute tooltip(str tooltip);

data Attribute location(int x, int y);

data Attribute shape(Shape shape);

data Attribute size(int width, int height);
data Attribute style(Style style);

data Attribute level (str |evel);

data Attribute file(File file);

data Attribute file(value file);

data Color rgb(int red, int green, int blue);
data Style bold | dashed | dotted | filled | invisible | solid,
data Shape box | circle | dianond | egg | elipse | hexagon |
house | octagon | parallelogram| plaintext |
trapezium | triangle;
data Direction forward | back | both | none;
type list[Edge] Edgelist;
dat a Edge edge(Nodeld from
Nodel d t o,
Attributelist attributes);
type list[Point] Polygon;
data Point point(int x, int y);

Tree traversal

Hereisthe binary tree example that we use in explaining traversal functionsin ASF+SDF.
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nodul e BTree- synt ax
i mports basic/lntegers

exports

sorts BTREE

cont ext-free syntax
I nt eger -> BTREE
f (BTREE, BTREE) -> BTREE
o( BTREE, BTREE) -> BTREE
h( BTREE, BTREE) -> BTREE
i (BTREE, BTREE) -> BTREE

nodul e BTr ee- Exanpl es
i mport BTree-synt ax;

%6 Ex1: Count |eaves in a BTREE

%Woldea: int N: T generates alle Integer leaves in the tree
%6 Observe that there is no need to touch the contents of
%6 each | nteger since we only count them

int cnt(BTREE T) ({
return size({N| Integer N: T});

}

%6 Ex1: alternative solution using a visit statenent

int cnt(BTREE T) ({
int C=0;
visit(T) {
case <Integer N> : C = Ct1;
b
return C

}

%6 Ex2: Sumall |eaves in a BTREE

%o NB sumis a built-in that adds all elenments in a set or |ist.
%0 Here we see i mMmedi ately the need to convert between

%6 - the syntactic sort "Integer"

%6 - the built-in sort "int"

%6 We use the tolnt function that attenpts convert any tree
%Woto an int.

int suntree(BTREE T) ({
return sum({tolnt(N) | Integer N: T});

}

%6 Ex2: using visit statenent

int cnt(BTREE T) ({

int C= 0;
visit(T) {
case <Integer N> : C = Cttolnt(N);
b
return C
}
%0 Ex3: Increnment all |eaves in a BTREE
%60 | dea: using the visit statenent visit all |eaves in
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%Wothe tree T that match an integer and replace each Nin T by N+1.
%% The expression as a whole returns the nodified tree

%% Note that two conversions are needed here:

%6- fromlinteger to int (using tolnt)

%6- fromint back to Integer (using parseString)

BTREE i nc(BTREE T) {
return visit (T) {
case <Integer N>: insert parseString(tolnt(N)+1);
b
}

%6 Ex4: full replacenent of g by i
%% The whol e repertoire of ASF+SDF traversal functions is avail able:

%6 - bottomup visit (T) { ... }
%6 - bottomup-break visit (T) { ... }
%06 - etc.

%% A nice touch is that these properties are not tied to the
% decl aration of a travesal function (as in ASF+SDF) but to
Woits use.

BTREE frepl (BTREE T) {
return bottomup visit (T) {
case [| 9(<BTREE T1>, <BTREE T2>) |] =>
i (<BTREE T1>, <BTREE T2>)
b
}

%6 Ex5: Deep repl acenent of g by i

BTREE frepl (BTREE T) {
return bottom up-break visit (T) {
case[| g(<BTREE T1>, <BTREE T2>) |] =>
i (<BTREE T1>, <BTREE T2>)
b
}

%% Ex6: shal |l ow repl acenent of g by i (i.e. only outernpst
%o g' s are repl aced);

BTREE srepl (BTREE T) ({
return top-down-break visit (T) {
case [| 9(<BTREE T1>, <BTREE T2>) |] =>
i (<BTREE T1>, <BTREE T2>)
b
}

%6 Ex7: W can al so add the top-down-break directive to the
%% generator to get only outernpst nodes.

set [ BTREE] find_outer_gs(BTREE T) ({
return
{ S| top-down-break STATEMENT S : T,
[| 9(<BTREE T1>, <BTREE T2>) |] ~~ S };

}

%% Ex8: accumul ati ng transformer that increnents | eaves with
%% anount D and counts them
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tupl e[int, BTREE] count_and inc(BTREE T, int D) {
int C= 0;

visit (T) {
case <Integer \>: { C= C + 1;
int NL = tolnt(N) + D
i nsert parse(unparseToString(NL));

}s
return <C, T>;

}
Substitution in Lambda

Below a definition of substitution in lambda expressions. It would be nice to get this as simple as
possible since it is a model for many binding mechanisms. It is also a challenge to write a generic
substitution function that only depends on the syntax of variables and argument binding.

nodul e exanpl es/ Lanbda/ Lanmbda- synt ax

exports

sorts Var % vari abl es
Exp %% expressi ons

| exi cal syntax

[a-2z] + -> Var
context-free syntax
"prime" "(" Var ")" -> Var 9 generate uni que nane
Var -> Exp 9o single variable
"fn" Var "=>" Exp -> Exp %o function abstraction
Exp Exp -> Exp %o function application
Examples:

nodul e Lanbda- Exanpl es
i mport Lamnbda- synt ax;

set[Var] allVars(Exp E) {
return {V | Var V: E};

}

set[Var] boundVars(Exp E) {
return {V | fn <Var V> => <Exp E1> : E};
}

set[Var] freeVars(Exp E) {
return allVars(E) - boundVars(E);

}

%% Generate a fresh variable if V does not occur in
%6 gi ven set of vari abl es.

Var fresh(Var V, set[Var] S§) {
if (Vin S{ return prine(V); } else {return V;}
}

%% Substitution: replace all occurrences of Vin E2 by El

Exp subst(Var V1, Exp El1, Exp E2) {
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return visit (E2) {
case <Var V2>: insert (V1==V2) ? El1 : V2,

case <Exp Ea> <Exp Eb>:
insert [| <subst(V, E, Ea)> <subst(V, E, Eb)> |];

case fn <Var V2> => <Var Ea>:
if (VI ==V2) { insert [| fn <V2> =\> <Ea> |]; }

case fn <Var V2> => <Exp Ea>:
if(Vl !'= V2 & ! (V1 in freeVars(E2) &&
V2 in freeVars(El))){
insert [| fn <V2> =\> <subst(V1, El1, Ea)> |];

}

case fn <Var V2> => <Exp Ea>:
if(vli!=V2 & V1 in freeVars(Ea) &&
V2 in freeVars(El)){
Var V3 = fresh(V2, freeVars(Ea) + freeVars(El));
Exp EaS = subst(V1, E1, subst(V2, V3, E2));
insert [| fn <V3> =\> <EaS> |];

}s
}

Renaming in Let

nodul e Let - synt ax

exports

sorts Var %% vari abl es
Exp %% expr essi ons

| exi cal syntax

[a-2z] + -> Var
context-free syntax

Var -> Exp

“let" Var "=" Exp "in" Exp "end" -> Exp
Examples:

nodul e Let - Exanpl e
i mport Let;

%% Renanme all bound variables in an Exp

%6 Version 1: purely functional

%6 Exp: given expression to be renaned
%Worel[Var,Var]: renam ng table

%61 nt: counter to generate unique variabl es

Exp renane(Exp E, rel[Var,Var] Rn, Int Cnt) {
switch (E) {
case let <Var V> = <Exp E1> in <Exp E2> end:
return [| let <parseString("x" + toString(Cnt))>
<rename(El, Rn, Cnt)>

in
<rename(E2, {<V, Y>} + Rn, Cnt+l)>
end
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1

case <Var V> return Rn[V];

default: return E

}
}

Renaming in Let using globals

Here is the same renaming function now using two global variables.

nodul e Let - Exanpl e
i mport Let;

%% Renanme all bound variables in an Exp

%% Versi on 2: using global variables

%6 Cnt: gl obal counter to generate fresh variabl es
%Worel[Var, Var]: gl obal renaning table

gl obal int Cnt = O;
gl obal rel[Var,Var] Rn = {};

Var newvar () {

gl obal int Cnt;

Cnt = Cnt + 1;

return parseString("x" + toString(Cnt));
}

Exp renane(Exp E) {
gl obal int Cnt;
gl obal rel[Var, Var] Rn;
switch (E) {
case let <Var V> = <Exp E1> in <Exp E2> end: {
Var Y = newvar () ;
Rn = {<V, Y>} + Rn;
return [| let <Y>= <renane(El)>
in
<r enane( E2) >
end
11
}

case <Var V> return Rn[V];

default: return E

}
}

Pico Typechecker

The following example shows a typechecker for Pico that generates alist of error messages.

