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Introduction
We have identified the need for better language support for specifying and implementing software
analysis and transformation tools. In this document we embark on a design of a domain-specific
language that is intended to provide a comprehensive and easy to use set of concepts for that domain.
The goals of the envisaged language (with working name Rascal) are:

• Providing a successor of ASF+SDF that has of all its benefits and fixes all of its shortcomings.

• Separating pure syntax definitions (SDF) from function definitions.

• Easy syntax-directed analysis of programming languages.

• Easy fact extraction.

• Easy connection of fact extraction with fact manipulation and reasoning.

• Easy feedback of analysis results in source code transformation.

• Efficient and scalable implementation.

• Unsurprising concepts, syntax and semantics for a wide audience. Where possible we will stay close
to C and Java notation.

Many of the above goals are to a certain extent already met in the current design of ASF+SDF,
and the current design of RScript. What is missing is the connection (and to be honest: an efficient
implementation of relational operators). Alas, any bridge between the two languages is both complex
to manage and an efficiency bottleneck. This work is an attempt to consolidate this engineering trade-
off. This basically means that we include most features of the RScript language into ASF+SDF.
Although we take these languages as conceptual starting point, Rascal is a completely new design that
has an imperative semantics at it's core rather than a functional semantics. As a whole, Rascal is a
simpler but more expressive language.
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Rascal for various audiences
In this section we enumerate numerous facts about Rascal that advertise it to different audiences

Generic arguments
What is good about Rascal in a few words?

• Rascal is a DSL for source code analysis and transformation. It provides a pletora of high level
statements and expressions, taking away the boilerplate of implementing and debugging tools that
manipulate programs.

• Rascal combines the best features of imperative programming with the best features of functional
programming and term rewriting.

• Simple structured statements for control flow and variable assignments for data flow are powerful
and simple features of the imperative programming paradigm. They allow control flow and data
flow to be understandable and traceable.

• From functional programming we borrow that all values are immutable and non-null. Issues with
aliasing and referential integrity, such as frequently occur in imperative and OO programming
therefore do not exist in Rascal.

• The Rascal type system is as powerful as most functional languages (higher-order polymorphic
functions), however to make the language debuggable and understandable it, in principle, does
not provide type inference.

• From term rewriting we inherit powerful pattern matching facilities, integration with context-free
parsing and concrete syntax.

• Rascal supports both a scripting experience, and a compiled program experience.

• Rascal is type safe, but flexible. It's type system prevents common programming errors, but still
allows ample opportunity for reusable code. The reasons are that we allow co-variance in the sub-
typing relationship, high-order polymorphic functions and parameterized data-types.

• Rascal allows different styles of programming. From extremely high level specification, down to
straight imperative programming.

• Rascal was inspired by and borrows from several other DSL's for program analysis and
transformation in academia and industry, namely ASF+SDF, Rscript, TXL, TOM, DMS, Stratego,
Elan, Maude, Grok, Haskell, ML and SETL.

• Rascal integrates seemlessly with Eclipse IMP and The Meta-Environment.

Rascal for ASF+SDF programmers
Rascal is the successor of ASF+SDF. What's the difference? What's the same?

• Rascal has roughly all the high level features of ASF+SDF and some more. Old ASF+SDF
specifications can be transformed to Rascal programs using a conversion tool.

• Rascal still uses SDF for syntax definition and parser generation.

• Rascal has a module system that is independent of SDF. Rascal modules introduce a namespace
scope for variables and functions, which can be either private or public. Rewrite rules are global
as in ASF+SDF. Modules can have type parameters as in SDF, which are instantiated by import
statements.
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• In Rascal, patterns and variables in concrete syntax may optionally be quoted and escaped, and
support explicit declaration of the top non-terminal to solve ambiguity.

Caution

How?

• In ASF+SDF the execution order of the elements of equations is left-hand side (for matching),
conditions, and right-hand side (for constructing a normal form). In Rascal the elements of rules
read in a more natural order that corresponds with the order of execution.

• Rascal has primitive and efficient implementations for sets, relations and maps

• Rascal can be used without SDF, supporting for example regular expressions and abstract data types
(pure ATerms)

• Rascal has primitive support for functions, which have a fixed syntax, always return a value and
have a body consisting of imperative control flow statements. Adding a function will not trigger the
need for regenerating parse tables as is the case in the current ASF+SDF implementation. Function
types can be polymorphic in their parameters and also allow functions as arguments to implement
reusable algorithms.

• The imperative nature of Rascal allows you to factor out common code and nest conditionals, unlike
in ASF+SDF where alternative control flow paths have to be encoded by enumerating equations
with non-overlapping conditions.

• Rascal is an imperative language, which natively supports I/O and other side-effects without work-
arounds. When backtracking occurs, for example during list matching, Rascal makes sure that most
side-effects are undone, and that I/O is delayed until no more backtracking can occur. Even rewrite
rules support side-effects in Rascal.

Caution

Clarify the above.

• Rascal has native support for traversals, instead of the add-on it used to be in ASF+SDF. The
visit statement is comparable to a traversal function, and is as type-safe as the previous, and more
programmeable.

• Instead of accumulator values of traversal functions in ASF+SDF, Rascal simply supports lexically
scoped variables that can be updated using assignments.

• Rascal adds specific expressions for relational calculus, all borrowed directly from RScript.

• When programming using Rascal functions, instead of rules, the control flow of a program becomes
easily traceable and debuggable. It is simply like stepping through well structured code.

• Rascal is based on a Java interpreter, or a Java run-time when compiled. So the code is more portable.

Rascal for imperative and object-oriented
programmers

Rascal is an imperative DSL with high level statements and expressions specifically targeted at the
domain of analysis and transformation of source code:

• Rascal is safe: there are no null values, and all values are immutable. Source code and abstract
syntax trees, and the facts extracted from them are immutable. The Rascal interpreter and compiler
make sure this is implemented efficiently. Without mutability it is easy to combine stages of your
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programs that analyse or annotate with stages that transform. Sharing a value does not introduce a
coupling like in OO, simply because changes are only visible to the code that changes the values.

• Rascal is extra safe: it has a type system that prevents casting exceptions and other run-time failures.
Still the type system specifically allows many kinds of combinations. For example, unlike in Java a
set of integers is a subtype of a set of numbers (co-variance), which allows you to reuse algorithm
for sets of numbers on sets of integers. It also provides true polymorphic and functions (no erasure),
and functions can safely be parameters to other functions.

• Rascal provides high level statements and expressions for:

• Visitors in all kinds of orders, expressed very concisely, and type safe.

• Pattern matching and construction (with concrete syntax!)

• Equation/constraint solving

• Relational calculus

• Rewrite rules for normalization/canonicalization of any kind of data-structure

• Support for parsing using context-free grammars (via importing modules from the SDF
language).

• (de)Serialization of values

• Communication with databases

• Rascal provides typed data constructors for common mathematical structures, such as:

• terms (a.k.a. abstract data types, tree nodes)

• parse trees (derivations of context-free grammars, for concrete syntax and direct manipulation
of source code)

• relations

• sets

• maps

• graphs

• tuples

• In Rascal you can implement high-fidelity source-to-source transformations. Without too much
overhead, programs can do extensive rewriting of the source code without the loss of particular
layout standards or source code comments.

• Rascal is syntax-safe. When you use Rascal to generate or transform source code, it statically detects
whether the resulting source code is syntactically correct.

• Rascal is executed by an interpreter written in Java, or it can be compiled to Java classes.

Requirements
• R1: Runtime speed: large-scale analysis of facts is expensive (frequently high-polynominal and

exponential algorithms). A factor speedup can mean the difference between a feasible and an
unfeasible case.

• R2: Old ASF+SDF programs are translatable to Rascal.
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• R3: Edit Rascal and SDF and compile complex programs within a few minutes maximally
(parsetable generation is a major bottleneck in current ASF+SDF. This needs to be fixed.)

• R4: Concrete syntax: for readability and easy parsing of a wide range of source languages.

• R5: File I/O.

• R6: Easily accessible fact storage (similar to a heap, but remember the details of backtracking, see
R19).

• R7: List matching (because of R2, also very handy for manipulating lists in concrete syntax).

• R8: Nesting of data-structures: relations can be nested to model nested features of programming
languages (such as scoping), allowing to factor out common code.

• R9: Syntax trees can be elements of the builtin data-structures (but not vice versa).

• R10: Try to keep features orthogonal: try to keep the number of ways to write down a program
minimal, this is not a law since other requirements take precedence

• R11: Minimize possible syntactic ambiguities; resolve them by type checking.

• R12: Integrates well with refactoring infra-structure (i.e. can provide appropriate interfaces with
pre-condition checking, previews and commits as found in interactive refactoring contexts)

• R13: No 'null' values, preventing common programming errors

• R14: All values immutable, preventing common programming errors and allowing for certain kinds
of optimizations

• R15: Should be able to match and construct strings using regular expressions (for making the simpler
things simple, if you can do without a grammar, why not?)

• R16: Can get/set data from databases, such as the pdb from Eclipse IMP, but possibly also from
ODBC/JDBC data sources.

• R17: Type safe, but flexible. We want a type system that prevents common programming errors,
but still allows ample opportunity for reuse.

• R18: Syntax safe, programmers should not be allowed to construct programs that are syntactically
incorrect w.r.t a certain context-free grammar.

• R19: Backtracking safe, programmers should not have to deal with the mind boggling feature
interactions between side-effects and backtracking.

• R20: Traceable/debuggable, programmers should be able to easily trace through the execution of
a Rascal program using the simplest of debugging tools, like printf statements, and the use of a
simple debugging interface which allows to step through the source code and inspect values in a
transparent fashion.

• R21: Minimize the use of type inference, such that the programmer must always declare her
intentions by providing types for functions, data-types and variables. This makes debugging easier
and providing clear error messages too. When variables are implicitly bound by pattern matching
or related functionality, exceptions to this requirement might be made in favor of conciseness.

• R22: Allow the implementation of reusable modules and functions (i.e. parametric polymorphism
and or functions as parameters).

• R23: We need something like rewrite rules for implementing data-types that are always
canonicalized/normalized. For some analysis algorithms this allows the programmer to implement
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domain specific optimizations over plain relational calculus or tree visiting that actually needed for
scalability.

Rascal at a glance
Rascal consists of the following elements:

• Modules to group definitions, proving scopes and visibility constructs.

• A type system and corresponding values, providing parameterized types, polymorphic functions
and higher-order parameters.

• Variables to associate a name with a value in some scope.

• Parameterized functions.

• Abstract patterns, regular expression patterns and syntax patterns to deconstruct (match) values and
to construct (make) them.

• Expressions provide the elementary computations on values.

• Statements provide structured control flow and more advanced control flow in computations, such
as visitors and fixed point computations

These elements are summarized in the following subsections.

Modules
Modules are the organizational unit of Rascal. They may:

• Import another Rascal module (suffix: .ras) using import. Imports are not transitive. We do
allow circular imports.

• Import SDF modules (suffix: .sdf) using import.

• Import Java modules (for the benefit of functions written in Java, suffix .java) using import.

• Extend another Rascal module using extend. This includes a verbatim copy (similar to
#include) of the-module-to-be-extended in the current module. We allow redefinitions of
declared names. We do not allow circular extension.

• Define data, views on data, types, rules or functions.

• Be parameterized with the names of formal types that are instantiated with an actual type when the
module is imported.

• Contain a main function that is the starting point of execution. We allow several flavours of main
function:

public void main() { ... }

does not give access to program arguments while

public void main(list[str] argv) { ... }

gives access to all program arguments. We may add extra types that help in parsing command line
arguments.

Declarations may be either private to a module or public to all modules that import the current module.
Rules are always public and are globally applied.
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Modules introduce a namespace and qualified names (using the :: operator) may be used to uniquely
identify elements of a module from the outside. Inside the module, this qualification is implicit. The
qualified name consist of two parts: a directory name (a list of names separated by /) and a module
name.

Rascal modules are located in a file with the name of the module, with suffix .ras. They should be
located in a directory corresponding to the directory part of the module name. From other modules,
M::F denotes function F from module M.

Names
Rascal aims at seamless integration with Java and its names adhere to the following conventions:

• A Rascal Name is identical to a Java Indentifier except that we do allow -- for reasons of
compatibility with names in SDF -- dashes (-) but do not allow the dollar sign ($) in names. In the
initial implementation all reserved words in both Java and Rascal cannot be used as a Name. For
better syntax errors it is probably better to warn for Java keywords later on.

• Sorts and Symbols are inherited from SDF but we extend sort (that may only start with an uppercase
letter in SDF) to be a more liberal, and allow Names instead.

Types and Subtypes

Types

The type system (and notation) are mostly similar to that of Rscript, but

• We have a type hierarchy that defines a partial order on types.

• There is a single top for this type hierarchy, it is called "value" and a single bottom that is called
"void".

• There are built-in types (bool, int, double, str, loc).

• Symbols (as defined by an SDF module) are also types.

Note

The currently supported subset of SDF symbols contains: single and double quoted literal,
character class, sort name, lists with and without separator, alternative, and option. This
subset will be extended on demand.

Note

There is no automatic mapping between the built-in types and types generated by an SDF
module. The programmer is responsible for conversion. Typical library functions that are
helpfull are:

• unparseToString converts any value of an SDF type to a string.

• toInt converts strings to integers.

• toDouble converts strings to doubles.

• All syntactic types are a subtype of the type tree that corresponds to an Universal Parse Tree
Representation (UPTR). We will use AsFix as UPTR. Up casts from a subtype to an enclosing type
are automatic. The type tree is "special" in the following sense:

• Parsers generate values of type tree.
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• Although the type tree can be defined in Rascal, its definition is built-in in order to preserve
the consistency with the parser.

• Types for sets, maps, relations and tuples can be formed from types; Maps, relations and tuples
can have optional column names. Note that a map resembles a function and differs from a binary
relation: for each domain value in a map only a single range value is allowed.

• Functions can be polymorphic in their parameters as well as in their return type.

• Function parameters can be function types, meaning that the name of a properly typed function or
a locally defined anonymous function can be passed as a parameter.

• The last parameter of a function may be of the form list[T] Name... and indicates a variable
list of remaining parameters of type T.

• Data declarations may introduce new structured types and have the form

data N Pat1 | Pat2 | ...

where N is the name of the datatype and Pat1, Pat2, are prefix patterns describing the variants of
the datatype. For instance,

data Bool btrue | bfalse | band(Bool L, Bool R)  | bor(Bool L, Bool R);  

defines the datatype Bool that contains various constants and constructor functions.

Note

We assume that all constructors for a datatype lead to a corresponding function to construct
a term of that datatype. This eliminates the need to quote abstract terms in statements.

Note

Constructor names of datatypes may be quoted in order to avoid clashes with reserved
words or illegal names.

• We have views on data types that define templates or overlays over an existing type. A view defines
a (possibly complex) pattern that matches the structure of another datatype. A view provides an
alternative (and possibly simplified) access mechanism for existing data structures. A standard
example is to define a view on a parse tree that suppresses all auxiliary information and better
reflects the actual abstract tree that is represented as in

view Bool <: tree and appl(...) | or appl(...)

This defines the type Bool as a view on trees with two alternatives named and and or. Each view
should be of type tree. Views for the same type are exclusive.