nmodul e Typecheck

i mport Pi co-synt ax;
i mport Errors;
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type map[ Pl CO- | D, TYPE] Env;

list[Error] tcp(PROGRAM P) {
switch (P) {
case begin <DECLS Decl s> <{ STATEMENT ";"}* Series> end: {
Env Env = {<ld, Type> |
[| <PICOID Id> : <TYPE Type> |] : Decls};
return [ tcst(S, Env) | Stat S : Series |;
}
}

return [];

}

list[Error] tcst(Stat Stat, Env Env) {
switch (Stat) {
case [| <PICO-ID Id> = <EXP Exp>|]: {
TYPE Type = Env[Id];
return type_of (Exp, Type, Env);
}

case if <EXP Exp> then <{STATEMENT ";"}* Statsl>
el se <{STATEMENT ";"}* Statsl> fi:
return type_ of (Exp, natural, Env) +
tcs(Statsl, Env) + tcs(Stats2, Env);

case whil e <EXP Exp> do <{STATEMENT ";"}* Statsl> od:
return type of (Exp, natural, Env) + tcs(Stats, Env);
}

return [];

}

list[Error] type_of (Exp E, TYPE Type, Env Env) {
switch (E) {
case <Nat Con N>: if(Type == natural){ return []; }

case <StrCon S>: if(Type == string) { return []; }

case <PICOID Id>: {

TYPE Type2 = Env(Ild);

if(Type2 == Type) { return []; }
}

case <EXP El1> + <EXP E2>:
i f(Type == natural){
return type of (El, natural, Env) +
type_of (EL1, natural, Env);
}

case <EXP E1> - <EXP E2>:
i f(Type == natural){
return type of (El, natural, Env) +
type_of (EL1, natural, Env);
}

case <EXP E1> || <EXP E2>:
i f(Type == string){
return type_of (ELl, string, Env) +
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type_of (EL1, string, Env);
}

default: return [error("lncorrect type")];
}
Pico evaluator

nodul e Pi co-eval
i mport pico/ syntax/ Pi co;

data PI CO VALUE intval (int) | strval (str);
type map[ PI CO I D, Pl CO VALUE] VEnv;

VEnv eval Pr ogr am( PROGRAM P) {
switch (P) {
case begin <DECLS Decl s> <{ STATEMENT ";"}* Series> end: {
VEnv Env = eval Decl s(Decl s);
return eval Statenents(Series, Env);

}

VEnv eval Decl s( DECLS Decl s) {
VEnv Env = {};
visit (Decls) {
case <PICOID Id> : string: {
Env[1d] = strval ("");
return Env;
}
case <PICOID Id> : natural: {
Env[1d] = intval (0);
return Env;
}
1
return Env;

}

VEnv eval St at enent s({ STATEMENT ";"}* Series, VEnv Env)({
switch (Series) {
case <STATEMENT Stat>; <{STATEMENT ";"}* Series2>: ({
Env Env2 = eval Statenent(Stat, Env);
return eval Statenents(Series2, Env2);

}

default: return Env;

}

VEnv eval St at enent (STATEMENT Stat, VEnv Env){
switch (Stat) {
case [| <PICO-ID Id> = <EXP Exp> |]: {
Env[1d] = eval Exp(Exp, Env);
return Env;

}

case if <EXP Exp> then <{STATEMENT ";"}* Statsil>
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el se <{STATEMENT ";"}* Statsl> fi:{
i f(eval Exp(Exp, Env) != intval (0)){
return eval Statnents(Statsl, Env);
} else {
return eval Statenents(Stats2, Env);
}

}

case while <EXP Exp> do <{STATEMENT ";"}* Statsl> od: {
i f(eval Exp(Exp, Env) != intval (0)){
return Env;
} else {
VEnv Env2 = eval Statenents(Statsl, Env);
return eval Statenent(Stat, Env2);
}
}

default: return Env;

}

Pl CO VALUE eval Exp(Exp exp, VEnv Env) {
switch (exp) {
case Nat Con[| <NatCon N> |]:
return intval (tolnt(unparseToString(N)));

case StrCon[| <StrCon S> |]:
return strval (unparseToString(S));

case PICOID| <PICOID Id> |]:
return Env[Id];

case <EXP expl> + <EXP exp2>:

if(intval (int nl) ~~ eval Exp(expl, Env) &&
intval (int n2) ~~ eval Exp(exp2, Env)){
return intval (nl1 + n2);
}
case <EXP expl> - <EXP exp2>:
if(intval (int nl) ~~ eval Exp(expl, Env) &&
intval (int n2) ~~ eval Exp(exp2, Env)){
return intval (nl1 - n2);
}
case <EXP expl> || <EXP exp2>:
if(strval (str sl1) ~~ eval Exp(expl, Env) &&
strval (str s2) ~~ eval Exp(exp2, Env)){
return strval (s1 + s2);
}

}
Pico evaluator with globals

Here is the same evaluator but now using a global variable to represent the value environment.

nmodul e Pi co-eval

i mport pico/ syntax/ Pi co;

40



Rascal Requirements and Design Document

data PI CO VALUE intval (int) | strval (str);
type map[ Pl CO I D, Pl CO VALUE] VEnv;
VEnv Env = {};

voi d eval Progr am PROGRAM P) {
swi tch(P) {
case begin <DECLS Decl s> <{ STATEMENT ";"}* Series> end: {
eval Decl s(Decl s);
eval St at enent s(Seri es) ;

}

VEnv eval Decl s(DECLS Decl s) {
gl obal Venv Env;
visit (Decls) {
case <PICOID Id> : string: Env[Id]
case <PICOID Id> : natural: Env[Id]
b

return Env;

strval ("");
i ntval (0);

}

voi d eval Statenment s({STATEMENT ";"}* Seri es){
switch (Series) {
case <STATEMENT Stat>; <{STATEMENT ";"}* Series2>: ({
eval St at enent (St at) ;
eval St at enent s( Seri es?2);
return,

}

default: return;

}

voi d eval St at ement (STATEMENT St at) {
gl obal Venv Env;
switch (Stat) {
case [| <PICOID Id> = <EXP Exp> |]: {
Env[1d] = eval Exp(Exp);
return,

}

case if <EXP Exp> then <{STATEMENT ";"}* Statsl>
el se <{STATEMENT ";"}* Statsl> fi:{

i f(eval Exp(Exp) != intval (0)) {
eval St at enents(Statsl);
return,

} else {
eval St at enent s( St at s2) ;
return,

}

}
case while <EXP Exp> do <{STATEMENT ";"}* Statsl> od:{

i f(eval Exp(Exp) !'= intval (0)){

return,
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} else {
eval St at enents(Statsl);
eval St at enent (St at) ;
return,

s

Pl CO_VALUE eval Exp( Exp exp) {
gl obal Venv Env;
switch (exp) {
case <Nat Con N>: intval (tolnt(unparseToString(N)));

case <StrCon S>. return strval (unparseToString(S));
case <PICOID Id> return Env[Id];

case <EXP expl> + <EXP exp2>:
if(intval (int nl) ~~ eval Exp(expl) &&
intval (int n2) ~~ eval Exp(exp2)){
return intval (nl1 + n2);

}

case <EXP expl> - <EXP exp2>:
if(intval (int nl) ~~ eval Exp(expl) &&
intval (int n2) ~~ eval Exp(exp2)){
return intval (nl1 - n2);

}

case <EXP expl> || <EXP exp2>:
if(strval (str sl1) ~~ eval Exp(expl) &&
strval (str s2) ~~ eval Exp(exp2)){
return strval (s1 + s2);

}
Pico control flow extraction

nmodul e Pi co-control fl ow
i mport pico/ syntax/ Pi co;
data CP exp(EXP) | stat (STATEMENT);

type tuple[set[CP] entry,
rel [ CP, CP] graph,
set[ CP] exit] CFSEGVENT;

CFSEGMVENT cf | ow( { STATEMENT "; "}* Stats){
switch (Stats) {
case <STATEMENT Stat> ; <{STATEMENT ";"}* Stats2>: ({

CFSEGQVENT CF1 = cflow(Stat);

CFSEGVENT CF2 = cfl oW Stats2);

return <CFl.entry,
CF1.graph | CF2.graph | (CFl.exit * CF2.entry),
CF2. exi t >;
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}

case [| |]: return <{}, {}, {}>

}
}

CFSEGQVENT cf | ow( STATEMENT St at) {
switch (Stat) {
case while <EXP Exp> do <{STATEMENT ";"}* Stats> od : {

CFSEGQVENT CF = cflow(Stats);

set[CP] E = {exp(Exp)};

return < E,
(E* Cr.entry) | Cr.graph | (CF.exit * E),
E

case if <EXP Exp> then <{STATEMENT ";"}* Statsl>
el se <{ STATEMENT ";"}* Stats2> fi: {

CFSEGVENT CF1 = cflow Statsl);

CFSEGVENT CF2 = cfl oW Stats2);

set[CP] E = {exp(Exp)};

return < E,
(E* CFl.entry) | (E* CF2.entry) |

CF1. graph | CF2.graph,

CFl.exit | CF2.exit

>

}

case <STATEMENT Stat>: return <{Stat}, {}, {Stat}>;

Pico use def extraction
nodul e Pi co- use- def
i mport pico/ syntax/ Pi co;

rel[PICO I D, EXP] uses(PROGRAM P) {
return {<ld, B | EXPE : P, [| <PICOID Id>|] ~~ E};

}

rel [PI CO | D, STATEMENT] defs(PROGRAM P) {
return {<ld, S> | STATEMENT S : P,
[| <PICO-ID Id> := <EXP Exp> |] ~~ S};

}

The above uses a"matching condition" to decompose S. The problem solved isthat we want to have a
name for the whole assignment and for the |hsidentifier. Also note that, compared to older definitions
of these functions, the iudentifier is placed asfirst element in each tuple.

Pico uninitialized variables
nmodul e Pi co-uni nit

i mport pico/ syntax/ Pi co;
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i mport Pico-control flow,
i mport Pico-use-def;

set[ Pl CO I D] uni nit(PROGRAM P) {
rel [EXP, PICO I D] Uses = uses(P);
rel [PICO | D, STATEMENT] Defs = defs(P);
CFSEGVENT CFLOW = cfl ow( P);
set[CP] Root = CFLOWentry;
rel [CP, CP] Pred = CFLOW graph;

return {Id | <EXP E, PICOID Id> : Uses,
E in reachX(Root, Defs[Id], Pred)
b
}

Pico common subsexpression elimination

nodul e Pi co- common- subexpr essi on

i mport pico/ syntax/ Pi co;
i mport Pico-control flow,
i mport Pi co-use-def;

PROGRAM cse( PROGRAM P) {

rel [PICO | D, STATEMENT] Defs = defs(P);

rel[CP,CP] Pred = cflow(P).graph;

map[ EXP, PICO- I D] replacenents =

{<E2 -> |d> | STATEMENT S : P,

[| <PICO-ID Id> := <EXP E> |] ~~ S,
Id notin E,
EXP E2 : reachX({S}, Defs[ld], Pred)

}s

return visit (P) {
case <EXP E>: if([| <PICOID Id> |] ~~ replacenents(E))({
repl ace- by 1d;
}
1
}

Paraphrased: Replacein P all expressions E2 by Id, such that
» P contains astatement S of theform Id := E,

* |d doesnot occur in E,

» E2 can bereached from S,

* Thereis no redefinition of I1d between S and E2.

Pico constant propagation

nodul e Pi co- const ant - propagati on

i mport pico/syntax/ Pi co;
i mport Pico-controlflow
i mport Pico-use-def;
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Bool ean i s_constant (EXP E) {
switch (E) {
case <Nat Con N>: return true;

case <StrCon S>. return true;

case <EXP E>: return fal se;

}

PROGRAM cp( PROGRAM P) {
rel [PICO | D, STATEMENT] Defs = defs(P);
rel[CP,CP] Pred = cflow(P).graph;

map[ PI CO- | D, EXP] replacenents =
{<1d2 -> E> | STATEMENT S : P,
[| <PICO-ID Id> := <EXP E> |] ~~ S,
i s_constant (E),
PICOID I1d2 : reachX({S}, Defs[Id], Pred),
d2 == |d
b
return visit (P) {

case <PICOID Id>: if(<EXP E> ~~ replacenents[Id]){
i nsert E;

}
}s
}

Paraphrased: Replace in P all expressions |d2 by the constant E, such that
» Pcontains astatement S of theform Id ~~ E,

» Eisconstant,

1d2 can be reached from S,

ld2 isequa toId,

* Thereis no redefinition of Id between S and 1d2.

Pico Reaching definitions

Recall the equations construct as used, for example, in the reaching definitions example in the Rscript
guide. It computes the values of a set of variables until none of them changes any longer. The "solve"
statement achives the same effect.

nodul e Pi co-reachi ng-defs

type tuple[Stat theStat, Var theVar] Def;
type tuple[Stat theStat, Var theVar] Use;

set[Stat] predecessor(rel[Stat,Stat] P, Stat S) {
return invert(P)[S];

}

set[Stat] successor(rel[Stat,Stat] P, Stat S) {
return P(S);
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}

rel [Stat, Def] reaching_definitions(rel[Stat, Var] DEFS,
rel[Stat, Stat] PRED) ({

set[Stat] STATEMENT = carri er ( PRED);
rel[Stat,Def] DEF = {<S,<S,V>> | tuple[Stat S, Var V]: DEFS};

rel[ Stat, Def] KILL
{<S1, <82, V>>

tuple[Stat S1, Var V] : DEFS,
tupl e[ Stat S2, V] : DEFS,

S1 1= S2

b

rel[Stat,Def] IN = {};
rel [ Stat, Def] OUT = DEF;

sol ve {
IN = {<S, D>| int S: STATEMENT,
Stat P : predecessor(PRED, S),
Def D: QUI[P]};
OUT = {<S, D> | int S: STATEMENT,
Def D: DEF[S] + (IN[S] - KILL[S])}
}
return IN;

}
Structured lexicals: numbers

Given the SDF definition:

sorts Digit Nunber Real
| exi cal syntax

[ 0- 9] -> Digit
Digit+ -> Nunber
Number "." Number -> Real

we can write a normalization rule for Nunber that removes leading zeros:
rule n1 nunber ("0" <Digit+ Ds>) => nunber (<Ds>)
Note that a character class can be used instead of thesort Di gi t :

rul e n2 nunber ("0" <[0-9]+ Ds>) => nunber (<Ds>)

A truncation function on Real can replace the mantissa by O:

Real truncate(Real R){

switch (R {
case real (<Nunber Nunk "." <Digit+ Ds>) => real (<Nunt "
}

}
Structured Lexicals: strings

Given the SDF definition:

sorts String NQChar

0"
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| exi cal syntax
~[\"] -> NQChar
[\"] NQChar* [\"] -> String

A function that removes the first newline from a string can be written as:

String renoveFi rstNL(String S){
switch (S) {
case string("\"" <NQChar* Charsl> "\n" <NQChar* Chars2> "\"") =>
string("\"" <Charsl> <Chars2> "\"")

}

A function that removes al newline from a string:

String removeAl I NL(String S){
return innernost visit (S) {
case string("\"" <NQChar* Charsl> "\n" <NQChar* Chars2> "\"") =>
string("\"" <Charsl> <Chars2> "\"")
1
}

Symbol table with scopes

Here isa (probably naive) implementation of a symbol table that maintains alist of numbered scopes
as well as a (Name, Value) mapping in each scope. Note that we introduce parameterized modules
to do thisright.

nodul e SyniTabl e[ &Nane, &Val ue]

%% A scope-oriented synbol table.

%% Each scope consists of a map from names to val ues.

%o This is nore intended to explore whether this can be expressed
%o *at all* than that the datatype is well designed.

type rel [ &Nanme, &Val ue] ScopeMap;
type int Scopeld;
dat a STabl e[ &Nane, &Val ue] st abl e( Scopel d scope,
rel [int, ScopeMap] scopes);

%4&reate a new, enpty, table

fun STabl e[ &Nane, &Val ue] new_t abl e() {
return stable(0, {<0, {}>});

}

%6 Create a new, non-enpty, table
fun STabl e[ &Nane, &Val ue] new_t abl e( Scopel d scope,
rel[int, ScopeMap] scopes)
return stabl e(scope, scopes);

}

%6 Update, in a given scope, the value of a variable
fun STabl e[ &Nane, &Val ue] updat e( STabl e[ &Nane, &Val ue] ST,
Scopel d scope,
&Nane N,
&Val ue V) {
ST. scopes(scope) =V,
return new_ t abl e(scope, ST.scopes)

}
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%06 CGet, in a given scope, the value of a variable
fun STabl e[ &Nane, &Val ue] val ue_of (STabl e[ &Nane, &Val ue] ST,
Scopel d scope,
&Nane N) {
return ST. scopes(scope) (N

}

%6 update, in the current scope, the value of a variable
fun STabl e[ &Nane, &Val ue] updat e( STabl e[ &Nane, &Val ue] ST,
&Nane N,
&Val ue V) {
%% ST. scopes(scope) (N =V,
return new_t abl e(scope, ST.scopes)

}

%06 CGet, in the current scope, the value of a variable
fun STabl e val ue_of (STabl e[ &Nane, &Val ue] ST,
&Nane N) {
return ST. scopes(ST. scope) (N