• Caution

Maybe, the following needs further discussion.
Parse trees are implicitly defined by a data declaration and we provide APIGEN-like functionality
to access their elements by automatically providing views for each SDF rule:

• Elements of an SDF syntax rule may be explicitly labelled as in:

 lhs1:EXP "+" lhs2:EXP -> EXP {left}

In this case the selectors lhs1 and lhs2 are provided that can be used to select (or replace)
one of the subtrees of this rule.
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• If these labels are absent, an automatic naming scheme is used:

• For each sort in the SDF rule, a selector with the same name is provided.

• Syntactic lists get the name of the element sort, followed by "-list".

• Optionals get the name of the element sort, followed by "-opt".

In case there are more occurrences of the same syntactic element, the provided selector names are
consecutively numbered, e.g., EXP1, EXP2 or STATEMENT-list1, STATEMENT-list2.

• Types may include type variables like &T as in Rscript with the following refinement:

• In the type rel[&*T], the type variable &T is bound to the tuple type of the relation, i.e. an
actual type rel[int,str] will bind &*T to the type tuple[int,str].

• Composition of tuple types is only allowed in the result type.

• In a similar fashion, in map[&*T], the type variable &*T is bound to the tuple type of the map.

• A type declaration introduces a name for a new type that is a subtype of a given type, e.g.,

type rel[node,node] Graph

introduces the type Graph as a subtype of rel[node,node]. There are no built-in subtypes.

• The name that is introduced by a type declaration may even be parameterized with one or more
type variables, e.g.,

type rel[&Node, &Node] Graph[&Node]

Of course, the type variables that are used in the type in the left part should occur as parameters in
the right part of the definition and vice versa.

• Types may be declared only once and are mutually exclusive.

Subtypes

The type hierarchy leads to a subtype relation <: that can be defined (in ASF+SDF) as follows:

%% Subtyping rules (<:) on Types

[let00] void <: T                          = true

[let01] T <: value                         = true

[let02] T <: T                             = true

[let03] T <: & N                           = true

[let04] T <: &N <: T'                      = T <: T'

[let05] N[&T] <: N[&U]                     = true

[let06] list[T] <: list[T']                = T <: T'

[let07] set[T] <: set[T']                  = T <: T'

[let08] tuple[ONTs] <: tuple[ONTs']        = ONTs <: ONTs'
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[let09] map[T1, T2] <: map[T1', T2']       = T1 <: T1' &  T2 <: T2'

[let10] map[T1, T2] <: rel[T1', T2']       = T1 <: T1' &  T2 <: T2'

[let11] rel[ONTs] <: rel[ONTs']            = ONTs <: ONTs'

[let12] rel[ONTs] <: set[tuple[ONTs']]     = ONTs <: ONTs'

[let13] set[tuple[ONTs]] <: rel[ONTs']     = ONTs <: ONTs'

[let14] T <: T' == true,        %% covariant
        ONTs' <: ONTs == true   %% contravariant
        =========================================
        fun T N (ONTs) <: fun T' N (ONTs') = true
[default-let]
        T <: T'                            = false

Here T, T1, T2, T' etc represent types, and ONTs, ONTs' etc represented lists of
OptionallyNamedTypes, e.g., a type that optionally followed by a name. We omit the definition of <=
on OptionallyNamedTypes. The above rules also describe certain equivalences between types, e.g., a
map can be compared with a relation, a relation can be compared with a set of tuples, and the like.

We throw the names in types away in the subtype relation.

The subtyping relation for function types is tricky and treats result type and argument types differently.
We have, for instance, that

set[int] f(int i) <: fun set[&T] f(int i)  %% since int <: &T

int f(number x) <: fun number f (int x)    %% assuming int <: number

but not that

number f(int x) <: fun number f (number x) %% assuming int <: number

In addition to the above rules for subtyping, each type definition introduces an additional subtype
relation, e.g., the previous definition for Graph,

type rel[node,node] Graph

introduces the following subtype relation:

Graph <: rel[node,node]

Type Equivalence
Types are compatible if they occur on the same path from void to value in the type lattice. This is a
middle road between structural and nominal type equivalence, we call it intensional structural type
equivalence. An example can illustrate this. Assume we have the following definitions for general
graphs, control flow graphs and data flow graphs:

type rel[node,node] Graph
type Graph CFGraph
type Graph DFGraph

CFGraph and Graph are compatible, and the same holds for DFGraph and Graph. This implies
that the types CFGraph and Graph (resp. DFGraph and Graph) can be freely passed as parameter,
assigned, returned and value. This is, however, not true for CFGraph and DFGraph since they are
incompatible. Passing a value from the one to the other type can only be done via the common type
Graph. This uncomventional type scheme allows flexible conversion between subtypes (without
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casting or runtime checks) while preserving the opaqueness of disjoint subtypes of the same ancestor
type.

Attributes
Attributes are adornments of data and programs and come in two flavours:

• value annotations that allow associating one or more named values to another value.

• declaration tags that allow associating one or more named values to a declaration in a Rascal
program.

The former are intended to attach application data to values, like adding position information or
control flow information to source code or adding visualization information to a relation. The latter
are intended to add metadata to a Rascal program and allow to influence the execution of the Rascal
program, for instance, by adding memoization hints or database mappings for relations.

Value annotations

Annotations may be associated with any value and are represented by a mapping of type
map[str,Type], i.e., annotation names are strings and annotation values are values of a type that is
explicitly declared. Any value of any named type can be annotated and the type of these annotations can
be declared precisely. For instance, we can add to the graph datatype introduced earlier, the annotation
with name LayoutStrategy that defines which graph layout algorithm to apply to a particular
graph, e.g.,

anno Graph LayoutStrategy "dot" | "tree" | "force" | 
                          "hierarchy" | "fisheye"

Note that the type that can be used in annotation declaration is identical to a type used in a
data declaration. In a similar way, we can add to certain syntactic constructs of programs (e.g.,
STATEMENT) an annotation with name posinfo that contains location information:

anno STATEMENT posinfo loc

or location information could be added for all syntax trees:

anno tree posinfo loc

. The folllowing two operators are provided for handling annotations:

• Val @ Anno: retrieves the value of annotation Anno of value Val.

• Var @ Anno = Val: set the value of annotation Anno of the value of variable Var to Val.

Declaration tags

All declarations in a Rascal program may contain (in fixed positions depending on the declaration
type) one or more declaration tags (tag). A tag is defined by declaring its name, the declaration type
to which it can be attached, and the name and type of the annotation. The declaration type all, makes
the declaration tag applicable for all possible declaration types. All declaration tags have the generic
format @Name{ ... }, with arbitrary text between the brackets that is further constrained by the
declared type. Here is an example of a license tag:

tag module license str

This will allow to write things like:

module Booleans
@license{This module is distributed under the GPL}
...
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Other examples of declaration tags are:

tag all todo str             %% a todo note for all declaration types
tag function deprecated void %% marks a deprecated function
tag function memo int        %% bounded memoization of 
                             %% function calls
tag all doc str              %% documentation string
tag function primitive str   %% a primitive, built-in, function

Here are two examples from the standard library:

public &T first(list[&T] L)
  throws empty_list(str msg)
  @doc{First element of list: first}
  @primitive{"List.first"}

public &T max(set[&T] R)
  @doc{Maximum of a set: max}
{
  &T result = arb(R);
  for(&T E : R){
    result = max(result, E);
  }
  return result;
}

Variables
Variables are names that have an associated scope and in that scope they have a value. A variable
declaration consists of a type followed by the variable name and---depending on the syntactic position-
--they are followed by an initialization. There are no null values, which implies that all variables must
be initialized at declaration time. Also, this implies that all expressions must return a value. Especially
for functions, this means that all execution paths of a function must have a return statement.

Variables may be introduced at the following syntactic positions:

• As formal parameters of a function. Their scope is the function and they get their initial value when
the function is called.

• Local variables in a function body are declared and initialized. Their scope is the function body.

• Variables in patterns. For patterns in match positions, declared variables are initialized during the
match and their scope is the rule in which they occur. For used variables, their value is substituted
during the match.

• For variables introduced by pattern matching in conditional statements (if-then, and while), if the
condition succeeds, the scope of the variables are the block of code that is executed conditionally.

• Variables in anti-patterns are never visible, but nevertheless their names are reserved in the scope
that they would have had when the pattern was a normal positive matching pattern.

• Variables that are introduced by generators in comprehensions or for statement, have the
comprehension, respectively, for statement as scope.

• Global variables are declared and ALWAYS initialized at the top level of each module and these
initialization may not contain circular calls.

• Functions that use a global variable have to be explicitly declare it as well. The value of a global
variable can be used and replaced by all functions that have locally declared it.
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Caution

Bas: Shadowing?

We will see below that there are certain contexts in which assignments to variables are undone in the
case of failure.

Functions

Overview

A function declaration consists of a visibility declaration, result type, a function name, typed arguments
and a function body. Functions without a result type have type void.

A visibility declaration is one of the keywords public or private (default).

A function body is a list of statements, each terminated by a semi-colon. Each unique control flow path
through a function must have a return statement, such that each function always returns a proper value.

Functions can raise exceptions and these may -- for documentation purposes -- optionally be declared
as part of the function signature (i.e., we have unchecked exceptions in contrast with checked
exceptions in Java).

Functions with the tag "java" have a body written in Java. They have the following properties:

• Arguments and result are pure Rascal values.

• Java functions cannot acces the global state of the Rascal program. Their only interface is via input
parameters and a result value. They cannot access Rascal global variables.

• Side effects caused by Java functions in the Java state, are not undone in the case of backtracking.

Note

These Java functions are primarily intended for implementing library functions and for
interfacing with Eclipse.

Functions with the tag @memo are memo functions that cache previous arguments/result combinations.

Overloading

Functions may be overloaded, i.e., functions with the same name but with different argument and result
types can be declared. Overloading is subject to the restriction that if several versions of a function
are declared with the same name, then one or more of the following conditions should hold:

• the number of parameters differs;

• there is at least one parameter position with incomparable types w.r.t. the type hierarchy, i.e., not
(A <: B) and not (B<:A).

The result type does not play a role in these conditions and overloading on result types is thus
forbidden.

Here are some examples.

%% OK, since int and double are incomparable 

int +(int a, int b) { ... }
double +(double a, double b) { ... }
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%% NOT OK, since int is comparable to value 
%% (int is -- like all types -- a subtype of value)

int +(value a, value b) { ... }
int +(int a, int b) { ... }

%% OK since for every two definitions selected from this
%% set there is at least one parameter position different;
%% in this example the overloading on result types will never 
%% be used to select the function

int    +(int a, int b)
double +(int a, double b)
double +(double a, int b)
double +(double a, double b)

%% NOT OK, since arguments cannot be resolved.

int randomValue()
str randomValue()

How should overloading be resolved in the presence of type parameters? Our approach is simple but
effective: a type parameter &T is taken to be of type value, unless it is explicitly constrained to
be smaller than (or smaller than or equal to) another type U by writing &T <: U. For the sake
of overloading resolution, a constrained type parameter will be considered to have the type of the
constraint, i.e., in fun F(&T < U) we assume the &T to be of type U.

Here are more examples:

%% NOT OK, because &T might be any type (i.e. value),
%% which is comparable to int

str f(int x)
str f(&T x)

%% NOT OK, since both T's may bind to comparable types and
%% value and int are comparable

int f(&T x, value y)
int f(&T y, int x)

%% OK, since the second arguments have incomparable types

int f(&T x, int y)
int f(&T y, double x)

Formal description of overloading

Given the subtype relation <=: defined earlier, we can easily formalize overloading resolution
by defining two predicates: incomparable describes when two lists of OptionallyNamedTypes
can be compared and may-overload describes when two function types satisfy the overloading
restrictions:

%% Incomparable

[com1] incomparable(ONTs, ONTs') = 
       not((ONTs <: ONTs') | (ONTs' <: ONTs))
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%% May-overload

[mo-1] may-overload(fun T N (ONTs), fun T' N' (ONTs')) = 
       not(N == N') | 
       incomparable(ONTs, ONTs')

Anonymous Functions

We also allow anonymous functions, i.e., functions that are declared locally and can be passed as
argument to another function, be returned as value of a function, or even be stored as value in a set
or relation.

Caution

Causes aliasing; How does this interfere with backtracking? We may forbid write access to
globals outside the current context.

When such functions are called they are called in the lexical scope in which they were defined. For
instance, the Rascal standard Library defines a mapper function that applies a function to a list or set.
An anonymous function can be used to define such function arguments. Here is a function addOne,
that adds 1 to each element of its argument list:

list[int] addOne(list[int] L)
    return mapper(L, fun int (int N) { return N +1 })

fun fun(int) -> int makeAdder(int n)
    return fun int (int x) { return x + 1 }

Caution

The above needs further editing/explanation.

Patterns
We distinguish four kinds of patterns:

• Abstract patterns: prefix dataterms that are generated by a signature.

• Regular expression patterns: conventional regular expressions

• Syntax patterns: textual fragments that are generated by a context-free grammar.

• Lexical patterns: a special case of syntax patterns dealing with lexical notions like identifiers,
numeric constants, and the like.

Patterns may contain variables and can occur in two syntactic positions:

• Match positions where the patterns is matched against another term and the variables in the pattern
are bound when the match is successfull. Examples of match positions are:

• In a case construct, immediately after the case, acase or rcase keyword.

• The left-hand side of a rules or arules statement.

• In a generator, where generated values are matched against the pattern.

• Make positions where the pattern is used to construct a new term (after replacing any variables in
the pattern by their values. Examples of make positions are:

• In a case construct, immediately after the => operator.

• The right-hand side of a rules or arules statement.
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• As an ordinary expression in the form of a quoted syntax pattern, or a call to a constructor for
a dataterm.

In make positions, patterns may also contain function calls (written between < and >) that are replaced
by their value during the construction of the pattern. Example:

<subst(V1, E1, Ea)>

Note

To avoid syntactic complications, we currently refrain from allowing arbitrary expressions
inside patterns, e.g., using notation like #{ ... }. However, since function arguments can
be arbitrary expressions, this is hardly a restriction.

A pattern may be turned into an anti-pattern by prefixing it with the symbol !. An anti-pattern matches
in all cases where the original pattern does not match. A match of an anti-pattern cannot bind any
variables but these variables are nonetheless reserved in the corresponding scope.

Abstract Patterns

Data declarations introduce a signature of abstract terms and abstract patterns can be used to perform
matching on them. The same terms that or in a data delcaration, possibly including typed variables
that play a similar role as pattern variables in syntax patterns, may be used as abstract patterns at the
same position where concrete patterns are allowed. Lists, sets and tuples may also occur in abstract
patterns. Here are some examples of abstract patterns:

%% Assuming:
%% data Bool band(Bool L, Bool R);
%% Bool B2;
%% An abstract pattern matching a band node:

band(btrue, B2)

%% The variable B2 can also be declared inside the pattern:

band(true, Bool B2)

%% Assuming:
%% data PICO_VALUE intval(int) | strval(str);
%% An abstract pattern matching an intval:

intval(int n1)

%% Assuming:
%% int P, Q; 
%% list[int] Nums1, Nums2;

[Nums1, P, Q, Nums2]

%% This can also be written as:
[list[int Nums1], int P, int Q, list[int] Nums2]

%% Mixtures of variables declared outside the pattern 
%% and inside the pattern are also allowed:

[Nums1, int P, int Q, Nums2]

An abstract pattern may be preceeded by the key word abs, in order to resolve ambiguities with
syntax patterns.
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Regular Expression Patterns

Regular expression patterns are ordinary regular expressions that are used to match a string value and
to decompose it in parts and also to compose new strings. Regular expression patterns bind variables of
type str when the match succeeds, otherwise they do not bind anything. Their syntax and semantics
parallels abstract and concrete syntax patterns as much as possible. This means that they can occur
in cases of visit and switch statements, on the left-hand side of the match operator (~~) and as
declarator in generators.