}

%% add a new scope and nmake it the current scope

fun STabl e[ &Nane, &Val ue] new _scope( STabl e[ &Nanme, &Val ue] ST){
Scopel d scope = ST.scope + 1;
return new_t abl e(scope, ST.scopes);

}

%6 switch to anot her scope
fun STabl e[ &Nane, &Val ue] swi tch_scope( STabl e[ &Nane, &Val ue] ST,
Scopel d scope) {
return new_t abl e(scope, ST.scopes);

}

Innerproduct

[Example inspired by TXL documentation]
Define nnerproduct on lists of integers, e.g. innerProduct([1, 2, 3] .[3, 2, 1]) => 10.

nodul e | nner pr oduct

int innerProduct(list[int] V1, list[int] V2){
if (size(V1) == 0 || size(V2) == 0){

return O;
} else {
return (N1*N2) + innerProduct(rest(V1l), rest(V2));
}
}
Bubble sort

[Example inspired by TXL documentation]

nodul e Bubbl e

%6 sort1l: uses list indexing and for-Ioop
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list[int] sort1(list[int] Nunbers)(
for(int I : [O .. size(Nunbers) - 2 ]){
i f(Nunmbers[I] > Nunbers[|+1])({
Nurmbers[ 1], Nunmbers[|+1] = Numbers[I|+1], Nunbers[I];
return sort (Nunbers);
}
}

return Nunbers;

}

%6 sort2: uses list matching and switch

list[int] sort2(list[int] Nunbers)
list[int] Numsl, Nuns2;
int P, Q

swi t ch( Nunber s) {
case [Nunsl, P, Q Nuns2]:

if(P>Q{
return sort ([ Nunsl, Q P, Nuns2]);
}

default: return Nunbers;

}

%6 sort3: uses list matching and visit

list[int] sort3(list[int] Nunbers)(
list[int] Numsl, Nuns2;
int P, Q

return i nnernmost visit(Nunmbers){
case [Nunsl, P, Q Nuns2]:
if(P>0Q{
insert [Numsl, Q P, Nuns2];
}

defaul t: Nunbers;
}s

Generic Bubble sort

Here is a generic bubble sort wich uses type parameters (& E) and afunction parameter.

nodul e Bubbl e- Gen

list[&E] sort(list[&E] Elenents, bool G eaterThan(&E, &E))({
for(int I : [0 .. size(Elenments) - 2]){
if(GeaterThan(El ements[1], Elements[I|+1])){
El enents[1], Elenents[l+1] = Elenents[l|+1], Elenents[I];
return sort (El enents);
}
}

return El ements;

}
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Of course, we can write a generic sort on arbitrary lists.

Applying Rascal to Rascal

Here are some simple examples of applying Rascal to itself:
nodul e Si npl eExanpl es
i mports Rascal ;

i nt cnt Mbdul es(Rascal progran)
@loc{Count the nodules in a Rascal prograni

{
int cnt = O;
visit (program{
case Module M cnt += 1;
b
return cnt;
}

set [ Nane] extract Nanes(Rascal program
@loc{Extract all names from a Rascal progran

{
set [ Nane] nanes = {};
visit (program{
case Name Nm nanmes += Nane;
b
return names;
}

Rascal rename(Rascal program
@loc{Prefix all nanes in the programw th "x"}

{
set [ Nane] nanmes = {};
return visit (program{
case Nane Nm insert parseString("x" + toString(Nnj);
}i
}

Rascal invertlf(Rascal program
@loc{Swi tch the branches of if statenents}

{

return visit (program {
case if (<Expression E>) <Block Bl> el se <Bl ock B2>:
insert [| if (!<BE>) <B2> else <Bl1> |];

}

Read-Eval-Print Loop (REPL) [Needs further
discussion]

For the scripting of applicationsit isimportant to have acommand language and read-eval-print loop.
Here is an attempt.
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We copy the Python REPL style:
» The command promt prompt is">>>",
 Continuation lines are prefixed with "...".

» Answers start at the beginning of the line.

>>> {1, 2, 3} + {2, 3, 4}

{1, 2, 3, 4}
>>> first([1, 2, 3])
1

>>> rest ([ 1,
2, 3])
[2, 3]

One advantage of this style is that such adialog can be run and checked automatically. This has two

effects:

» Examplesin manuals become test cases.

» We can introduce a "tests" attribute for functions that conatisn a REPL script. This can aso be

tested. Example:

public &T max(set[&T] R)
@loc{ Maxi mum of a set}

@ est s{
>>> max({1, 2, 3})
3
>>> max({3, 2, 1})
3
}

{
&T result = arb(R);
for(&T E : R{

result = max(result, E);

}
return result;

}

Caution

The remainder of this section isamess!
>>> jnport |ang.java.syntax. Main as Java;
>>> str source = read("program java");
>>> CU program = parseString(source);
data B and(B bl, B b2)

B. and <= B <= val ue

| exi cal syntax
[\n\ \t\n] -> LAYOUT

vi ew Bool ean <= tree and(B bl, LAYOQUT? |, 'a' a?,

Vi ew Bool ean <= tree or () appl ()

LAYOUT? | 2, B b2) appl (prod(]
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Bool ean . and <= Bool ean <= tree <= val ue

> int count(CU P) {
> int cnt = O;
Bool ean B1 = true, B2, B3;

> visit(P) {
acase and(B1, | 1=<LAYQUT? L>, <Bool ean B2>) => and(B1, | l=parseString(" "),
case <Bool ean Bl1> & <B2> :
case B & B :
case [| <ldentifier>|] : natural =>
> acase if(<E> <S>) : cnt++;
acase <Bool . and is>
>}
> return cnt
>}

> count ( program
17

There are severa innovations here:

e Theimport associates a name with the imported module.

Caution

Work out the details.

Note

This means that "grammar" and "rule" become notions that can be manipulated.

» Thereisaread functions that reads atext file into a string.
» We associate a parse function with every non-terminal in a grammar.
» Thenotation Java: : St at enent s. | F consists of three parts:

* Language name

» Sort name

* Rule name (currently implemented with the "cons" attribute).

It can be used as pattern. Other potential uses are as generator:

{S | Java::Statenents.|F S : P}

It generates al if statementsin P.

The Rascal standard library

In this section we summarize the (over 300!) functions in the Rascal Standard Library.

Main functions

The main functions of the library are listed in the following table.
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Table 2. Main functions in Rascal Standard Library (see Table Table 1,
“Operatorson Datatypes’ [23] for all operators)

bool int | double| str loc list tuple set map rel

size X X X X X X

get X X X

arb

tolnt

X
X

toDoublg x X - X

toString| x

toList X

toSet X

to
ta

«Q

startswith

1
x
x
X | X | X| X

toMap
toRel

reverse
split

X | X | X | X
x
x
1

endsWith
LowerCase

X | X | X | X | X

UpperCase

reducer
mapper
min |X X X X

max |X X X X

sum

multiply

X | X | X | X | X| X|X
X | X | X | X | X | X | X

average

et |ocation X

ot locatign X

Notes:
» Operator == implements equality on all types. It isextended for datatypes using structural equality.
» Operator < implements less-than on all types.

» Operators +, -, *, / implement these operators for most types. For structured types these operatords
exist in three flavours: structured value op struct, structured value op element, and element op
structured value.

* si ze givesthe number of elements of many types.

» get (corresponds to the indexing notation R[N]) gives the N-th element of a structure.
» ar b generates an arbitrary element from a structured value.

* toString convertsall valuesto astring representation.

» toList,toSet,toMp,toRel provide conversions between structured types. They may be
implemented as just atype conversion (and not a data conversion).
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* rever se reversesthe elements of ordered structured types.

» reducer and mapper take afunction as argument and traverse a structured value.

Note

Dueto aname classwith thetype constructor map, we usethenamemapper forafunction
that isussually called map. The usual function r educe istherefore caled r educer .

* m nand max computethe smallest (largest) of two basic values or all elementsof structured values.
e aver age computes the average value of structured values that contain integers or doubles.

 get_location and set_location are access functions for values of typel oc.

Additional functions on lists sets, maps and relations

Additional functions on lists, sets maps and relations are listed in the following table.

Table 3. Additional functionson lists, sets, maps and relations

list set map rel graph

first
rest
makeString
sort
id X

power X

X | X | X | X

compose

invert

complement

domain

range

carrier

domainR

rangeR

carrierR

domainX

rangex

X[ X| X | X | X| X|X]|X|X|X|X|X

carrierX

top

bottom

reachR

XX | X | X[ X| X[ X|X|X|X|X|X]|X|[X]|X]|X

X | X | X | X

reachX

Other functions

The remaining functions take care of annotations, the tree datatype, input/output and communication
with the global database with program facts, the Program Database (PDB).
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Source code

Thisisavery first draft of the library. When the structure is stable we will split it in modules.