We use a regular expression language that extends the lexical syntax rules found in SDF towards Java
regex with the following exceptions:

• Regular expression are delimited by / and / optionally followed by a modifier (see below).

• Character classes are written in the SDF way.

• Java regular expressions might have optional groups, which may introduce null bindings. Since
null pointers are not allowed in Rascal, we limit the kinds of expressions one can write here by not
allowing nesting of named groups.

• We allow named groups, syntax <Name:Regex>, which introduce a variable of type str named
Name.

• We allow name use in a regular expression: <Name> which inserts the string value of Name in
the pattern.

• We allow function calls inside a regular expression: <F(...)> which inserts the string value of
the function call in the regular expression.

• Named groups have to be outermost, such that they can only bind in one way.

• Unlike Perl, Java uses the notation (?Option) inside the regular expression to set options like
multi-line matching (?m), case-insensitive matching (?i) etc. We let these options follow te
regular expression.

• We omit some more esoteric features of Java regex like (octal and hex constants, look ahead and
look behind) but these can always be added.

• We have an explicit grammar for the regular expression language that facilitates translation to Java
regex.

Here are some examples of regular patterns.

/\brascal\b/i

does a case-insensitive match (i) of the word rascal between word boundaries (\b). And

/^.*?<word:\w+><rest:.*$>/m

does a multi-line match (m), matches the first consecutive word characters (\w) and assigns them to
the variable word. The remainder of the string is assigned to the variable rest.

Syntax Patterns

There is a notation of a syntax pattern: a (possibly quoted) concrete syntax fragment that may
contain variables. We want to cover the whole spectrum from maximally quoted patterns that can
unambiguously describe any syntax fragment to minimally quoted patterns as we are used to in
ASF+SDF. Therefore we support the following mechanisms:

• A pattern variable declaration, written as <TYPE NAME> declares a new variable with a scope
determined by the syntactic context of the pattern.
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• A pattern variable use, written as <NAME>, uses the value of an already declared variabele during
the use of the pattern.

• Quoted patterns enclosed between [| and |]. Inside a fully quoted string, the characters <, > and
| can be escaped as \<, \>, \|. Fully quoted patterns may contain pattern variable declarations
and pattern variable uses.

• A quoted pattern may be optionally preceeded by an SDF symbol to define its desired syntactic type.

• Unquoted patterns are (unquoted) syntax fragments that may contain pattern variable declarations
and pattern variable uses.

• Inside syntax patterns, layout is ignored.

Quoted and unquoted patterns form the syntax patterns that are supported in Rascal.

Examples are:

• Quoted syntax pattern with two pattern variable declarations:

[| while <EXP Exp> do <{STATEMENT ";"}* Stats> od |]

• Quoted syntax pattern with two pattern variable uses:

[| while <Exp> do <Stats> od |]

• Identical to the previous example, but with a declaration of the desired syntactic type:

STATEMENT [| while <Exp> do <Stats> od |]

• Unquoted syntax pattern with two pattern variable declarations:

while <EXP Exp> do <{STATEMENT ";"}* Stats> od

• Unquoted syntax pattern with two pattern variable uses:

while <Exp> do <Stats> od

Obviously, with less quoting and type information, the probability of ambiguities increases. Our
assumption is that a type checker can resolve them.

Note

Implementation hint (used to check the examples in this document). For every sort S in the
syntax definition add the following rules:

S                   -> Pattern
"<" "S"? Name ">"   -> S      

Lexical Patterns

A special case of syntax patterns, are lexical patterns that describe lexical notions such as identifiers,
numeric constants and the like. Lexical patterns can appear as part of a concrete syntax pattern. Our
solution is a middle road between the original solution used in ASF+SDF (simple but not type safe) and
the current solution in ASF+SDF (complex but type safe). The key idea is that a constructor function is
implicitly created for every lexical definition, i.e., when the SDF definition defines the lexical sort LS,
then the following lexical constructor function ls (the sort name in lower case) is implicitly defined:

    ls( LEXARGS ) -> LS

LEXARGS consist of zero or more:

• String constants.
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• Typed Variables enclosed in angle brackets (as used in other patterns).

The LEXARGS argument combined should form a strings of sort LS.

Note

The current solution in ASF+SDF requires that all intermediate lexical constructors are
explicitly written in the pattern. Here we relax this requirement.

For instance, given a lexical syntax for numbers (part of an SDF definition):

sorts DIGIT NAT-CON
lexical syntax
   [0-9]    -> DIGIT
   DIGIT+   -> NAT-CON

A rule that would remove leading zeros looks like this:

  natcon("0" <DIGIT+ Ds>) => natcon(<Ds>)

Note

Unlike the ASF+SDF solution, it is not necessary to make a distinction between ordinary
variables, lexical variables, and layout variables. Here, all variables are treated equal and
their syntactic position determines how they are used.

We also allow arbitrary character classes as type in a pattern variable, e.g., one could also write:

  natcon("0" <[0-9]+ Ds>) => natcon(<Ds>)

Caution

Make lexical patterns and regular patterns more similar to each other.

According to conventions imposed by the SDF implementation, for each lexically defined sort S the
sorts S-Lex (lexical definition of S) and S-CF (context-free definition of S) are created together
with the inclusion rule

S-Lex -> S-CF

For precise typing of lexical patterns, one may have to resort to these generated types.

Caution

How do we parameterize layout?

import Java[LAYOUT => JAVA-LAYOUT]

Statements
The different statement types are described in the following subsections.

Declaration and assignment

Rascal provides variable declarations with optional initialization. If the initialization is missing, no
control flow path may exist with use before definition. An assignment statement assigns a value to a
variable. The left-hand side is of syntactic type Assignable, and may be a simple variable, index
of variable, field selection of variable, or a combination of these. Assignments may be undone in the
context of a failing case of a switch or visit statement.

An assignment may also contain one of the assignment operators +=, -=, *=, /=, &=, and |=.
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Standard control statements

Rascal supports the following standard control statements:

• If-then statement and if-then-else statement.

• A while statement to repeat a block of code while a given Predicate is true.

• A for statement repeats a block of code for each value produced by a generator.

• A return statement returns a value from a function, or just returns (for functions with result type
void). Note that return jumps out of an entire function, even if it is nested in a complicated control
flow statement such as visit.

Solve statement

Rascal provides a solve statement for the solution of sets of simultaneous linear equations. The format
is:

solve (Expression) {
  Assignable1 = Expression1;
  Assignable2 = Expression2;
  ...
}

The solve statement is executed by performing the assignments in its body as long as the value of
at least one assignable at the left-hand side of an assignment changes. The optional Expression
directly following the solve keyword, gives an upperbound on the number of iterations.

Exception handling

A try statement can be used to execute a statement and to catch any exception raised by that statement
and resembles the corresponding Java construct:

try Statement
catch Pattern1 : Statement1
catch Pattern2 : Statement2
...
finally: Statement

A throw statement can raise an exception.

Switch and fail statement

A switch statement is similar to a switch statement in C or Java and has the form:

switch ( Expression ) {
case Rule1;
case Rule2;
...
default: ...
}

The value of the expression is the subject term that will be matched by the successive cases in the
switch statement. This corresponds to the matching provided by the left-hand sides of a set of rewrite
rules. However, the switch statement provides only matching at the top level of the subject term and
does not traverse it. The type of the pattern in each case must be identical to the type of the subject
term (or be a subtype of it). If no case matches, the switch acts as a dummy statement. There is no
fall through from one case to the next.

Each case contains a Rule that can have one of the following forms:



Rascal Requirements and Design Document

22

• SyntaxPattern1 => SyntaxPattern2

When the subject matches SyntaxPattern1, SyntaxPattern2 is returned from the
enclosing function (after proper substitution).

• AbstractPattern1 => AbstractPattern2 or PatternVariable

When the subject matches Abstractpattern1, AbstractPattern2 is returned from the
enclosing function (after proper substitution). When the right-hand side consists of a single
PatternVariable, its value is returned.

• RegExpPattern => StringLiteral or PatternVariable

When the subject matches RexExpPattern1, StringLiteral (or the single
PatternVariable) is returned from the enclosing function (after proper substitution).

• Pattern : Statement

This is the most general case. When the subject matches Pattern, the Statement is executed.
The execution of Statement should lead to one of the following:

• Execution of a return statement that returns a value from the enclosing function.

• Execution of a fail statement: all side effects of Statement are undone and the next case
is tried.

• None of the above: execution continues with the statement following the switch.

Note

In the future we intend to unify the first three alternatives into:

Pattern1 => Pattern2

Right now, we stick to these three alternatives to reduce the number of syntactic ambiguities.

Flow of control and local alternatives

The flow of control in Rascal is more or less traditional, except that in some situations local alternatives
may exist. This is in particular the case when using patterns that contain list or set patterns. In those
cases, more than one match may be possible and the flow of control is such that these matches can be
handled appropriately. We have the following:

• The "if" and "while" statement provide ordinary flow of control and their condition may not contain
list patterns, set patterns or generators.

• The for-statement also provides ordinary flow of control and its condition is a generator.

• We have break and continue statements.

• The "switch" and "visit" construct introduce a save/commit barrier before and after each case.
Executing a fail in the code associated with a case leads to undoing side-effects and continuation
with the next case.

• We already have "forall" (suggestion: rename this to "all") and "exists" as predicates that test that
all (or at least one element) satisfies a predicate.

• TO BE DISCUSSED: The new statement constructs "all" and "exists" have a list or set pattern as
condition. They establish a save/commit barrier around each iteration. When an iteration completes
normally all its side-effects are made permanent and execution continues with the next iteration
(all) or the next statement (exists). When "fail" is encountered during execution, all side-effects are
undone and execution continues with the next iteration.
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Expressions

Table 1. Operators on Datatypes

 bool int double str loc list tuple set map rel

equal == == == == == == == == == ==

nequal != != != != != != != != != !=

less < < < < < < < < < <

lesseq <= <= <= <= <= <= <= <= <= <=

greater > > > > > > > > > >

greatereq >= >= >= >= >= >= >= >= >= >=

and/
inter

&& & & &

or/
union

|| | | |

not !

add/
conc

+ + + + +

sub/diff - - - - - -

prod * * * * * *

div / /

in in in in in in in

notin notin notin notin notin notin notin

*-
closure

* *

+-
closure

+ +

project [ _ ] [ _ ] [ _ ] [ _ ]

Note

Some operators do not fit nicely in this scheme since they do not operate on the basic data
types:

• @ get annotation value

• ~~ match

• !~ no match

• _ ? _ : _ conditional expression

Basic values

Constants of type bool, int , double, str and loc are expressions. All operators for all datatypes
are summarized in Table 1, “Operators on Datatypes” [23].

Structured values

Values of the structured types list, set, tuple, rel and map are expressions and can be
constructed as follows:



Rascal Requirements and Design Document

24

• Lists are enclosed between [ and ] and the elements are separated by comma's, e.g. ["abc",
"def"] or [true, false, false, true]. For lists of integers, a special shorthand exists
to describe ranges of integers:

• [F..L] ranges from first element F to (and including) last element L with increments of 1.

• [F,S,..E], ranges from first element F, second element S to (and including) last element L
with increments of S - F.

• Sets are enclosed between { and } and the elements are separated by comma's, e.g. {"abc",
"def"} or {true, false}.

• Tuples are enclosed between < and > and the elements are separated by comma's, e.g. <1,
"twee", 3>.

• Relations are sets of tuples.

• Maps are a special form of binary relation and satisfy the constraint that the first element of each
tuple is unique. Maps model functions. To distinguish between map tuples and tuples in general
relations, we write them as <E1 -> E2>.

An index operator R[N] can be applied to values of types list, tuple, string and returns the N-th element.
It throws the exception out_of_range(str msg) when the index value is out of range.

For a map M, M[N], returns the single image value corresponding with N. This expression may also
occur as left-hand side of an assignment:

M[N] = V

which first removes from M the tuple with domain value N and then adds the tuple <N -> V>. The net
effect is that a new map value is assigned to M.

For all structured values, we provide comprehensions for lists of the form:

[ E | G1, ..., Gn ]

and for sets, maps and relations of the form:

{ E | G1, ..., Gn }

Tree values

Syntax trees are expressions and generators in comprehensions may range over syntax trees.

Generators may have a strategy option to indicate:

• top-down

• top-down-break

• bottom-up (this is the default)

• bottom-up-break

The two other strategy options (innermost and outermost) are only meaningfull in the context
of a visit expression.

Predicates

Predicates are expressions that yield a value of type bool and include == (equal), != (not equal), <
(less), <= (less or equal), > (greater), >= (greater or equal). Predicates are used in control statements
and in conditional expressions written as

Predicate ? Expression1 : Expression2
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Other predicates are:

• in, notin: membership test.

• ~~ match

• !~ nomatch

Visit expression and insert statement

A visit expression corresponds to a traversal function in ASF+SDF and has the form:

Strategy visit ( Expression ) {
case Rule1;
case Rule2;
...
default: ...
}

Given a subject term (the current value of Expression) and a list of cases (resembling rewrite
rules) it traverses the term. Depending on the precise rules it may perform replacement (mimicking
a transformer), update local variables (mimicking an accumulator) or a combination of these two. If
any of the cases contains an insert statement, the value of the visit expression is a new value that
is obtained by successive insertions in the subject term by executing one or more cases. Otherwise,
the value of the subject term is returned.

The visit expression is optionally preceeded by one of the following strategy indications that determine
the traversal order of the subject:

• top-down

• top-down-break

• bottom-up (this is the default)

• bottom-up-break

• innermost = compute a fixed-point: repeat a bottom-up traversal as long as the traversal function
changes values.

• outermost = compute a fixed-point: repeat a traversal traversal as long as the traversal function
changes values.

The execution of the cases is similar to the cases in a switch statement with the following exceptions:

• The three Rule cases of the form ... => ... insert their result in the subject (instead of returning a
value).

• In the fourth case Pattern : Statement, executing Statement should lead to one of the
following:

• Execution of an insert statement of the form insert Expression. The value of
Expression replaces the subtree of the subject that is currently being visited. Note that a copy
of the subject is created at the start of the visit statement and all insertions are made in this copy.
As a consequence, insertions cannot influence matches later on.

Note

An insert statement may only occur inside a visit expression.

• Execution of a fail statement: all side effects of Statement are undone, no insertion is made,
and the next case is tried.
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• Execution of a return statement that returns a value from the enclosing function.

Each case keyword may be followed by a type constraint of the form [Type] that limits the type of
the tree nodes to which the case applies.

The precise behaviour of the visit statement depends on the type of the subject:

• For type tree, all nodes of the tree are visited (in the order determined by the strategy).
SyntaxPatterns and AbstractPatterns directly match tree nodes. RexExpPatterns match only values
of type string.

• For structured types (list, set, map, rel), the elements of the structured type are visited and matched
against the cases. When inserts are made, a new structured value is created.

Caution

Have strategies any effect for non-tree subjects?

Global rules
The Rules that we have already encountered in switch and visit statement, can also be defined globally
and are the closest to rewrite rules as we will get in Rascal. Unlike functions that are always called
explicitly when needed, global rules are always applied implicitly, i.e., whenever a value of some type
is created and there are rules defined for that type, they are immediately applied. In principle, rules can
be used to define arbitrary computations. In practice, they are mostly used to guarantee that certain
constraints are satisfied whenever a value of some type is created.

Rules have the general form:

rule Name Rule

Here is an example for concrete Booleans:

rule a1 true & <Bool B2>   => <B2>

and here for abstract Booleans:

rule a1 band(btrue, <Bool B2>)  => <B2> 

As we have seen before, the replacement part may also have the form colon (:) followed by an arbitrary
statement. During execution of rules the following applies:

• Rules are applied non-deterministically, and in any order of matching.

• The right hand side of rules can contain fail statements, which cause backtracking over the
alternative rules for a certain constructor.

• When the right-hand side is a statement, a return statement determines the value of the actual
replacement.

As with cases, the rule keyword may be immediately followed by a type constraint to limit its
applicability.

Caution

Default rules?

Failure and side-effects
There are two contexts in which side-effects, i.e., assignment to variables, have to be undone in case
of failure. These contexts are a rule in a switch or visit statement. If the pattern on the left-handside
of the rule matches there are various possibilities:
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• All control flow paths through the right-hand side of the rule end in a return statement. In this case,
the rule can not fail and all side-effects caused by the execution of the right-hand side are committed.

• One or more control path can fail. This can be caused by an explicit fail statement or an if-then
statement with missing else-branch (the missing else-branch acts as a fail). In the case of failure all
side-effects (of local and global variables) are undone.

• If a rule fails there are two possibilities:

• the left-hand side contains a list pattern that has more matching options; the next option is tried.

• the left-hand side contains a list patterns that has no more matching options or it contains no list
pattern at all; the next rule is tried.

• The possible choice points are:

• case in a switch, visit statement.

• match of left-hand side of rule.

• Selection of a binding of list variables during list matching, except if there is one possibility left.

• Selection of an element by a generator.

• The possible failure points are:

• fail statement

• a predicate used as generator in a comprehension.

• The possible success points are:

• return (jumps out of function scope and pops all choice points).

• insert (jumps to enclosing switch or visit or rule choice)

• true predicate in comprehension (jumps to next assignment of generator).

• On failure, the currently active choice point is used to undo side-effects and to continue execution.

• Side effects caused by built-in functions (like file i/o, socket communication, etc.) are not undone.

Examples
Here we list experimental examples of Rascal code to try out features.

Hello world
The ritual first example:

module Hello

public void main() {
   println("Hello, this is my first Rascal program");
}

Table of squares
Another ritual example, printing a table of squares:

module Squares
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public void main(list[str] argv){
  int N = toInt(argv[0]);
  map[int,int] squares = {};
  for(int I : [1 .. N]){
     squares[I] = I * I;
  }
  println("Table of squares from 1 to ", N);
  println(squares);
}

Caution

We need a mechanism to insert values in strings, e.g.

 println("Table of squares from 1 to <N>");

Table of word counts per file
module WordCount
 
public void main(list[str] argv){
  map[str, int] counts = {};
  for(str fileName : argv){
    try {
      counts[fileName] = wordCount(readFile(fileName));
    }
    catch: println("Skipping file <fileName>");
  }

  println("In total <sum(range(counts))> words in all files");
  println("Word counts per file: <counts>");
}

int wordCount(str S){
  int count = 0;
  %% the m-option enables multi-line matching
  for(/[a-zA-Z0-9]+/m: S){
       count += 1;
  }
  return count;
}

%% Here is an alternative (but less desirable) declaration:
int wordCount2(str S){
  int count = 0;
  %% \w matches any word character
  %% <...> are groups and should appear at the top level.
  %% m turns on multi-line matching
  while (/^.*?<word:\w+><rest:.*$>/m ~~ S) { 
    count += 1; 
    S = rest; 
  }
  return count;
}

%% Maintain word count per word.
%% Note how the += operator initializes each map entry
%% to an appropriate value (0 in this case)
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map[str,int] wordCountPerWord(str S){
  map[str,int] allCounts = {};

 for(/<word:^[a-zA-Z0-9]+>/m: S){
       allCounts[word] ? 0 += 1; 
  }
  return allCounts;
}

Word replacement
Here are two versions of a word replacement function:

Caution

How does this example work?

module WordReplacement

str capitalize1(str S){
    return visit (S) {
      %% \b matches a word boundary
      %% i turns on case-independent matching
      case /\brascal\b/i => "Rascal"
    };
}

str capitalize2(str S, str Pat, str Repl){
    return visit (S) {
      case /\b<Pat>\b/i => "<Repl>"
    };
}

The function capitalize1, replaces all occurrences of rascal (in all possible cases) by the
standard spelling Rascal. The function capitalize2 is a generalization of capitalize1: it
takes a subject string, a pattern string and a replacement string. Observe how the argument Pat is
inserted in the regular expression.

The call capitalize2(Subject, "rascal", "Rascal") will have the same effect as
capitalize1(Subject).

Finding date-related variables
In year 2000 conversions, the starting point for analysis could be variables with a date-related name.
Here is how to find them:

module DateVars

set[Var] getDateVars(Program P){
   return {V | Var V : P, 
               /.*(date|dt|year|yr).*$/i ~~ toString(V)};
}

Booleans
It seems that every language specification effort has to produce a specification of the Booleans at some
moment, so let's try it now. We try several variations.

We use the following common syntax:



Rascal Requirements and Design Document

30

module Booleans-syntax
exports 
  sorts Bool

  context-free syntax
    "true"        -> Bool
    "false"       -> Bool
    Bool "&" Bool -> Bool {left}
    Bool "|" Bool -> Bool {right}

Concrete Booleans defined with visit

Using the visit construct that we have described above, we can write the definitions for the functions
& and | as follows:

module Bool-examples1

import languages/Booleans/syntax;

Bool reduce(Bool B) {
    Bool B1, B2;
    return bottom-up visit(B) {
      case true & <B2>   => <B2>
      case false & <B2>  => false

      case true | true   => true
      case true | false  => true
      case false | true  => true
      case false | false => false
    };
}

Observe that there are two styles:

• In the definition for &, we use variables on the left-hand side: the visit is needed to fully normalize
the result.

• In the definition of |, we use a truth table.

Abstract Booleans defined with visit

In the above example we used concrete syntax for Booleans expressions. It also possible to define
Booleans as abstract terms.

module Bool-abstract

data Bool btrue;
data Bool bfalse;
data Bool band(Bool L, Bool R);
data Bool bor(Bool L, Bool R);  

Bool reduce(Bool B) {
    Bool B1, B2;
    return bottom-up visit(B) {
      case band(btrue, B2)      => B2   %% Use Variables
      case band(bfalse, B2)     => bfalse
      case bor(btrue, btrue)    => btrue  %% Use a truth table
      case bor(btrue, bfalse)   => btrue
      case bor(bfalse, btrue)   => btrue
      case bor(bfalse, bfalse)  => bfalse
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    };
}

First, type declarations are used to define the abstract syntax of the type Bool. Next, a similar reduce
function is defined as before, but now we use abstract patterns.

Abstract Booleans defined with rules

In ASF, values are always reduced to a normal form before they are created. For some applications this
normalization or canonicalization feature is very handy. We introduce the following syntax, which
can also help in the transformation of old ASF+SDF programs to Rascal:

module Bool-rules

data Bool btrue;
data Bool bfalse;
data Bool band(Bool L, Bool R);
data Bool bor(Bool L, Bool R);  

rule a1 band(btrue, Bool B2)  => B2 
rule a2 band(bfalse, Bool B2) => bfalse

rule o1 bor(btrue, btrue)     => btrue
rule o2 bor(btrue, bfalse)    => btrue
rule o3 bor(bfalse, btrue)    => btrue
rule o4 bor(bfalse, bfalse)   => bfalse

These rules are applied on every Bool that is constructed. Like in ASF+SDF it is the responsibility
of the programmer to make sure the rules are confluent and terminating. A rule definition has the
same syntax and semantics as the switch construct, allowing backtracking, side-effects and checking
of conditions.

There are some issues here:

• It should be dissallowed to have private rules on public constructors; normalization is a global effect
on public data-structures. On the other hand, constructors that are local to a module may have some
private rules applied to them; but public rules on private constructors are dissallowed too.

Concrete Booleans defined with rules

In a similar fashion, the concrete syntax version of Booleans can be defined using rules:

module Bool-conc-rules

import languages/Booleans/syntax;

rule a1 true & <Bool B2>   => <B2>
rule a2 false & <Bool B2>  => false

rule o1 true | true        => true
rule o2 true | false       => true
rule o3 false | true       => true
rule o4 false | false      => false

Abstract Graph datatype
In the Meta-Environment we use an abstract data type to exchange data representing graphs. It can
be defined as follows.

module Graph
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data Graph graph(NodeList nodes, 
                 EdgeList edges, 
                 AttributeList attributes);

type list[Node] Nodelist;

data Node node(NodeId id, 
               AttributeList attributes);

data Node subgraph(NodeId id, 
                   NodeList nodes, 
                   EdgeList edges, 
                   AttributeList attributes);

data NodeId id(term id);

type list[Attribute] AttributeList;

data Attribute bounding-box(Point first, Point second);
data Attribute color(Color color);
data Attribute curve-points(Polygon points);
data Attribute direction(Direction direction);
data Attribute fill-color(Color color);
data Attribute info(str key, value value);
data Attribute label(str label);
data Attribute tooltip(str tooltip);
data Attribute location(int x, int y);
data Attribute shape(Shape shape);
data Attribute size(int width, int height);
data Attribute style(Style style);
data Attribute level(str level);
data Attribute file(File file);
data Attribute file(value file);

data Color rgb(int red, int green, int blue);

data Style bold | dashed | dotted | filled | invisible | solid;

data Shape box | circle | diamond | egg | elipse | hexagon | 
           house | octagon | parallelogram | plaintext | 
           trapezium | triangle;

data Direction forward | back | both | none;

type list[Edge] Edgelist;

data Edge edge(NodeId from, 
               NodeId to, 
               AttributeList attributes);

type list[Point] Polygon;

data Point point(int x, int y);

Tree traversal
Here is the binary tree example that we use in explaining traversal functions in ASF+SDF.



Rascal Requirements and Design Document

33

module BTree-syntax
imports basic/Integers

exports 
  sorts BTREE
  context-free syntax
    Integer         -> BTREE
    f(BTREE,BTREE)  -> BTREE
    g(BTREE,BTREE)  -> BTREE
    h(BTREE,BTREE)  -> BTREE
    i(BTREE,BTREE)  -> BTREE

module BTree-Examples
import BTree-syntax; 

%% Ex1: Count leaves in a BTREE
%% Idea: int N : T generates alle Integer leaves in the tree
%% Observe that there is no need to touch the contents of 
%% each Integer since we only count them.

int cnt(BTREE T) {
    return size({N | Integer N : T});
}

%% Ex1: alternative solution using a visit statement

int cnt(BTREE T) {
    int C = 0;
    visit(T) {
      case <Integer N> : C = C+1;
    };
    return C;
}
 
%% Ex2: Sum all leaves in a BTREE
%% NB sum is a built-in that adds all elements in a set or list.
%% Here we see immediately the need to convert between
%% - the syntactic sort "Integer"
%% - the built-in sort "int"
%% We use the toInt function that attempts convert any tree
%% to an int.

int sumtree(BTREE T) {
    return sum({toInt(N) | Integer N : T});
}

%% Ex2: using visit statement

int cnt(BTREE T) {
    int C = 0;
    visit(T) {
      case <Integer N> : C = C+toInt(N);
    };
    return C;
}

%% Ex3: Increment all leaves in a BTREE
%% Idea: using the visit statement visit all leaves in
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%% the tree T that match an integer and replace each N in T by N+1.
%% The expression as a whole returns the modified tree
%% Note that two conversions are needed here:
%% - from Integer to int (using toInt)
%% - from int back to Integer (using parseString)

BTREE inc(BTREE T) {
    return visit (T) {
      case <Integer N>: insert parseString(toInt(N)+1);
    };
}

%% Ex4: full replacement of g by i
%% The whole repertoire of ASF+SDF traversal functions is available:
%% - bottom-up visit (T) { ... }
%% - bottom-up-break visit (T) { ... }
%% - etc.
%% A nice touch is that these properties are not tied to the
%% declaration of a travesal function (as in ASF+SDF) but to 
%% its use.

BTREE frepl(BTREE T) {
    return bottom-up visit (T) {
      case [| g(<BTREE T1>, <BTREE T2>) |] =>
           i(<BTREE T1>, <BTREE T2>)
    };
}

%% Ex5: Deep replacement of g by i

BTREE frepl(BTREE T) {
    return bottom-up-break visit (T) {
      case[| g(<BTREE T1>, <BTREE T2>) |] =>
             i(<BTREE T1>, <BTREE T2>)
    };
}

%% Ex6: shallow replacement of g by i (i.e. only outermost 
%% g's are replaced); 

BTREE srepl(BTREE T) {
    return top-down-break visit (T) {
      case [| g(<BTREE T1>, <BTREE T2>) |] => 
              i(<BTREE T1>, <BTREE T2>)
    };
}

%% Ex7: We can also add the top-down-break directive to the 
%% generator to get only outermost nodes.

set[BTREE] find_outer_gs(BTREE T) {
    return
    { S | top-down-break STATEMENT S : T, 
          [| g(<BTREE T1>, <BTREE T2>) |] ~~ S };
}
 
%% Ex8: accumulating transformer that increments leaves with 
%% amount D and counts them
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tuple[int, BTREE] count_and_inc(BTREE T, int D) {
    int C = 0;
    
    visit (T) {
      case <Integer N>: { C = C + 1; 
                          int N1 = toInt(N) + D; 
                          insert parse(unparseToString(N1));
                        }
    };
    return <C, T>;
}

Substitution in Lambda
Below a definition of substitution in lambda expressions. It would be nice to get this as simple as
possible since it is a model for many binding mechanisms. It is also a challenge to write a generic
substitution function that only depends on the syntax of variables and argument binding.

module examples/Lambda/Lambda-syntax

exports
sorts Var %% variables
      Exp %% expressions
lexical syntax
     [a-z]+               -> Var
context-free syntax
     "prime" "(" Var ")"  -> Var  %% generate unique name
     Var                  -> Exp  %% single variable
     "fn" Var "=>" Exp    -> Exp  %% function abstraction
     Exp Exp              -> Exp  %% function application

Examples:

module Lambda-Examples

import Lambda-syntax;

set[Var] allVars(Exp E) {
    return {V | Var V : E};
}

set[Var] boundVars(Exp E) {
    return {V | fn <Var V> => <Exp E1> : E};
} 

set[Var] freeVars(Exp E) {
    return allVars(E) - boundVars(E);
}

%% Generate a fresh variable if V does not occur in 
%% given set of variables.