Caution

The following code is maintained externally and then copied :-( to this document, so be
carefull with changes.

nodul e Rascal St andar dLi brary

%4 ag function primtive Qual Nane;
%4 ag function nmeno voi d;

%4 ag function java Conpil ationUnit;
%iag all doc str;

%WoHere is a flat list of library functions that wll
%o structured in to coherent subnpdul es.

9o --- Conmpari Son Operators ----------------ooommmmao
%6 Each type defines == and <. The foll ow ng
% functions extend them

public bool !=(&T A &T B){
return ! (A == B);
}

public bool <=(&T A, &T B){
return A< B || A== B
}

public bool >(&T A &T B){
return B < A & A!l= B;

}

public bool >=(&T A, &T B){
return B < A

}

public &T min(&T A &T B){
return (A< B) ? A: B;
}

public &T max(&T A, &T B){
return (A< B) ? B: A
}

Wo--- Boolean (boOl) ---------mmmmma e

public bool ==(bool B1l, bool B2)
@loc{Equal ity on Bool eans}
@rinmtive{"Bool .equal "}

public bool <(bool B1l, bool B2)
@rimtive{"Bool .l ess"}

public bool && bool Bl1l, bool B2)
@rimtive{"Bool .and"}
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public bool || (bool Bl1l, bool B2)
@rintive{"Bool.or"}

publ i c bool ! (bool B){
return B ? false : true;

}

public int arb()

@rimtive{"Bool .arb"}

public int tolnt(bool B)
@rimtive{"Bool.tolnt"}

publ i ¢ doubl e t oDoubl e( bool B)
@rimtive{"Bool.toDoubl e"}

public str toString(bool B)
@rimtive{"Bool.toString"}

=== lnieger ((Mi)===scc=222222cc2222222c=222222c=2222222==

public bool ==(int 11, int |2)
@rimtive{"Int.equal"}

public bool <(int I1, int I2)
@rimtive{"Int.less"}

public int +(int 11, int I2)
@rimtive{"Int.add"}

public int -(int 11, int |2)
@rimtive{"Int.sub"}

public int *(int 11, int |2)
@rimtive{"Int.nul}

public int /(int 11, int |2)
throws divide_by zero(str nsg)
@rimtive{"Int.div"}

public int arb(int bgn, int end)

throws illegal _argument (str nmsg) %Woif(end - bgn <= 0)
@rimtive{"Int.arb"}

publ i c doubl e toDoubl e(int I)
@rimtive{"Int.toDouble"}

public str toString(int 1)
@rimtive{"toStringlnt"}

%Wo--- Double (double) ----------mmmmmi

public bool ==(double D1, double D2)
@rimtive{"Doubl e. equal "}

publ i c bool ==(double D, int I){
return D == toDoubl e(l);
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}

public bool ==(int I, double D){
return toDouble(l) == D

}

public bool <(double D1, double D2)
@rimtive{"Double.less"}

public bool <(double D, int I){
return D < toDoubl e(l);

}

public bool <(int |, double D){
return toDouble(l) < D

}

publ i c doubl e +(doubl e D1, double D2)
@rimtive{"Doubl e. add"}

public bool +(double D, int I){
return D + toDoubl e(l);

}

public bool +(int |, double D){
return toDouble(l) + D

}

publ i c doubl e -(double D1, double D2)
@rimtive{"Doubl e. sub"}

public bool -(double D, int I){
return D - toDouble(l);

}

public bool -(int |, double D){
return toDouble(l) - D

}

publ i c doubl e *(doubl e D1, doubl e D2)
@rimtive{"Doubl e. mul"}

public bool *(double D, int I){
return D * toDouble(l);

}

public bool *(int |, double D){
return toDouble(l) * D

}

publ i c doubl e /(double D1, double D2)
throws divide_by zero(str nsg)
@rimtive{"Doubl e.div"}

public bool /(double D, int I){
return D/ toDouble(l);

}
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public bool /(int |, double D){
return toDouble(l) / D

}

publ i c doubl e arb(doubl e bgn, doubl e end)
throws illegal argunent (str nsg) %Weif(end - bgn <= 0)
@rimtive{"Doubl e.arb"}

public int tolnt(double D)
@rimtive{"Double.tolnt"}

public str toString(doubl e D)
@rinmtive{"Double.toString"}

V=== SirinEs (8iF) ============cccccccccccccccccccc2222=

public bool ==(str S1, str S2)
@rimtive{"String.equal "}

public bool <(str S1, str S2)
@rimtive{"String.!|ess"}

public str +(str Sl1, str S2)
@loc{ Concat enate two strings}
@rimtive{"String.concat"}

public int size(str S)
@rimtive{"String.size"}

public int get(str S, int N)
t hrows out of range(str msg)({
return charAt (S, N);

}

%6 get and char At (as provided by java) are synonyns

public int charAt(str S, int N)
t hrows out of range(str nsg)
@rimtive{"String.charAt"}

public int tolnt(str S)
t hrows cannot _convert _to_int(str neg)
@rimtive{"String.tolnt"}

public int toDouble(str S)
t hrows cannot _convert _to_doubl e(str nsQ)
@rimtive{"String.toDouble"}

public list[int] toList(str S)
t hrows cannot _convert _int_to _char(str neg)
@rimtive{"String.toList"}

public set[int] toSet(str S)
@rimtive{"String.toSet"}

public str reverse(str S)
@rimtive{"String.reverse"}
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public list[str] split(str S, str Regex)
@rimtive{"String.split"}

public bool startsWth(str S, str Prefix)
@rimtive{"String.startsWth"}

public bool endsWth(str S, str Suffix)
@rimtive{"String.endsWth"}

public str toLowerCase(str S)
@rimtive{"String.toLowerCase"}

public str toUpperCase(str S)
@rimtive{"String.toUpperCase"}

%6 The above is a selection of nmethods fromJava's String class.
%6 O hers will be added on denand.

Yo === LOEEI] @NS ================scscsssccccsscccccccccscccoas

%% The | ocati on dat at ype
data | ocation |l ocation(str filenane,
i nt beginline,
i nt endline,
i nt begincol,
i nt endcol,
i nt offset,
int |ength);

anno tree posinfo |oc;

public bool ==(loc L1, loc L2)
@rimtive{"Location.equal "}

public bool <(loc L1, |loc L2)
@rimtive{"Location.|less"}

public str toString(loc L)
@rimtive{"Location.toString"}

public |loc get | ocation(&T Subject)
throws | ocation_m ssing(str neg)
@rimtive{"Location.get_|ocation"}

public &T set | ocati on(&T Subject, |loc L)
@rimtive{"Location.set |ocation"}

V=== ILIGiY ===========cccccccccccccccccccccccccccc22=

public bool ==(list[&T] L1, list[&T] L2)
@rimtive{"List.equal "}

public bool <(list[&T] L1, list[&T] L2)
@rimtive{"List.less"}

public list[&T] +(list[&T] L1, list[&T] L2)
@rimtive{"List.concat"}
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public list[&T] +(list[&T] L, &T E){
return L + [E];
}

public list[&T] +(&T E, list[&T] L){
return [E] + L;
}

public int size(list[&T] L)
@rimtive{"List.size"}

public &T get(list[&T] L, int N)
t hrows out _of _range(str msg)
@loc{Get list elenent: get}
@rimtive{"List.get"}

public &T arb(list[&T] L)
throws enpty list(str nsg)
@rimtive{"List.arb"}

public str toString(list[&T] L)
@rimtive{"List.toString"}

public set[&T] toSet(list[&T] L)
@rimtive{"List.toSet"}

public map[ &T, &U toMap(list[tuple[&T, &U] L)
t hrows domai n_not _uni que(str nsgQ)
@rimtive{"List.toMap"}

public rel [&T] toRel (Iist[&T] L)
@rimtive{"List.toRel"}

public list[&T] reverse(list[&T] L)
@rimtive{"List.reverse"}

public &T reducer(list[&T] L, &T F (&T, &T), &T unit){
&T result = unit;
for(&T E : L){
result = F(result, E);
}

return result;

}

public list[&T] mapper(list[&T] L, &T F (&T, &T)){
return [F(E) | &T E : L];
}

public &T min(list[&T] L)
@oc{M ni mum el enent of a list: nin}
{
&T result = arb(L);
for(&T E : L){
if(less(E, result)){
result = min(result, E);

}
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}

return result;

}

public &T max(list[&T] L)
@oc{ Maxi mum el enent of a list: nmax}

{
&T result = arb(L);

for(&T E : L){
if(less(result, E)){

result = max(result, E);
}

}

return result;

}

public &T sum(list[&T] L, &T zero)
@loc{Add el enents of a List: sunt
{

return reducer (L, +, zero);

}

public &T nultiply(set[&T] R &T unity)
@oc{Multiply elements of a list: multiply}
{

return reducer (L, *, unity);