Var fresh(Var V, set[Var] S) {
    if (V in S){ return prime(V); } else {return V;}
}

%% Substitution: replace all occurrences of V in E2 by E1

Exp subst(Var V1, Exp E1, Exp E2) {
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    return visit (E2) { 
      case <Var V2>: insert (V1==V2) ? E1 : V2;

      case <Exp Ea> <Exp Eb>:
        insert [| <subst(V, E, Ea)> <subst(V, E, Eb)> |];

      case fn <Var V2> => <Var Ea>:
        if (V1 == V2) { insert [| fn <V2> =\> <Ea> |]; }

      case fn <Var V2> => <Exp Ea>:
        if(V1 != V2 && !(V1 in freeVars(E2) && 
           V2 in freeVars(E1))){
           insert [| fn <V2> =\> <subst(V1, E1, Ea)> |];
        }              
 
      case fn <Var V2> => <Exp Ea>: 
        if(V1 != V2 && V1 in freeVars(Ea) &&
           V2 in freeVars(E1)){
           Var V3 = fresh(V2, freeVars(Ea) + freeVars(E1));
           Exp EaS = subst(V1, E1, subst(V2, V3, E2));
           insert [| fn <V3> =\> <EaS> |];
        }
    };
}

Renaming in Let
module Let-syntax
exports
sorts Var %% variables
      Exp %% expressions
lexical syntax
     [a-z]+                           -> Var
context-free syntax
     Var                              -> Exp
     "let" Var "=" Exp "in" Exp "end" -> Exp 

Examples:

module Let-Example

import Let;

%% Rename all bound variables in an Exp
%% Version 1: purely functional
%% Exp: given expression to be renamed
%% rel[Var,Var]: renaming table
%% Int: counter to generate unique variables

Exp rename(Exp E, rel[Var,Var] Rn, Int Cnt) {
    switch (E) {
    case let <Var V> = <Exp E1> in <Exp E2> end:
         return [| let <parseString("x" + toString(Cnt))> = 
                       <rename(E1, Rn, Cnt)>
                   in 
                       <rename(E2, {<V, Y>} + Rn, Cnt+1)>
                   end
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                |];
          
    case <Var V>: return Rn[V];

    default: return E;
    }
}

Renaming in Let using globals
Here is the same renaming function now using two global variables.

module Let-Example

import Let;

%% Rename all bound variables in an Exp
%% Version 2: using global variables
%% Cnt: global counter to generate fresh variables
%% rel[Var,Var]: global renaming table

global int Cnt = 0;
global rel[Var,Var] Rn = {};

Var newVar() {
    global int Cnt;  
    Cnt = Cnt + 1;
    return parseString("x" + toString(Cnt));
}

Exp rename(Exp E) {
    global int Cnt;
    global rel[Var,Var] Rn;
    switch (E) {
    case let <Var V> = <Exp E1> in <Exp E2> end: {
         Var Y = newVar();
         Rn = {<V, Y>} + Rn;
         return [| let <Y>= <rename(E1)>
                   in 
                      <rename(E2)>
                   end 
                |];
          }

    case <Var V>: return Rn[V];

    default: return E;
    }
}

Pico Typechecker
The following example shows a typechecker for Pico that generates a list of error messages.

module Typecheck

import Pico-syntax;
import Errors;
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type map[PICO-ID,TYPE] Env;

list[Error] tcp(PROGRAM P) {
    switch (P) {
      case begin <DECLS Decls> <{STATEMENT ";"}* Series> end: {
           Env Env = {<Id, Type> | 
                      [| <PICO-ID Id> : <TYPE Type> |] : Decls};
           return [ tcst(S, Env) | Stat S : Series ];
      }
    }
    return [];
}

list[Error] tcst(Stat Stat, Env Env) {
    switch (Stat) {
      case [| <PICO-ID Id> = <EXP Exp>|]: {
        TYPE Type = Env[Id];
        return type_of(Exp, Type, Env);
      }

      case if <EXP Exp> then <{STATEMENT ";"}* Stats1> 
                   else <{STATEMENT ";"}* Stats1> fi:
        return type_of(Exp, natural, Env) + 
               tcs(Stats1, Env) + tcs(Stats2, Env);

      case while <EXP Exp> do <{STATEMENT ";"}* Stats1> od: 
        return type_of(Exp, natural, Env) + tcs(Stats, Env);
    }
    return [];
}
 
list[Error] type_of(Exp E, TYPE Type, Env Env) {
    switch (E) {
      case <NatCon N>: if(Type == natural){ return []; }

      case <StrCon S>: if(Type == string) { return []; }

      case <PICO-ID Id>: {
         TYPE Type2 = Env(Id);
         if(Type2 == Type) { return []; }
      }

      case <EXP E1> + <EXP E2>:
        if(Type == natural){
           return type_of(E1, natural, Env) + 
                  type_of(E1, natural, Env);
        }

      case <EXP E1> - <EXP E2>:
        if(Type == natural){
           return type_of(E1, natural, Env) + 
                  type_of(E1, natural, Env);
        }

      case <EXP E1> || <EXP E2>: 
        if(Type == string){
          return type_of(E1, string, Env) + 



Rascal Requirements and Design Document

39

                 type_of(E1, string, Env);
        }
    
      default: return [error("Incorrect type")];
    }
}

Pico evaluator
module Pico-eval
import pico/syntax/Pico;
 
data PICO_VALUE intval(int) | strval(str);

type map[PICO-ID, PICO_VALUE] VEnv;

VEnv evalProgram(PROGRAM P){
    switch (P) {
      case begin <DECLS Decls> <{STATEMENT ";"}* Series> end: {
          VEnv Env = evalDecls(Decls);
          return evalStatements(Series, Env);
      }
   }
}

VEnv evalDecls(DECLS Decls){
    VEnv Env = {};
    visit (Decls) {
      case <PICO-ID Id> : string: { 
           Env[Id] = strval(""); 
           return Env;
      }
      case <PICO-ID Id> : natural: { 
           Env[Id] = intval(0);  
           return Env;
      }
    };
    return Env;
}

VEnv evalStatements({STATEMENT ";"}* Series, VEnv Env){
    switch (Series) {
      case <STATEMENT Stat>; <{STATEMENT ";"}* Series2>: {
        Env Env2 = evalStatement(Stat, Env);
        return evalStatements(Series2, Env2);
      }
      default: return Env;
    }
}

VEnv evalStatement(STATEMENT Stat, VEnv Env){
    switch (Stat) {
      case [| <PICO-ID Id> = <EXP Exp> |]: {
        Env[Id] = evalExp(Exp, Env);
        return Env;
      }

      case if <EXP Exp> then <{STATEMENT ";"}* Stats1> 
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                       else <{STATEMENT ";"}* Stats1> fi:{
        if(evalExp(Exp, Env) != intval(0)){
          return evalStatments(Stats1, Env);
        } else {
          return evalStatements(Stats2, Env);
        }
      }

      case while <EXP Exp> do <{STATEMENT ";"}* Stats1> od: {
        if(evalExp(Exp, Env) != intval(0)){
          return Env;
        } else {
          VEnv Env2 = evalStatements(Stats1, Env);
          return evalStatement(Stat, Env2);
        }
      }
      default: return Env;
    }
}

PICO_VALUE evalExp(Exp exp, VEnv Env) {
    switch (exp) {
      case NatCon[| <NatCon N> |]: 
           return intval(toInt(unparseToString(N)));

      case StrCon[| <StrCon S> |]: 
           return strval(unparseToString(S));

      case PICO-ID[| <PICO-ID Id> |]: 
           return Env[Id];

      case <EXP exp1> + <EXP exp2>:
           if(intval(int n1) ~~ evalExp(exp1, Env) &&
              intval(int n2) ~~ evalExp(exp2, Env)){
              return intval(n1 + n2);
           }
      
      case <EXP exp1> - <EXP exp2>:
            if(intval(int n1) ~~ evalExp(exp1, Env) &&
               intval(int n2) ~~ evalExp(exp2, Env)){
               return intval(n1 - n2);
           }
 
      case <EXP exp1> || <EXP exp2>:
           if(strval(str s1) ~~ evalExp(exp1, Env) &&
              strval(str s2) ~~ evalExp(exp2, Env)){
              return strval(s1 + s2);
           }
   } 
}

Pico evaluator with globals
Here is the same evaluator but now using a global variable to represent the value environment.

module Pico-eval

import pico/syntax/Pico;
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data PICO_VALUE intval(int) | strval(str);

type map[PICO-ID, PICO_VALUE] VEnv;

VEnv Env = {};

void evalProgram(PROGRAM P){
    switch(P) {
      case begin <DECLS Decls> <{STATEMENT ";"}* Series> end: {
          evalDecls(Decls);
          evalStatements(Series);
      }
   }
}

VEnv evalDecls(DECLS Decls){
    global Venv Env;
    visit (Decls) {
      case <PICO-ID Id> : string:  Env[Id] = strval("");
      case <PICO-ID Id> : natural: Env[Id] = intval(0);
    };
    return Env;
}

void evalStatements({STATEMENT ";"}* Series){
    switch (Series) {
      case <STATEMENT Stat>; <{STATEMENT ";"}* Series2>: {
        evalStatement(Stat);
        evalStatements(Series2);
        return;
      }
      default: return;
    }
}

void evalStatement(STATEMENT Stat){
    global Venv Env;
    switch (Stat) {
      case [| <PICO-ID Id> = <EXP Exp> |]: {
        Env[Id] = evalExp(Exp);
        return;
      }

      case if <EXP Exp> then <{STATEMENT ";"}* Stats1> 
                   else <{STATEMENT ";"}* Stats1> fi:{
        if(evalExp(Exp) != intval(0)) {
          evalStatements(Stats1);
          return;
        } else {
          evalStatements(Stats2);
          return;
        }
      }

      case while <EXP Exp> do <{STATEMENT ";"}* Stats1> od:{
        if(evalExp(Exp) != intval(0)){
          return;
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        } else {
          evalStatements(Stats1);
          evalStatement(Stat);
          return;
        }
      }
    }
};

PICO_VALUE evalExp(Exp exp) {
    global Venv Env;
    switch (exp) {
      case <NatCon N>: intval(toInt(unparseToString(N)));

      case <StrCon S>: return strval(unparseToString(S));

      case <PICO-ID Id>: return Env[Id];

      case <EXP exp1> + <EXP exp2>:
           if(intval(int n1) ~~ evalExp(exp1) &&
              intval(int n2) ~~ evalExp(exp2)){
              return intval(n1 + n2);
           }

      case <EXP exp1> - <EXP exp2>:
           if(intval(int n1) ~~ evalExp(exp1) &&
              intval(int n2) ~~ evalExp(exp2)){
              return intval(n1 - n2);
           }
   
      case <EXP exp1> || <EXP exp2>:
           if(strval(str s1) ~~ evalExp(exp1) &&
              strval(str s2) ~~ evalExp(exp2)){
              return strval(s1 + s2);
           }
   } 
}

Pico control flow extraction
module Pico-controlflow
 
import pico/syntax/Pico;

data CP exp(EXP) | stat(STATEMENT);

type tuple[set[CP] entry, 
           rel[CP,CP] graph, 
           set[CP] exit] CFSEGMENT;

CFSEGMENT cflow({STATEMENT ";"}* Stats){ 
    switch (Stats) {
      case <STATEMENT Stat> ; <{STATEMENT ";"}* Stats2>: { 
           CFSEGMENT CF1 = cflow(Stat);
           CFSEGMENT CF2 = cflow(Stats2);
           return <CF1.entry, 
                   CF1.graph | CF2.graph | (CF1.exit * CF2.entry), 
                   CF2.exit>;
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      }

      case [| |]: return <{}, {}, {}>;
    }
}

CFSEGMENT cflow(STATEMENT Stat){
    switch (Stat) {
      case while <EXP Exp> do <{STATEMENT ";"}* Stats> od : {
           CFSEGMENT CF = cflow(Stats);
           set[CP] E = {exp(Exp)};
           return < E, 
                    (E * CF.entry) | CF.graph | (CF.exit * E),
                    E
                  >;
      }
                
      case if <EXP Exp> then <{STATEMENT ";"}* Stats1> 
                   else <{STATEMENT ";"}* Stats2> fi: {
           CFSEGMENT CF1 = cflow(Stats1);
           CFSEGMENT CF2 = cflow(Stats2);
           set[CP] E = {exp(Exp)};
           return < E, 
                    (E * CF1.entry) | (E * CF2.entry) | 
                                      CF1.graph | CF2.graph,
                    CF1.exit | CF2.exit
                  >;
      }
         
      case <STATEMENT Stat>: return <{Stat}, {}, {Stat}>;
    }
}

Pico use def extraction
module Pico-use-def

import pico/syntax/Pico;

rel[PICO-ID, EXP] uses(PROGRAM P) {
  return {<Id, E> | EXP E : P, [| <PICO-ID Id> |] ~~ E};
}

rel[PICO-ID, STATEMENT] defs(PROGRAM P) { 
  return {<Id, S> | STATEMENT S : P, 
                    [| <PICO-ID Id> := <EXP Exp> |] ~~ S};
}

The above uses a "matching condition" to decompose S. The problem solved is that we want to have a
name for the whole assignment and for the lhs identifier. Also note that, compared to older definitions
of these functions, the iudentifier is placed as first element in each tuple.

Pico uninitialized variables
module Pico-uninit

import pico/syntax/Pico;
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import Pico-controlflow;
import Pico-use-def;

set[PICO-ID] uninit(PROGRAM P) {
    rel[EXP,PICO-ID] Uses = uses(P);
    rel[PICO-ID, STATEMENT] Defs = defs(P);
    CFSEGMENT CFLOW = cflow(P);
    set[CP] Root = CFLOW.entry;
    rel[CP,CP] Pred = CFLOW.graph; 

    return {Id | <EXP E, PICO-ID Id> : Uses,
                 E in reachX(Root, Defs[Id], Pred)
    };
}

Pico common subsexpression elimination
module Pico-common-subexpression

import pico/syntax/Pico;
import Pico-controlflow;
import Pico-use-def;

PROGRAM cse(PROGRAM P) {
    rel[PICO-ID, STATEMENT] Defs = defs(P);
    rel[CP,CP] Pred = cflow(P).graph;
    map[EXP, PICO-ID] replacements = 
       {<E2 -> Id> | STATEMENT S : P,
                   [| <PICO-ID Id> := <EXP E> |] ~~ S,
                   Id notin E,
                   EXP E2 : reachX({S}, Defs[Id], Pred)
       };
  
    return visit (P) {
      case <EXP E>: if([| <PICO-ID Id> |] ~~ replacements(E)){
                       replace-by Id;
                    }
    };
}

Paraphrased: Replace in P all expressions E2 by Id, such that

• P contains a statement S of the form Id := E,

• Id does not occur in E,

• E2 can be reached from S,

• There is no redefinition of Id between S and E2.

Pico constant propagation
module Pico-constant-propagation

import  pico/syntax/Pico;
import  Pico-controlflow;
import  Pico-use-def;
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Boolean is_constant(EXP E) {
   switch (E) {
     case <NatCon N>: return true;

     case <StrCon S>: return true;

     case <EXP E>: return false;
   }
}

PROGRAM cp(PROGRAM P) {
    rel[PICO-ID, STATEMENT] Defs = defs(P);
    rel[CP,CP] Pred = cflow(P).graph;

    map[PICO-ID, EXP] replacements = 
      {<Id2 -> E> | STATEMENT S : P,
                  [| <PICO-ID Id> := <EXP E> |] ~~ S,
                  is_constant(E),
                  PICO-ID Id2 : reachX({S},Defs[Id],Pred),
                  Id2 == Id 
      };  
 
    return visit (P) {
     case <PICO-ID Id>: if(<EXP E> ~~ replacements[Id]){
                           insert E;
                        }
    };
}

Paraphrased: Replace in P all expressions Id2 by the constant E, such that

• P contains a statement S of the form Id ~~ E,

• E is constant,

• Id2 can be reached from S,

• Id2 is equal to Id,

• There is no redefinition of Id between S and Id2.

Pico Reaching definitions
Recall the equations construct as used, for example, in the reaching definitions example in the Rscript
guide. It computes the values of a set of variables until none of them changes any longer. The "solve"
statement achives the same effect.

module Pico-reaching-defs

type tuple[Stat theStat, Var theVar] Def;
type tuple[Stat theStat, Var theVar] Use;

set[Stat] predecessor(rel[Stat,Stat] P, Stat S) { 
    return invert(P)[S];
}

set[Stat] successor(rel[Stat,Stat] P, Stat S) { 
    return P(S);
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}

rel[Stat, Def] reaching_definitions(rel[Stat,Var] DEFS, 
                                        rel[Stat,Stat] PRED) {

    set[Stat] STATEMENT = carrier(PRED);

    rel[Stat,Def] DEF  = {<S,<S,V>> | tuple[Stat S, Var V]: DEFS};

    rel[Stat,Def] KILL = 
        {<S1, <S2, V>> | tuple[Stat S1, Var V] : DEFS, 
                         tuple[Stat S2, V] : DEFS, 
                         S1 != S2
        };

     rel[Stat,Def] IN = {};
     rel[Stat,Def] OUT = DEF;

     solve {
           IN  =  {<S, D> | int S : STATEMENT, 
                            Stat P : predecessor(PRED,S), 
                            Def D : OUT[P]};
           OUT =  {<S, D> | int S : STATEMENT, 
                            Def D : DEF[S] + (IN[S] - KILL[S])}
    }
    return IN;
}

Structured lexicals: numbers
Given the SDF definition:

sorts Digit Number Real  
lexical syntax
   [0-9]             -> Digit
   Digit+            -> Number
   Number "." Number -> Real

we can write a normalization rule for Number that removes leading zeros:

rule n1 number("0" <Digit+ Ds>) => number(<Ds>)

Note that a character class can be used instead of the sort Digit:

rule n2 number("0" <[0-9]+ Ds>) => number(<Ds>)

A truncation function on Real can replace the mantissa by 0:

Real truncate(Real R){
    switch (R) {
       case real(<Number Num> "." <Digit+ Ds>) => real(<Num> "." "0")
    }
}

Structured Lexicals: strings
Given the SDF definition:

sorts String NQChar
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lexical syntax
   ~[\"]             -> NQChar
   [\"] NQChar* [\"] -> String

A function that removes the first newline from a string can be written as:

String removeFirstNL(String S){
    switch (S) {
      case string("\"" <NQChar* Chars1> "\n" <NQChar* Chars2> "\"") =>
           string("\"" <Chars1> <Chars2> "\"")
    }
}

A function that removes all newline from a string:

String removeAllNL(String S){
    return innermost visit (S) {
      case string("\"" <NQChar* Chars1> "\n" <NQChar* Chars2> "\"") =>
           string("\"" <Chars1> <Chars2> "\"")
    };
}

Symbol table with scopes
Here is a (probably naive) implementation of a symbol table that maintains a list of numbered scopes
as well as a (Name, Value) mapping in each scope. Note that we introduce parameterized modules
to do this right.

module SymTable[&Name, &Value]

%% A scope-oriented symbol table.
%% Each scope consists of a map from names to values. 
%% This is more intended to explore whether this can be expressed
%% *at all* than that the datatype is well designed.

type rel[&Name, &Value] ScopeMap;
type int ScopeId;
data STable[&Name, &Value] stable(ScopeId scope, 
                                  rel[int, ScopeMap] scopes); 

%%Create a new, empty,  table
fun STable[&Name, &Value] new_table(){
  return stable(0, {<0, {}>});
}

%% Create a new, non-empty, table
fun STable[&Name, &Value] new_table(ScopeId scope, 
                              rel[int, ScopeMap] scopes){
  return stable(scope, scopes);
} 

%% Update, in a given scope, the value of a variable
fun STable[&Name, &Value] update(STable[&Name, &Value] ST, 
                                 ScopeId scope, 
                                 &Name N, 
                                 &Value V){
  ST.scopes(scope) = V;
  return new_table(scope, ST.scopes)
}
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%% Get, in a given scope, the value of a variable
fun STable[&Name, &Value] value_of(STable[&Name, &Value] ST, 
                                ScopeId scope, 
                                &Name N){
  return ST.scopes(scope)(N)
}

%% update, in the current scope, the value of a variable
fun STable[&Name, &Value] update(STable[&Name, &Value] ST, 
                                 &Name N, 
                                 &Value V){
%%  ST.scopes(scope)(N)= V;
  return new_table(scope, ST.scopes)
}

%% Get, in the current scope, the value of a variable
fun STable value_of(STable[&Name, &Value] ST, 
                 &Name N){
  return ST.scopes(ST.scope)(N)
}

%% add a new scope and make it the current scope
fun STable[&Name, &Value] new_scope(STable[&Name, &Value] ST){
  ScopeId scope = ST.scope + 1;
  return new_table(scope, ST.scopes);
}

%% switch to another scope
fun STable[&Name, &Value] switch_scope(STable[&Name, &Value] ST, 
                                       ScopeId scope){
  return new_table(scope, ST.scopes);
}

Innerproduct
[Example inspired by TXL documentation]

Define nnerproduct on lists of integers, e.g. innerProduct([1, 2, 3] .[3, 2, 1]) => 10.

module Innerproduct

int innerProduct(list[int] V1, list[int] V2){
    if (size(V1) == 0 || size(V2) == 0){
       return 0;
    } else {
       return (N1*N2) + innerProduct(rest(V1), rest(V2));
    }
 }

Bubble sort
[Example inspired byTXL documentation]

module Bubble

%% sort1: uses list indexing and for-loop
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list[int] sort1(list[int] Numbers){
  for(int I : [0 .. size(Numbers) - 2 ]){
     if(Numbers[I] > Numbers[I+1]){
       Numbers[I], Numbers[I+1] = Numbers[I+1], Numbers[I];
       return sort(Numbers);
     }
  }
  return Numbers;
}

%% sort2: uses list matching and switch

list[int] sort2(list[int] Numbers){
  list[int] Nums1, Nums2;
  int P, Q;

  switch(Numbers){
    case [Nums1, P, Q, Nums2]:
       if(P > Q){
          return sort([Nums1, Q, P, Nums2]);
       }
     default: return Numbers;
   }
  
}

%% sort3: uses list matching and visit

list[int] sort3(list[int] Numbers){
  list[int] Nums1, Nums2;
  int P, Q;

  return innermost visit(Numbers){
    case [Nums1, P, Q, Nums2]:
       if(P > Q){
          insert [Nums1, Q, P, Nums2];
       }
     default: Numbers;
    };
}

Generic Bubble sort
Here is a generic bubble sort wich uses type parameters (&E) and a function parameter.

module Bubble-Gen

list[&E] sort(list[&E] Elements, bool GreaterThan(&E, &E)){
  for(int I : [0 .. size(Elements) - 2]){
     if(GreaterThan(Elements[I],  Elements[I+1])){
       Elements[I], Elements[I+1] = Elements[I+1], Elements[I];
       return sort(Elements);
     }
  }
  return Elements;
}
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Of course, we can write a generic sort on arbitrary lists.

Applying Rascal to Rascal

Here are some simple examples of applying Rascal to itself:

module SimpleExamples

imports Rascal;

int cntModules(Rascal program)
@doc{Count the modules in a Rascal program}
{
    int cnt = 0;

    visit (program){
      case Module M: cnt += 1;
    };
    return cnt;
}

set[Name] extractNames(Rascal program)
@doc{Extract all names from a Rascal program}
{
   set[Name] names = {};

   visit (program){
      case Name Nm: names += Name;
    };
    return names;
}

Rascal rename(Rascal program)
@doc{Prefix all names in the program with "x"}
{
   set[Name] names = {};

   return visit (program){
      case Name Nm: insert parseString("x" + toString(Nm));
    };
}

Rascal invertIf(Rascal program)
@doc{Switch the branches of if statements}
{
  return visit (program){
      case if (<Expression E>)  <Block B1> else <Block B2>: 
           insert [| if (!<E>) <B2> else <B1> |];
    };
}

Read-Eval-Print Loop (REPL) [Needs further
discussion]

For the scripting of applications it is important to have a command language and read-eval-print loop.
Here is an attempt.
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We copy the Python REPL style:

• The command promt prompt is ">>>".

• Continuation lines are prefixed with "...".

• Answers start at the beginning of the line.

>>> {1, 2, 3} + {2, 3, 4}
{1, 2, 3, 4}
>>> first([1, 2, 3])
1
>>> rest([ 1,
...           2, 3])
[2, 3]

One advantage of this style is that such a dialog can be run and checked automatically. This has two
effects:

• Examples in manuals become test cases.

• We can introduce a "tests" attribute for functions that conatisn a REPL script. This can also be
tested. Example:

public &T max(set[&T] R)
  @doc{Maximum of a set}
  @tests{
  >>> max({1, 2, 3})
  3
  >>> max({3, 2, 1})
  3
  }
{
  &T result = arb(R);
  for(&T E : R){
    result = max(result, E);
  }
  return result;
}

Caution

The remainder of this section is a mess!

>>> import lang.java.syntax.Main as Java;
>>> str source = read("program.java");
>>> CU program = parseString(source);

data B and(B b1, B b2)

B.and <= B <= value

lexical syntax
  [\n\ \t\n] -> LAYOUT

view Boolean <= tree and(B b1, LAYOUT? l, 'a' a?, LAYOUT? l2, B b2) appl(prod([ B & B -> B], [ B b1 , LAYOUT? _, lit('a'), LAYOUT? _ = appl(),B b2 ])
view Boolean <= tree or()            appl()
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Boolean . and <= Boolean <= tree <= value

> int count(CU P) {
>   int cnt = 0;
    Boolean B1 = true, B2, B3;

>   visit(P) {
      acase and(B1,l1=<LAYOUT? L>,<Boolean B2>) => and(B1, l1=parseString(" "), a=A, l2=" ", B2) 
      case <Boolean B1> & <B2> : 
      case B & B : 
      case [| <Identifier> |] : natural =>
>     acase if(<E>,<S>) : cnt++;
      acase <Bool.and is> 
>   }
>   return cnt
> }

> count(program)
17

There are several innovations here:

• The import associates a name with the imported module.

Caution

Work out the details.

Note

This means that "grammar" and "rule" become notions that can be manipulated.

• There is a read functions that reads a text file into a string.

• We associate a parse function with every non-terminal in a grammar.

• The notation Java::Statements.IF consists of three parts:

• Language name

• Sort name

• Rule name (currently implemented with the "cons" attribute).

It can be used as pattern. Other potential uses are as generator:

{S | Java::Statements.IF S : P}

It generates all if statements in P.

The Rascal standard library
In this section we summarize the (over 300!) functions in the Rascal Standard Library.

Main functions
The main functions of the library are listed in the following table.
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Table 2. Main functions in Rascal Standard Library (see Table Table 1,
“Operators on Datatypes” [23] for all operators)

 bool int double str loc list tuple set map rel

size x x x x x x

get x x x

arb x x x x x x x

toInt x - x x

toDouble x x - x

toString x x x - x x x x x x

toList x - x x x

toSet x x - x x

toMap x x - x

toRel x x x -

reverse x x

split x

startsWith x

endsWith x

toLowerCase x

toUpperCase

reducer x x - -

mapper x x x x

min x x x x x x

max x x x x x x

sum x x

multiply x x

average x x

get_location x

set_location x

Notes:

• Operator == implements equality on all types. It is extended for data types using structural equality.

• Operator < implements less-than on all types.

• Operators +, -, *, / implement these operators for most types. For structured types these operatords
exist in three flavours: structured value op struct, structured value op element, and element op
structured value.

• size gives the number of elements of many types.

• get (corresponds to the indexing notation R[N]) gives the N-th element of a structure.

• arb generates an arbitrary element from a structured value.

• toString converts all values to a string representation.

• toList, toSet, toMap, toRel provide conversions between structured types. They may be
implemented as just a type conversion (and not a data conversion).
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• reverse reverses the elements of ordered structured types.

• reducer and mapper take a function as argument and traverse a structured value.

Note

Due to a name class with the type constructor map, we use the name mapper for a function
that is ussually called map. The usual function reduce is therefore called reducer.

• min and max compute the smallest (largest) of two basic values or all elements of structured values.

• average computes the average value of structured values that contain integers or doubles.

• get_location and set_location are access functions for values of type loc.

Additional functions on lists sets, maps and relations
Additional functions on lists, sets maps and relations are listed in the following table.

Table 3. Additional functions on lists, sets, maps and relations

 list set map rel graph

first x

rest x

makeString x

sort x

id x

power x

compose x x

invert x x

complement x x

domain x x

range x x

carrier x x

domainR x x

rangeR x x

carrierR x x

domainX x x

rangeX x x

carrierX x x

top x x

bottom x x

reachR x x

reachX x x

Other functions
The remaining functions take care of annotations, the tree datatype, input/output and communication
with the global database with program facts, the Program Database (PDB).
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Source code
This is a very first draft of the library. When the structure is stable we will split it in modules.

Caution

The following code is maintained externally and then copied :-( to this document, so be
carefull with changes.

module RascalStandardLibrary

%%tag function primitive QualName;
%%tag function memo void;
%%tag function java CompilationUnit;
%%tag all doc str;

%% Here is a flat list of library functions that will
%% structured in to coherent submodules.