}

public &T average(list[&T] L, &T zero)
@loc{ Average of elenents of a list: average}

{

return sum(L, zero)/size(L);

}

public &T first(list[&T] L)
throws enpty list(str nsg)
@loc{First element of list: first}
@rimtive{"List.first"}

public &T rest(list[&T] L)
throws enpty list(str nsg)
@loc{ Remai ni ng el enents of list: rest}
@rimtive{"List.rest"}

public str makeString(list[int] L)
t hrows cannot _convert _int_to _char(str neg)
@rimtive{"List.mkeString"}
public list[&T] sort(list[&T] L, bool |ess(&T, &T))
@oc{Sort elenments of list: sort}
@rimtive{"list.sort"}
U0 - -- TUPl BS = - - s o m o e oo

public bool ==(tuple[&T] R, tuple[&T] S)
@rimtive{"Tupl e. equal "}

public bool <(tuple[&T] R, tuple[&T] S)
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@rimtive{"Tuple.less"}

public tuple[&T + &J +(tuple[&T] R tuplel&U S
@rimtive{"Tupl e.conc"}

public tuple[&T + & +(tuple[&T] R &U E){
return R + <B>;
}

public tuple[&T + & +(&T E, tuple[&U R){
return <B> + R
}

public int size(tuple[&T] R
@rimtive{"Tuple. size"}

public value get(tuple[&T] R int N)
t hrows out of range(str nsg)
@rimtive{"Tuple.get"}

public str toString(tuple[&T] R
@rimtive{"Tuple.toString"}

Vlg === EBiS =======222=s===2222:=c=2222=sc=222222c=2222222222=

public bool ==(set[&T] R set[&T] S)
@rimtive{"Set.equal "}

public bool <(set[&T] R, set[&T] S)
@rimtive{"Set.|ess"}

public set[&T] |(set[&T] R, set[&T] S)
@loc{ Uni on of two sets}
@rimtive{"Set.union"}

public set[&T] |(set[&T] S, &T E){
return S + {E};
}

public set[&T] | (&T E, set[&T] S){
return {E} + S;
}

public set[&T] -(set[&T] R, set[&T] S)
@loc{Di fference of tw sets}
@rimtive{"Set.diff"}

public set[&T] -(set[&T] S, &T E){
return S - {E};
}

public set[&T] -(&T E, set[&T] S){
return {E} - S;
}

public set[&T] &(set[&T] R, set[&T] S)
@loc{I ntersection of two sets}
@rimtive{"Set.intersection"}
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public set[&T] &(set[&T] S, &T E){
return S & {E};
}

public set[&T] &(&T E, set[&T] S){
return {E} & S;
}

public int size(set[&T] S)
@rimtive{"Set.size"}

public &T arb(set[&T] S)
throws enpty set(str nsQ)
@rimtive{"Set.arb"}

public str toString(set[&T] S)
@rimtive{"Set.toString"}

public list[&T] toList(set[&T] S)
@rimtive{"List.toList"}

public map[ &T, &U toMap(set[tuple[&T, &U] S)
t hrows non_uni que_donai n(str nsg)
@rimtive{"Set.toMap"}

public rel [&T] toRel (set[&T] S)
@rimtive{"Set.toRel"}

public &T reducer(set[&T] S, &T F (&T, &T), &T unit){
&T result = unit;
for(&T E : S){
result = F(result, E);

}

return result;

}

public set[&T] nmapper(set[&T] S, &T F (&T, &T)){
return {F(E) | & E : S};
}

public &T min(set[&T] S)
@loc{M ni mum of a set}

{
&T result = arb(S);
for(&T E : S){
result = min(result, E);
}
return result;
}

public &T max(set[&T] R)
@loc{ Maxi mum of a set}
{

&T result = arb(R);
for(&T E : R{
result = max(result, E);

}
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return result;

}

public &T sum(set[&T] S, &T zero)
@loc{Sum el ements of a Set: suni
{

}

public &T nultiply(set[&T] S, &T unity)
@loc{Multiply elements of a Set}
{

}

public &T average(set[&T] S, &T zero)
@loc{ Aver age of elenents of a set}
{

}

%% TCDO

return reducer (S, +, zero);

return reducer (S, *, unity);

return sum'S, zero)/size(R);

%% Power set: power O
%public set[set[&T]] powerO(set[&T] R)
%% t hr ow uni npl ement ed( " power 0")

%% Power set: power1
%public set[set[&T]] powerl(set[&T] R)
%% throw uni npl enent ed(" power 0")

Yo === [MADS =ccccccccccccccccccccccccccoooocooooooooooaooooas

public bool ==(map[&T, &U M, nmap[&T, & M)
@rimtive{"Mp.equal "}

public bool <(map[&T, &U M, map[&T, &U] M)
@rimtive{"Mp.|ess"}

public nmap[&T] | (map[&T] R, map[&T] S)
@rintive{"Mp.union"}

public map[ &T] | (map[&T] S, &T E){
return S| {E};
}

public map[ &T] | (&T E, nmap[ &T] S){
return {E} | S;
}

public map[ &T] -(map[&T] R, nmap[ &T] S)
@loc{Di fference of tw naps}
@rimtive{"Mp.diff"}

public map[ &T] -(map[&T] S, &T E){
return S - {E};
}
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public map[ &T] -(&T E, nmap[&T] S){
return {E} - S;
}

public map[ &T] &(map[ &T] R, nmap[ &T] S)
@rimtive{"Mp.nul"}
@oc{|I ntersection of two maps: operator &}

public map[ &T] &(map[&T] S, &T E){
return S & {E};
}

public map[ &T] &(&T E, nmap[&T] S){
return {E} & S;
}

public int size(map[&T] M
@rimtive{"Mp.size"}

public &T arb(map[&T] M
throws enpty map(str nsg)
@rimtive{"Mp.arb"}

public str toString(map[&T] R
@rimtive{"Mp.toString"}

public list[tuple[&T, &J] toList(mp[&T, &J M
@rimtive{"Mp.toList"}

public set[tuple[&T, &UJ] toSet(map[&T, & M
@rimtive{"Mp.toSet"}

public rel[tuple[&T, &UJ] toRel (map[&T, &U M
@rimtive{"Mp.toRel "}

publ i c map[ &T] mapper (map[&T] M &T F (&T, &T)){
return {F(E) | & E : M;
}

V=== [REIGEIONS ===============cccccccccccccccccccccccccaas

public bool ==(rel[&T] R rel[&T] S)
@rimtive{"Rel.equal "}

public bool <(rel[&T] R rel[&T] S)
@rimtive{"Rel.less"}

public rel[&T] [(rel[&T] RL, rel[&T] R2)
@oc{ Uni on of two rel ations}
@rimtive{"Rel.union"}

public rel[&T] |(&T E, rel[&T] R){
return toRel ({E}) | R
}

public rel [&T] |[(rel[&T] R &T E){
return R| toRel ({E});
}
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public rel[&T] -(rel[&T] R1l, rel[&T] R2)
@oc{Difference of two rel ations}
@rimtive{"Rel.diff"}

public rel [&T] &(rel[&T] R1, rel[&T] R1)
@oc{| ntersection of two rel ations}
@rimtive{"Rel.intersection"}

public int size(rel[&T] R
@rimtive{"Rel.size"}

public &T arb(rel [&T] R)
throws enpty relation(str nsg)
@rimtive{"Rel.arb"}

public str toString(rel [&T] R
@rimtive{"Rel.toString"}

%6 Note: in rel[&T], the type variable &T refers
%Woto the tuple type of the relation.

public list[&T] toList(rel[&T] R)
@rimtive{"Rel.toList"}

public set[&T] toSet(rel[&T] R
@rimtive{"Rel.toSet"}

public map[ &T] toMap(rel [tupl e[ &T]] S)
t hrows non_uni que_donai n(str nsg)
@rimtive{"Ret.toMap"}

public rel [&T] mapper(rel [&T] R, &T F (&T, &T)){
return {F(E) | & E : R};
}

public rel [ &T1, &T2] *(set[&T1l] R, set[&T2] S)
@loc{ Cart hesi an product of two sets}

{
return {<X, Y>| &1 X: R &I2 Y : S};

}

public rel [&T1, &T3] conpose(rel[&T1, &T2] R
rel [ &T2, &T3] S)
@loc{ Conpose two rel ati ons}

{
return {<X, Z> | <&T1 X, &T2 Y1>:. R

<&T2 Y2, &T3 Z>: S, Y1 == Y2};
}

public rel [&T, &T] id(set[&T] S)
@loc{l dentity rel ati on}

{
return { <X, X> | &T X : S§};

}

public rel [&T2, &T1] invert (rel[&T1, &T2] R)
@oc{l nverse of relation}
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{
return { <Y, X>| <&l X, &T2 Y>: R };

}

public rel [ &T1, &T2] conplenment(rel[&T1, &T2] R)
@loc{ Conpl enent of rel ation}

{
return (domain(R) * range(R)) - R

}

public set[&T1l] domain (rel[&T1, &T2] R)
@oc{Donmai n of relation}

{
return { X | <&T1 X, &T2 Y>: R };

}

public set[&T1l] range (rel[&T1, &T2] R)
@loc{ Range of rel ation}

{
return { Y| <&T1 X, &T2 Y>: R };

}

public set[&T] carrier (rel[&T,&T] R
@loc{Carrier of relation}
{

return domai n(R) + range(R);

}

public rel [&T1, &T2] donmi nR (rel [ &T1, &T2] R, set[&T1] S)
@oc{Domai n Restriction of a relation}

{
return { <X, Y>| <&T1 X, &T2 Y>: R, X in S };

}

public rel [ &T1, &T2] rangeR (rel [ &T1, &T2] R, set[&T2] S)
@loc{range Restriction of a relation}

{
return { <X, Y>| <&T1 X, &T2 Y>: R Y in S };

}

public rel [&T, &T] carrierR (rel [&T, &T] R, set[&T] S)
@loc{Carrier restriction of a relation}

{
return { <X, Y>| <&T X, &T Y>: R Xin S, Yin S },;

}

public rel [&T1, &T2] dommi nX (rel [ &T1, &T2] R, set[&T1] S)
@loc{ Donmai n exclusion of a rel ation}

{
return { <X, Y>| <&T1 X, &2 Y>: R X notin S };

}

public rel [ &T1, &T2] rangeX (rel [ &T1, &T2] R, set[&T2] S)
@loc{ Range excl usion of a rel ation}

{
return { <X, Y>| <&T1 X, &2 Y>: R, Y notin S };

}
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public rel [&T, &T] carrierX (rel [&T, &T] R set[&T] S)
@oc{Carrier exclusion of a relation}

{
return { <X, Y>| <&T1 X, &I2 Y>: R

I(XinS), '(YinS) };
}

%6 Rel ati ons viewed as graphs
type rel [ &T, &T] graph[ &T];

public set[&T] top(graph[&T] G
@oc{Top of a G aph}

{
return domai n(Q - range(Q;

}

public set[&T] botton(graph[&T] G
@loc{Bottom of a G aph}

{
return range(G - domain(Q;

}

public set[&T] reachR(set[&T] Start, set[&T] Restr,
graph[&T] Q
@loc{Reachability with restriction}
{

return range(conpose(donmai nR(G Start),
carrierR(G Restr)+));
}

public set[&T] reachX(set[&T] Start, set[&T] Excl,
graph[&T] Q
@loc{Reachability wi th excl usi on}

{

return range(conpose(donmai nR(G Start),
carrierX(G Excl)+));
}

public list[&T] shortestPathPair(&T From &T To, graph[&T] G
@loc{ Shortest path between pair of nodes}
@rimtive{"G aph. shortestPathPair"}

public set[list[&T]] shortestPat hFron( &T From graph[&T] G
@loc{ Shortest path between one node and all others}
@rimtive{"G aph. shortest Pat hFroni'}

public set[list[&T]] shortestPathAll (graph[&T] G
@loc{ Shortest path between all nodes}

@rimtive{"G aph. shortestPat hAl | "}

%% TO DO

public rel [&T, &T] closure(rel [&T, &T])
@rimtive{"Rel.closure"}

Wh--- Annotations ---------------------- -
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public bool has_annotation(&T Subject, str Nane)
@loc{ Test whet her a nanmed annotation exi sts.
A synonym for the ? operator.}
@rimtive{"Annotation. has_annotation"}

public val ue get _annotati on(&T Subject, str Nane)
t hrows mni ssing_annotation(str neg)
@loc{Get the value of a naned annot ati on.
A synonym for the @ operator.}
@rimtive{"Annotation.get annotation"}

public map[str, val ue] get_ annotations(&T Subject)
@oc{Get all annotations}
@rimtive{"Annotation.get annotations"}

public &T set _annotation(&T Subject,
str Nane, val ue Aval ue)
@loc{Set the value of a naned annotati on.
A synonym for: Var @Anno = Exp}
@rimtive{"Annotation.set_annotation"}

public &T set _annotations(&T Subject,
map[ str, val ue] Annos)
@loc{Set all annotati ons}
@rimtive{"Annotation.set_annotations"}

Wo--- Parsing and UnparsSing -------------------o-mmommmo

public tree parseFile(str filenane)
throws fil e does_not _exist(str nsg)
@rimtive{"Parse. parseFile"}

public tree parseString(str source)
@rimtive{"Parse. parseString"}

public str unparseToString(tree Subject)
@rimtive{"Parse. unparseToString"}

public str unparseToFile(tree Subject, str fil enane)
t hrows cannot _create(str nseg)
throws wite error(str nsg)
@rimtive{"Parse.unparseToFile"}

Vlg === ifEES ========222=====222222c=2222=2c=222222c=2222222222=

public int tolnt(tree Subject)
t hrows cannot _convert(str nsQ)
@rimtive{"Tree.tolnt"}

public int toDouble(tree Subject)
t hrows cannot _convert(str nsQ)
@rimtive{"Tree.toDoubl e"}

public int toString(tree Subject)
t hrows cannot _convert(str nsQ)
@rimtive{"Tree.toString"}
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public bool elenentOf(tree S1, tree S2)
@rimtive{"Tree.elenentO"}

0if=n (@ =20ocam59mcco95000a5000005550000559005555000 95050055

public str readFile(str fil enane)
t hrows does_not exist(str nsQ)
throws read_error(str neg)
@rimtive{"lOread"}

public &T readTerm(str fil enane)
t hrows does_not exist(str nsQ)
throws read_error(str neg)
throws termerror(str nmsg, loc |)
@rimtive{"lO readTerni'}

public void wite(str filename, &T Subject)
t hrows cannot _create(str nsQ)
throws wite error(str nsg)
@rimtive{"lOwite"}

public void print(list[value] V...)
@rimtive{"lOprint"}

public void println(list[value] V...)
@rimtive{"lOprintln"}

Who--- Interface with the Program Database -------------------
%% The foll owi ng function provide a bare mi ni numand wil |

%% have to conpared with the current PDB interface.

%6 W assunme one active PDB that can be opened and cl osed.

%% Val ues can be witten to and read fromthe PDB.

%60l dea: it would be nice to nodel the PDB as a val ue
%0 of type map[str, value] and to access it that way!

public void openPDB(str nane)
t hrows cannot _open(str nsQ)
@rimtive{"PDB. open"}

public void cl osePDB()
t hrows cannot _cl ose(str nsgQ)
@rimtive{"PDB.close"}

public void witePDB(str nane, &T val)
throws cannot_write(str msg)
@rimtive{"PDB.wite"}

public &T readPDB(str nane)
t hrows cannot _read(str nsQ)
@rimnmtive{"PDB.readPDB"}

%Wolf name is of type set[&T], then the set incr
%Wois added to it. Simlar for a rel[&T]
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public voi d addSet PDB(str nane, set[&T] incr)
t hrows does_not exist(str mnsQ)
@rimtive{"PDB. addSet "}

public voi d addRel PDB(str nane, rel[&T] incr)

t hrows does_not exist(str nsQ)
@rimtive{"PDB. addRel "}

Syntax Definition

See separate SDF definition.

Protyping/implementation of Rascal

Every prototype will have to address the following issues:
* Parsing/typechecking/evaluating Rascal.

» Ambiguous parse trees.

How to implement the relational operations.

How to implement matching.

How to implement replacement.

» How to implement traversals.

The following options should be considered:

» Implementation of atypechecker in ASF+SDF:
« Givesgoodinsight inthetype system and iscomparablein complexity to the Rscript typechecker.
* Work: 2 weeks

* Implementation of an evaluator in ASF+SDF.

» Requires reimplementation of matching & rewriting in ASF+SDF.

* Bound to be very slow.

* Effort: 4 weeks

Implementation of atypechecker in Rascal.

* Interesting exercise to asses Rascal.

* Not so easy to do without working Rascal implementation.
« Not so easy when Rascal is till in flux.

 Effort: 1 week

» Implementation of an evaluator in Rascal.

« Ditto.

Extending the current ASF+SDF interpreter.

e Thisisaviable options. It requires extensions of UPTR.
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o Effort: 4 weeks
» Trandlation of Rascal to ASF+SDF in ASF+SDF.
 Unclear whether this has longer term merit.
« Allows easy experimentation and reuse of current ASF+SDF implementation.
 Effort: 4 weeks
* Implementation of an interpreter in Java.
A future proof and efficient solution.
« Requires reimplementation of matching & rewriting in Java.

* Effort: 8 weeks.