%% --- Comparison operators ----------------------------------
%% Each type defines == and <. The following
%% functions extend them.

public bool !=(&T A, &T B){
  return !(A == B);
}

public bool <=(&T A, &T B){
  return A < B || A == B;
}

public bool >(&T A, &T B){
  return B < A && A != B;
}

public bool >=(&T A, &T B){
  return B < A;
}

public &T min(&T A, &T B){
  return (A < B) ? A : B;
}

public &T max(&T A, &T B){
  return (A < B) ? B : A;
}

%% --- Boolean (bool) ----------------------------------------

public bool ==(bool B1, bool B2)
  @doc{Equality on Booleans}
  @primitive{"Bool.equal"}

public bool <(bool B1, bool B2)
  @primitive{"Bool.less"}
 
public bool &&(bool B1, bool B2)
  @primitive{"Bool.and"}
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public bool ||(bool B1, bool B2)
  @primitive{"Bool.or"}

public bool !(bool B){
  return B ? false : true;
}

public int arb()
  @primitive{"Bool.arb"}

public int toInt(bool B)
  @primitive{"Bool.toInt"}

public double toDouble(bool B)
  @primitive{"Bool.toDouble"}

public str toString(bool B)
  @primitive{"Bool.toString"}

%% --- Integer (int)------------------------------------------

public bool ==(int I1, int I2)
  @primitive{"Int.equal"}
  
public bool <(int I1, int I2)
  @primitive{"Int.less"}

public int +(int I1, int I2) 
  @primitive{"Int.add"}

public int -(int I1, int I2)  
  @primitive{"Int.sub"}

public int *(int I1, int I2)
@primitive{"Int.mul}
 
public int /(int I1, int I2)
  throws divide_by_zero(str msg)
  @primitive{"Int.div"}

public int arb(int bgn, int end)
throws illegal_argument(str msg) %% if(end - bgn <= 0)
  @primitive{"Int.arb"} 

public double toDouble(int I)
  @primitive{"Int.toDouble"}

public str toString(int I)  
  @primitive{"toStringInt"}

%% --- Double (double) ---------------------------------------

public bool ==(double D1, double D2)
  @primitive{"Double.equal"} 

public bool ==(double D, int I){
  return D == toDouble(I);
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}

public bool ==(int I, double D){
  return toDouble(I) == D;
}

public bool <(double D1, double D2)
  @primitive{"Double.less"}

public bool <(double D, int I){
  return D < toDouble(I);
}

public bool <(int I, double D){
  return toDouble(I) < D;
}

public double +(double D1, double D2)
  @primitive{"Double.add"}
  
public bool +(double D, int I){
  return D + toDouble(I);
}

public bool +(int I, double D){
  return toDouble(I) + D;
}

public double -(double D1, double D2)
  @primitive{"Double.sub"}
 
public bool -(double D, int I){
  return D - toDouble(I);
}

public bool -(int I, double D){
  return toDouble(I) - D;
}

public double *(double D1, double D2)
  @primitive{"Double.mul"} 

public bool *(double D, int I){
  return D * toDouble(I);
}

public bool *(int I, double D){
  return toDouble(I) * D;
}

public double /(double D1, double D2)
throws divide_by_zero(str msg)
  @primitive{"Double.div"}
  
public bool /(double D, int I){
  return D / toDouble(I);
}
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public bool /(int I, double D){
  return toDouble(I) / D;
}

public double arb(double bgn, double end)
throws illegal_argument(str msg) %% if(end - bgn <= 0)
  @primitive{"Double.arb"}

public int toInt(double D)
  @primitive{"Double.toInt"}
 
public str toString(double D)
  @primitive{"Double.toString"}

%% --- Strings (str) -----------------------------------------

public bool ==(str S1, str S2)
  @primitive{"String.equal"}

public bool <(str S1, str S2)
  @primitive{"String.less"}

public str +(str S1, str S2)
  @doc{Concatenate two strings}
  @primitive{"String.concat"}

public int size(str S)
  @primitive{"String.size"}

public int get(str S, int N)
  throws out_of_range(str msg){
  return charAt(S, N);
}

%% get and charAt (as provided by java) are synonyms

public int charAt(str S, int N)
  throws out_of_range(str msg)
  @primitive{"String.charAt"}

public int toInt(str S)
  throws cannot_convert_to_int(str msg)
  @primitive{"String.toInt"}

public int toDouble(str S)
  throws cannot_convert_to_double(str msg)
  @primitive{"String.toDouble"}

public list[int] toList(str S)
  throws cannot_convert_int_to_char(str msg)
  @primitive{"String.toList"}
 
public set[int] toSet(str S)
  @primitive{"String.toSet"}

public str reverse(str S)
  @primitive{"String.reverse"}
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public list[str] split(str S, str Regex)
  @primitive{"String.split"}

public bool startsWith(str S, str Prefix)
  @primitive{"String.startsWith"}

public bool endsWith(str S, str Suffix)
  @primitive{"String.endsWith"}

public str toLowerCase(str S)
  @primitive{"String.toLowerCase"}

public str toUpperCase(str S)
  @primitive{"String.toUpperCase"}

%% The above is a selection of methods from Java's String class.
%% Others will be added on demand.

%% --- Locations ---------------------------------------------
   
%% The location datatype
data location location(str filename,
                       int beginline,
                       int endline,
                       int begincol,
                       int endcol,
                       int offset,
                       int length);

anno tree posinfo loc;

public bool ==(loc L1, loc L2)
  @primitive{"Location.equal"} 

public bool <(loc L1, loc L2)
  @primitive{"Location.less"}

public str toString(loc L)
  @primitive{"Location.toString"}

public loc get_location(&T Subject)
  throws location_missing(str msg)
  @primitive{"Location.get_location"}

public &T set_location(&T Subject, loc L)
  @primitive{"Location.set_location"}

%% --- Lists -------------------------------------------------

public bool ==(list[&T] L1, list[&T] L2)
  @primitive{"List.equal"}

public bool <(list[&T] L1, list[&T] L2)
  @primitive{"List.less"}

public list[&T] +(list[&T] L1, list[&T] L2)
  @primitive{"List.concat"}
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public list[&T] +(list[&T] L, &T E){
  return L + [E];
}

public list[&T] +(&T E, list[&T] L){
  return [E] + L;
}

public int size(list[&T] L)
  @primitive{"List.size"}
 
public &T get(list[&T] L, int N)
  throws out_of_range(str msg)
  @doc{Get list element: get}
  @primitive{"List.get"}

public &T arb(list[&T] L)
  throws empty_list(str msg)
  @primitive{"List.arb"}

public str toString(list[&T] L)
  @primitive{"List.toString"}

public set[&T] toSet(list[&T] L)
  @primitive{"List.toSet"}

public map[&T, &U] toMap(list[tuple[&T, &U]] L)
  throws domain_not_unique(str msg)
  @primitive{"List.toMap"}
 
public rel[&T] toRel(list[&T] L)
  @primitive{"List.toRel"}

public list[&T] reverse(list[&T] L)
  @primitive{"List.reverse"}

public &T reducer(list[&T] L, &T F (&T,&T), &T unit){
  &T result = unit;
  for(&T E : L){
    result = F(result, E);
  }
  return result;
}

public list[&T] mapper(list[&T] L, &T F (&T,&T)){
  return [F(E) | &T E : L];
}

public &T min(list[&T] L)
@doc{Minimum element of a list: min}
{
  &T result = arb(L);
  for(&T E : L){
   if(less(E, result)){
      result = min(result, E);
   }
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  }
  return result;
}

public &T max(list[&T] L)
@doc{Maximum element of a list: max}
{
  &T result = arb(L);
  for(&T E : L){
   if(less(result, E)){
      result = max(result, E);
   }
  }
  return result;
}

public &T sum(list[&T] L, &T zero)
@doc{Add elements of a List: sum}
{
  return reducer(L, +, zero);
}

public &T multiply(set[&T] R, &T unity)
@doc{Multiply elements of a list: multiply}
{
  return reducer(L, *, unity);
}

public &T average(list[&T] L, &T zero)
@doc{Average of elements of a list: average}
{
  return sum(L, zero)/size(L);
}

public &T first(list[&T] L)
  throws empty_list(str msg)
  @doc{First element of list: first}
  @primitive{"List.first"}

public &T rest(list[&T] L)
  throws empty_list(str msg)
  @doc{Remaining elements of list: rest}
  @primitive{"List.rest"}

public str makeString(list[int] L)
  throws cannot_convert_int_to_char(str msg)
  @primitive{"List.makeString"}

public list[&T] sort(list[&T] L, bool less(&T, &T))
  @doc{Sort elements of list: sort}
  @primitive{"list.sort"}
 
%% --- Tuples ------------------------------------------------

public bool ==(tuple[&T] R, tuple[&T] S)
  @primitive{"Tuple.equal"}
 
public bool <(tuple[&T] R, tuple[&T] S)
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  @primitive{"Tuple.less"}
 
public tuple[&T + &U] +(tuple[&T] R, tuple[&U] S)
  @primitive{"Tuple.conc"}

public tuple[&T + &U] +(tuple[&T] R, &U E){
  return R + <E>;
}

public tuple[&T + &U] +(&T E, tuple[&U] R){
  return <E> + R;
}

public int size(tuple[&T] R)
  @primitive{"Tuple.size"}

public value get(tuple[&T] R, int N)
  throws out_of_range(str msg)
  @primitive{"Tuple.get"}

public str toString(tuple[&T] R)
  @primitive{"Tuple.toString"}

%% --- Sets  -------------------------------------------------

public bool ==(set[&T] R, set[&T] S)
  @primitive{"Set.equal"}

public bool <(set[&T] R, set[&T] S)
  @primitive{"Set.less"}

public set[&T] |(set[&T] R, set[&T] S)
  @doc{Union of two sets}
  @primitive{"Set.union"}
  
public set[&T] |(set[&T] S, &T E){
  return S + {E};
}

public set[&T] |(&T E, set[&T] S){
  return {E} + S;
}

public set[&T] -(set[&T] R, set[&T] S)
  @doc{Difference of two sets}
  @primitive{"Set.diff"}

public set[&T] -(set[&T] S, &T E){
  return S - {E};
}

public set[&T] -(&T E, set[&T] S){
  return {E} - S;
}

public set[&T] &(set[&T] R, set[&T] S)
  @doc{Intersection of two sets}
  @primitive{"Set.intersection"}
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public set[&T] &(set[&T] S, &T E){
  return S & {E};
}

public set[&T] &(&T E, set[&T] S){
  return {E} & S;
}

public int size(set[&T] S)
  @primitive{"Set.size"}

public &T arb(set[&T] S)
throws empty_set(str msg)
  @primitive{"Set.arb"}
  
public str toString(set[&T] S)
  @primitive{"Set.toString"}

public list[&T] toList(set[&T] S)  
  @primitive{"List.toList"}
  
public map[&T, &U] toMap(set[tuple[&T, &U]] S)
  throws non_unique_domain(str msg)
  @primitive{"Set.toMap"}

public rel[&T] toRel(set[&T] S)
   @primitive{"Set.toRel"}

public &T reducer(set[&T] S, &T F (&T,&T), &T unit){
  &T result = unit;
  for(&T E : S){
    result = F(result, E);
  }
  return result;
}

public set[&T] mapper(set[&T] S, &T F (&T,&T)){
  return {F(E) | &T E : S};
}

public &T min(set[&T] S)
  @doc{Minimum of a set}
{
  &T result = arb(S);
  for(&T E : S){
    result = min(result, E);
  }
  return result;
}

public &T max(set[&T] R)
  @doc{Maximum of a set}
{
  &T result = arb(R);
  for(&T E : R){
    result = max(result, E);
  }
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  return result;
}

public &T sum(set[&T] S, &T zero)
  @doc{Sum elements of a Set: sum}
{
  return reducer(S, +, zero);
}

public &T multiply(set[&T] S, &T unity)
  @doc{Multiply elements of a Set}
{
  return reducer(S, *, unity);
}

public &T average(set[&T] S, &T zero)
  @doc{Average of elements of a set}
{
  return sum(S, zero)/size(R);
}

%% TODO

%% Powerset: power0
%%public set[set[&T]] power0(set[&T] R)
%% throw unimplemented("power0")

%% Powerset: power1
%%public set[set[&T]] power1(set[&T] R)
%%  throw unimplemented("power0")

%% --- Maps --------------------------------------------------

public bool ==(map[&T, &U] M1, map[&T, &U] M2)
  @primitive{"Map.equal"}
  
public bool <(map[&T, &U] M1, map[&T, &U] M2)
  @primitive{"Map.less"}
  
public map[&T] |(map[&T] R, map[&T] S)
  @primitive{"Map.union"}
  
public map[&T] |(map[&T] S, &T E){
  return S | {E};
}

public map[&T] |(&T E, map[&T] S){
  return {E} | S;
}

public map[&T] -(map[&T] R, map[&T] S)
  @doc{Difference of two maps}
  @primitive{"Map.diff"}
 
public map[&T] -(map[&T] S, &T E){
  return S - {E};
}
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public map[&T] -(&T E, map[&T] S){
  return {E} - S;
}

public map[&T] &(map[&T] R, map[&T] S)
  @primitive{"Map.mul"}
  @doc{Intersection of two maps: operator &}

public map[&T] &(map[&T] S, &T E){
  return S & {E};
}

public map[&T] &(&T E, map[&T] S){
  return {E} & S;
}

public int size(map[&T] M)
  @primitive{"Map.size"}

public &T arb(map[&T] M)
throws empty_map(str msg)
  @primitive{"Map.arb"}
  
public str toString(map[&T] R)
  @primitive{"Map.toString"}
  
public list[tuple[&T, &U]] toList(map[&T, &U] M)
  @primitive{"Map.toList"}

public set[tuple[&T, &U]] toSet(map[&T, &U] M)
  @primitive{"Map.toSet"}

public rel[tuple[&T, &U]] toRel(map[&T, &U] M)
  @primitive{"Map.toRel"}

public map[&T] mapper(map[&T] M, &T F (&T,&T)){
  return {F(E) | &T E : M};
}

%% --- Relations ---------------------------------------------

public bool ==(rel[&T] R, rel[&T] S)
  @primitive{"Rel.equal"}
  
public bool <(rel[&T] R, rel[&T] S)
  @primitive{"Rel.less"}
  
public rel[&T] |(rel[&T] R1, rel[&T] R2)
  @doc{Union of two relations}
  @primitive{"Rel.union"}

public rel[&T] |(&T E, rel[&T] R){
  return toRel({E}) | R;
}

public rel[&T] |(rel[&T] R, &T E){
  return R | toRel({E});
}
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public rel[&T] -(rel[&T] R1, rel[&T] R2)
  @doc{Difference of two relations}
  @primitive{"Rel.diff"}
  
public rel[&T] &(rel[&T] R1, rel[&T] R1)
  @doc{Intersection of two relations}
  @primitive{"Rel.intersection"}

public int size(rel[&T] R)
  @primitive{"Rel.size"}
  
public &T arb(rel[&T] R)
throws empty_relation(str msg)
  @primitive{"Rel.arb"}

public str toString(rel[&T] R)
  @primitive{"Rel.toString"}

%% Note: in rel[&T], the type variable &T refers 
%% to the tuple type of the relation.