Rascal implementation ideas

Rascal needs to support both a scripting experience as an optimized compiled language experience.
Also, it needs to integrate fully with Meta-Environment and Eclipse IMP. Therefore, we have both
a simple and unoptimized interpreter in mind, as well as a compiler that aggressively, but correctly,
optimizes Rascal programs. The run-time of compiled programs and the interpreter will share the
implementation of data-structures.

Data structures

Both the compiled code and the interpreter will run on the same data-structures which are defined by
the IMP PDB project.

» We could start with the simple implementation that is now in IMP already which is based on the
Java library and use the clone method to implement immutability. This will prove to be slow, but
its an easy start.

* Integration with the ATerms; extend the ATerm library with all the features of the PDB, such that
it becomes an implementation of the PDB's interfaces.

« PDB'sterms are typed, while ATerms are not.

* ATerms demand canonicalization/sharing, which may prove to be hard to implement for maps,
sets and relations.

« PDB does not yet have any story for serialization.

« ATermswill needto "implement" the PDB'sinterfaceswhich will add adependency and seriously
break other peoples code if we are not careful

e ATerms need to be typed in order to implement correct visiting behavior when AFun's are
overloaded.

e TheC story is harder

« Extension of C ATermsis hard due to the nature of C, the ATerm garbage collector, the ATerm
header implementation and the amount of users of the ATerm library

* It may be agood idea to generate Rascal data-types from SDF definitions as an intermediate step,
however, Rascal should still implement special codefor UPTR treesfor performancereasons (unlike
Apigen which does not know anything about UPTR).
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The current PDB implementation does type checking at run-time. After implementing a type-
checker for Rascal, we can easily add an implementation which does not do type checking at run-
time in order to improve performance.

The immutability feature of Rascal data is implemented in the data-structures and not by the
compiler or the interpeter.

Interpreter

We just enumerate the thoughts that pop up once in awhile:

Write the interpreter in Java, and use it later to bootstrap the compiler which will be written in
Rascal.

Provide a REPL prompt such that experimenting can be done on-the-fly, both on the commandline,
and in an Eclipse view.

"fail" can be implemented using a Java exception, the catch will be at the choice points (switch).

"return” can also be implemented using a Java exception; remember return can jump out of the
context of avisitor that could be nested deeply in the structure of aterm or atree.

List matching, and especially the kind of backtracking it requires will be implemented using
exceptions instead of using continuations.

Pattern matching needs to beimplemented separately for both builtin data-types, abstract datatypes
and concrete parse trees. Possibly using three "adapters" we can factor out the algorithm.

We use apigen to bootstrap the interpreter. The interpreter will traverse the apigen object trees to
implement it's functionality using separate classes.

When the compiler is finished and bootstrapped on the interpreter, it may be worthwhile to
reimplement/bootstrap the interpreter on the compiler again.

Compiler

The compiler will mainly follow the design of Mark's ASF+SDF compiler, which has proven to
generate the fastest code in the world for these kinds of applications. Furthermore, these ideas have

popped up:

Bootstrap the compiler using the interpreter.

Generate as readabl e function names as possible, mainly taking hints from the Rascal programsand
of course from the SDF definitions.

Generate Java code, one class per module.

Thereis an issue with the globality of rewrite rules, they probably need to be collected and merged
into asingle factory per application. Rules apparently break modular compilation, especially if you
want to optimize matching automatons

For visitors we could first generate a tree node type reachability graph, and use it to generate afull
traversal for a certain visitor. The generated visitor would not recurse into subtrees that will not
be visited.

After generating the visitors, non-recursive visits (i.e. the backbone of the grammar) can beinlined
as much as possible to prevent using the stack for visiting trees.

Inlining in general should be done very aggressively. Thiswill allow other kinds of optimizations,
like preventing superfluous condition checking. The ASF+SDF compiler does not do this yet, and
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it could mean a serious performance improvement. The cost is compilation time obviously, since
the Java compiler is going to have to compile alot more code.

» The simple control flow constructs of Rascal almost map one-to-one to Java
» "fal" isalwaysin the current context/frame, so we need no exception implementation for fail.
» Likein Mark's compiler, list matching is to be implemented using nested while loops.

» "return” can be mapped to normal return statement in Java, except in the context of avisitor, where
it should be an exception that is caught by the containing function of the visit, which immediately
returnsthe result in the catch block that surrounds the call to the generated function that implements
the visitor.

* Important optimizations:
e Matching automaton:
 Sharing prefixes (note that we can not reorder cases of a switch, or the rules??)
»  Common subexpression elimination
» Constant detection and propagation
e Aggressiveinlining (where to stop?)
» Specialization and instantiation of visitors using grammars and data-type definitions

« Help the garbage collector by assigning 'null’ to fields that will not be used anymore, or will be
killed without being used.

* Rascal functions with a Java body need the following:
« Generate for each argument an Java argument with appropirtae Javatype.

» For each return statement, check the type of the resulting value against the return type in the
function header.

« Catch any exceptions raised by the Java code, convert them to string and rethrow as Rascal
exception.

Issues

» Which comment convention will we use? Let's use Java style comments.
* Inalist comprehension: do list values splice into the list result?
« Ditto for set comprehensions.

» Unexplored idea: add (possibly lazy) generators for all types; this allows to generate, for instance,
al statementsin a program.

* Shopping list of ideasin Tom:
< Named patternsto avoid building aterm, i.e. w@[| while $Exp do $stat od |].
« Anonymous variables alaProlog: [| while $_do $stat od [].
¢ String matching in patterns.

e Tom uses the notation %] ... ]% for quoted strings with embedded @...@ constructs that are
evaluated. It also has a backquote construct.
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» Shopping list of ideas from TXL:

« "redefine" allows modification of an imported grammar.

Expression operators

Table 4. Usage of selected charactersin Rascal Syntax

Characters Used in

+ + (add/conc), +=, + (closure)

- - (sub/diff), -=, in names

* * (prod), *=, * (closure)

/ / (div)

= == (aqual), 1= (nequa|), => (CaSE), +=, -=, *=, [=,
&=, |5, <= (leq), >= (geq)

& & (intersection), && (and), &=, & (type var)

@ @ (get annotation), @ _ = _ (modify
annotation), @ ...} (declaration annotation)

| | (union), || (or), [| _ [ (quotes), { _ | _}
(comprehension), |=

! I (not), !'= (neq), !~ (nomatch)

> > (o), >= (gew), => (cas®), < _ >
(PatternVariable), < _ > (tuple)

< < (It), <= (leg), < _ > (PatternVariable), < _ >
(tuple), <: (subtype)

? ?(anno operator), _?_: _(cond expr)
~~ (match), !~~ (nomatch), case _ : (case), in
generator, <: (subtype)

[and] (| _ 1 (quote), [ _] (projection), [ _ | _] (list
comprehension), [ _] (list), type decls
{and} { _} (statements), { _} (set/rel),{ _|_} (set/re

comprehension)

Visitor definitions (UNDECIDED and

INCOMPLETE)

Visitor definitions are a new idea that borrow the programmability of Systems S's single level
traversals and add them to Rascal. The idea is to be able to define the strategy annotations of visit
statements and generators using a simple expression language. A definition takes as formal argument
the code block of the visit statement (s), which is what needs to be done at every node (the visitor).

%Wofirst recurse to the argunents,

then try v,

%Wowhich if it fails returns the original structure.
visitor bottomup(v) = all(bottomup(v)) ; (v <+ id)

visitor innernmost(t,v) = all(innernmost(t,v)) ; repeat(v <+ id)

We demand that all visitors are infallible, which means that when the v block fails, they must return
adefault result of the correct type. In most cases, thiswould be the identity (id).
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We can aso try to give these definitions amore imperative look, asif they are patterns for generating
code for the visitors, asin:

visitor bottom up(v) {
all {
bott om up(v);

}
try { Wotry is the '<+' of System S
Woonly if v fails the catch block is executed.
v,
} catch fail (t) {
yield t;
}

}

%% i nner nost goes down and only returns after
%% not hi ng changes anynore

vi sitor innernost(v) {

all {
i nner nost (V) ; %o apply this to all children first.
}
while (true) { { %6 then until ki ngdom cone, apply this bl ock:
try {
v; %Woif v succeeds, it has a yield or a return
%6 st at ement t hat updates the current node.
} catch fail(t) { W if v fails after all, we obtain a reference
%oto the current node visited which we can
%0 return;
yield t;
}
}
}
vi sitor bottom up-dbg(v) {
all {
bott om up(v);
}
try { Wotry is the '<+' of System S

Woonly if v fails the catch block is executed.
'S
} catch fail (t) {
printf("DBG bottomup visitor failed on: " + t);
yield t;
}
}

After such definitions, most of which would be in the standard library of Rascal, we can use them to
program actual visits:

visit bottomup (t) {
pattern => pattern
pattern2 : { effect; }

}
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