public list[&T] toList(rel[&T] R)
  @primitive{"Rel.toList"}
  
public set[&T] toSet(rel[&T] R)
  @primitive{"Rel.toSet"}

public map[&T] toMap(rel[tuple[&T]] S)
  throws non_unique_domain(str msg)
  @primitive{"Ret.toMap"}

public rel[&T] mapper(rel[&T] R, &T F (&T,&T)){
  return {F(E) | &T E : R};
}

public rel[&T1, &T2] *(set[&T1] R, set[&T2] S)
  @doc{Carthesian product of two sets}
{
  return {<X, Y> | &T1 X : R, &T2 Y : S};
}

public rel[&T1, &T3] compose(rel[&T1, &T2] R,
                                 rel[&T2, &T3] S)
  @doc{Compose two relations}
{
   return {<X, Z> | <&T1 X, &T2 Y1>: R, 
                    <&T2 Y2, &T3 Z>: S, Y1 == Y2};
}

public rel[&T, &T] id(set[&T] S)
  @doc{Identity relation}
{
  return { <X, X> | &T X : S};
}

public rel[&T2, &T1] invert (rel[&T1, &T2] R)
  @doc{Inverse of relation}
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{
  return { <Y, X> | <&T1 X, &T2 Y> : R };
}

public rel[&T1, &T2] complement(rel[&T1, &T2] R)
  @doc{Complement of relation}
{
  return (domain(R) * range(R)) - R;
}

public set[&T1] domain (rel[&T1,&T2] R)
  @doc{Domain of relation}
{
  return { X | <&T1 X, &T2 Y> : R };
}

public set[&T1] range (rel[&T1,&T2] R)
  @doc{Range of relation}
{
  return { Y | <&T1 X, &T2 Y> : R };
}

public set[&T]  carrier (rel[&T,&T] R)
  @doc{Carrier of relation}
{
  return domain(R) + range(R);
}

public rel[&T1,&T2] domainR (rel[&T1,&T2] R, set[&T1] S)
  @doc{Domain Restriction of a relation}
{
  return { <X, Y> | <&T1 X, &T2 Y> : R, X in S };
}

public rel[&T1,&T2] rangeR (rel[&T1,&T2] R, set[&T2] S)
  @doc{range Restriction of a relation}
{
  return { <X, Y> | <&T1 X, &T2 Y> : R, Y in S };
}

public rel[&T,&T] carrierR (rel[&T,&T] R, set[&T] S)
  @doc{Carrier restriction of a relation}
{
  return { <X, Y> | <&T X, &T Y> : R, X in S, Y in S };
}

public rel[&T1,&T2] domainX (rel[&T1,&T2] R, set[&T1] S)
  @doc{Domain exclusion of a relation}
{
  return { <X, Y> | <&T1 X, &T2 Y> : R, X notin S };
}

public rel[&T1,&T2] rangeX (rel[&T1,&T2] R, set[&T2] S)
  @doc{Range exclusion of a relation}
{
  return { <X, Y> | <&T1 X, &T2 Y> : R, Y notin S };
}
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public rel[&T,&T] carrierX (rel[&T,&T] R, set[&T] S)
  @doc{Carrier exclusion of a relation}
{
  return { <X, Y> | <&T1 X, &T2 Y> : R, 
                    !(X in S), !(Y in S) };
}

%% Relations viewed as graphs

type rel[&T,&T] graph[&T];

public set[&T] top(graph[&T] G)
  @doc{Top of a Graph}
{
  return domain(G) - range(G);
}

public set[&T] bottom(graph[&T] G)
  @doc{Bottom of a Graph}
{
  return range(G) - domain(G);
}

public set[&T] reachR(set[&T] Start, set[&T] Restr,
                          graph[&T] G)
  @doc{Reachability with restriction}
{
  return range(compose(domainR(G, Start), 
                       carrierR(G, Restr)+));
}

public set[&T] reachX(set[&T] Start, set[&T] Excl, 
                          graph[&T] G)
  @doc{Reachability with exclusion}
{
  return range(compose(domainR(G, Start), 
                       carrierX(G, Excl)+));
}

public list[&T] shortestPathPair(&T From, &T To, graph[&T] G)
  @doc{Shortest path between pair of nodes}
  @primitive{"Graph.shortestPathPair"}

public set[list[&T]] shortestPathFrom(&T From, graph[&T] G)
  @doc{Shortest path between one node and all others}
  @primitive{"Graph.shortestPathFrom"}

public set[list[&T]] shortestPathAll(graph[&T] G)
  @doc{Shortest path between all nodes}
  @primitive{"Graph.shortestPathAll"}

%% TO DO

public rel[&T, &T] closure(rel[&T, &T])
  @primitive{"Rel.closure"}

%% --- Annotations -------------------------------------------
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public bool has_annotation(&T Subject, str Name)
  @doc{Test whether a named annotation exists.
       A synonym for the ? operator.}
  @primitive{"Annotation.has_annotation"}

public value get_annotation(&T Subject, str Name)
  throws missing_annotation(str msg)
  @doc{Get the value of a named annotation.
       A synonym for the @ operator.}
  @primitive{"Annotation.get_annotation"}

public map[str,value] get_annotations(&T Subject)
  @doc{Get all annotations}
  @primitive{"Annotation.get_annotations"}
 
public &T set_annotation(&T Subject, 
                             str Name, value AValue)
  @doc{Set the value of a named annotation.
       A synonym for: Var @ Anno = Exp}
  @primitive{"Annotation.set_annotation"}

public &T set_annotations(&T Subject, 
                              map[str, value] Annos)
  @doc{Set all annotations}
  @primitive{"Annotation.set_annotations"}

%% --- Parsing and Unparsing -------------------------------------

public tree parseFile(str filename)
  throws file_does_not_exist(str msg)
  @primitive{"Parse.parseFile"}

public tree parseString(str source)
  @primitive{"Parse.parseString"}
  
public str unparseToString(tree Subject)
  @primitive{"Parse.unparseToString"}
  
public str unparseToFile(tree Subject, str filename)
  throws cannot_create(str msg) 
  throws write_error(str msg) 
  @primitive{"Parse.unparseToFile"}

%% --- trees -------------------------------------------------

public int toInt(tree Subject)
  throws cannot_convert(str msg)
  @primitive{"Tree.toInt"}

public int toDouble(tree Subject)
  throws cannot_convert(str msg)
  @primitive{"Tree.toDouble"}

public int toString(tree Subject)
  throws cannot_convert(str msg)
  @primitive{"Tree.toString"}
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public bool elementOf(tree S1, tree S2)
  @primitive{"Tree.elementOf"}

%% --- io ----------------------------------------------------

public str readFile(str filename)
  throws does_not_exist(str msg)            
  throws read_error(str msg)
  @primitive{"IO.read"}

public &T readTerm(str filename) 
  throws does_not_exist(str msg)  
  throws read_error(str msg)
  throws term_error(str msg, loc l)
  @primitive{"IO.readTerm"}

public void write(str filename, &T Subject) 
  throws cannot_create(str msg)  
  throws write_error(str msg)
  @primitive{"IO.write"}

public void print(list[value] V...)
  @primitive{"IO.print"}

public void println(list[value] V...)
  @primitive{"IO.println"}
 
%% --- Interface with the Program Database -------------------
%% The following function provide a bare minimum and will
%% have to compared with the current PDB interface.
%% We assume one active PDB that can be opened and closed.
%% Values can be written to and read from the PDB.

%% Idea: it would be nice to model the PDB as a value
%% of type map[str, value] and to access it that way!

public void openPDB(str name) 
  throws cannot_open(str msg)
  @primitive{"PDB.open"}

public void closePDB()
  throws cannot_close(str msg)
  @primitive{"PDB.close"}

public void writePDB(str name, &T val)
  throws cannot_write(str msg)
  @primitive{"PDB.write"}

public &T readPDB(str name)
  throws cannot_read(str msg)
  @primitive{"PDB.readPDB"}

%% If name is of type set[&T], then the set incr
%% is added to it. Similar for a rel[&T]
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public void addSetPDB(str name, set[&T] incr)
  throws does_not_exist(str msg)
  @primitive{"PDB.addSet"}

public void addRelPDB(str name, rel[&T] incr)
  throws does_not_exist(str msg)
  @primitive{"PDB.addRel"}

Syntax Definition
See separate SDF definition.

Protyping/implementation of Rascal
Every prototype will have to address the following issues:

• Parsing/typechecking/evaluating Rascal.

• Ambiguous parse trees.

• How to implement the relational operations.

• How to implement matching.

• How to implement replacement.

• How to implement traversals.

The following options should be considered:

• Implementation of a typechecker in ASF+SDF:

• Gives good insight in the type system and is comparable in complexity to the Rscript typechecker.

• Work: 2 weeks

• Implementation of an evaluator in ASF+SDF.

• Requires reimplementation of matching & rewriting in ASF+SDF.

• Bound to be very slow.

• Effort: 4 weeks

• Implementation of a typechecker in Rascal.

• Interesting exercise to asses Rascal.

• Not so easy to do without working Rascal implementation.

• Not so easy when Rascal is still in flux.

• Effort: 1 week

• Implementation of an evaluator in Rascal.

• Ditto.

• Extending the current ASF+SDF interpreter.

• This is a viable options. It requires extensions of UPTR.
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• Effort: 4 weeks

• Translation of Rascal to ASF+SDF in ASF+SDF.

• Unclear whether this has longer term merit.

• Allows easy experimentation and reuse of current ASF+SDF implementation.

• Effort: 4 weeks

• Implementation of an interpreter in Java.

• A future proof and efficient solution.

• Requires reimplementation of matching & rewriting in Java.

• Effort: 8 weeks.

Rascal implementation ideas
Rascal needs to support both a scripting experience as an optimized compiled language experience.
Also, it needs to integrate fully with Meta-Environment and Eclipse IMP. Therefore, we have both
a simple and unoptimized interpreter in mind, as well as a compiler that aggressively, but correctly,
optimizes Rascal programs. The run-time of compiled programs and the interpreter will share the
implementation of data-structures.

Data structures
Both the compiled code and the interpreter will run on the same data-structures which are defined by
the IMP PDB project.

• We could start with the simple implementation that is now in IMP already which is based on the
Java library and use the clone method to implement immutability. This will prove to be slow, but
its an easy start.

• Integration with the ATerms; extend the ATerm library with all the features of the PDB, such that
it becomes an implementation of the PDB's interfaces.

• PDB's terms are typed, while ATerms are not.

• ATerms demand canonicalization/sharing, which may prove to be hard to implement for maps,
sets and relations.

• PDB does not yet have any story for serialization.

• ATerms will need to "implement" the PDB's interfaces which will add a dependency and seriously
break other peoples code if we are not careful

• ATerms need to be typed in order to implement correct visiting behavior when AFun's are
overloaded.

• The C story is harder

• Extension of C ATerms is hard due to the nature of C, the ATerm garbage collector, the ATerm
header implementation and the amount of users of the ATerm library

• It may be a good idea to generate Rascal data-types from SDF definitions as an intermediate step,
however, Rascal should still implement special code for UPTR trees for performance reasons (unlike
Apigen which does not know anything about UPTR).
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• The current PDB implementation does type checking at run-time. After implementing a type-
checker for Rascal, we can easily add an implementation which does not do type checking at run-
time in order to improve performance.

• The immutability feature of Rascal data is implemented in the data-structures and not by the
compiler or the interpeter.

Interpreter
We just enumerate the thoughts that pop up once in a while:

• Write the interpreter in Java, and use it later to bootstrap the compiler which will be written in
Rascal.

• Provide a REPL prompt such that experimenting can be done on-the-fly, both on the commandline,
and in an Eclipse view.

• "fail" can be implemented using a Java exception, the catch will be at the choice points (switch).

• "return" can also be implemented using a Java exception; remember return can jump out of the
context of a visitor that could be nested deeply in the structure of a term or a tree.

• List matching, and especially the kind of backtracking it requires will be implemented using
exceptions instead of using continuations.

• Pattern matching needs to be implemented separately for both builtin data-types, abstract data types
and concrete parse trees. Possibly using three "adapters" we can factor out the algorithm.

• We use apigen to bootstrap the interpreter. The interpreter will traverse the apigen object trees to
implement it's functionality using separate classes.

• When the compiler is finished and bootstrapped on the interpreter, it may be worthwhile to
reimplement/bootstrap the interpreter on the compiler again.

Compiler
The compiler will mainly follow the design of Mark's ASF+SDF compiler, which has proven to
generate the fastest code in the world for these kinds of applications. Furthermore, these ideas have
popped up:

• Bootstrap the compiler using the interpreter.

• Generate as readable function names as possible, mainly taking hints from the Rascal programs and
of course from the SDF definitions.

• Generate Java code, one class per module.

• There is an issue with the globality of rewrite rules, they probably need to be collected and merged
into a single factory per application. Rules apparently break modular compilation, especially if you
want to optimize matching automatons

• For visitors we could first generate a tree node type reachability graph, and use it to generate a full
traversal for a certain visitor. The generated visitor would not recurse into subtrees that will not
be visited.

• After generating the visitors, non-recursive visits (i.e. the backbone of the grammar) can be inlined
as much as possible to prevent using the stack for visiting trees.

• Inlining in general should be done very aggressively. This will allow other kinds of optimizations,
like preventing superfluous condition checking. The ASF+SDF compiler does not do this yet, and
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it could mean a serious performance improvement. The cost is compilation time obviously, since
the Java compiler is going to have to compile a lot more code.

• The simple control flow constructs of Rascal almost map one-to-one to Java

• "fail" is always in the current context/frame, so we need no exception implementation for fail.

• Like in Mark's compiler, list matching is to be implemented using nested while loops.

• "return" can be mapped to normal return statement in Java, except in the context of a visitor, where
it should be an exception that is caught by the containing function of the visit, which immediately
returns the result in the catch block that surrounds the call to the generated function that implements
the visitor.

• Important optimizations:

• Matching automaton:

• Sharing prefixes (note that we can not reorder cases of a switch, or the rules?!?)

• Common subexpression elimination

• Constant detection and propagation

• Aggressive inlining (where to stop?)

• Specialization and instantiation of visitors using grammars and data-type definitions

• Help the garbage collector by assigning 'null' to fields that will not be used anymore, or will be
killed without being used.

• Rascal functions with a Java body need the following:

• Generate for each argument an Java argument with appropirtae Java type.

• For each return statement, check the type of the resulting value against the return type in the
function header.

• Catch any exceptions raised by the Java code, convert them to string and rethrow as Rascal
exception.

Issues
• Which comment convention will we use? Let's use Java style comments.

• In a list comprehension: do list values splice into the list result?

• Ditto for set comprehensions.

• Unexplored idea: add (possibly lazy) generators for all types; this allows to generate, for instance,
all statements in a program.

• Shopping list of ideas in Tom:

• Named patterns to avoid building a term, i.e. w@[| while $Exp do $stat od |].

• Anonymous variables a la Prolog: [| while $_ do $stat od |].

• String matching in patterns.

• Tom uses the notation %[ ... ]% for quoted strings with embedded @...@ constructs that are
evaluated. It also has a backquote construct.
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• Shopping list of ideas from TXL:

• "redefine" allows modification of an imported grammar.

Expression operators
Table 4. Usage of selected characters in Rascal Syntax

 Characters Used in

+ + (add/conc), +=, + (closure)

- - (sub/diff), -=, in names

* * (prod), *=, * (closure)

/ / (div)

= == (equal), != (nequal), => (case), +=, -=, *=, /=,
&=, |=, <= (leq), >= (geq)

& & (intersection), && (and), &=, & (type var)

@ @ (get annotation), _ @ _ = _ (modify
annotation), @{...} (declaration annotation)

| | (union), || (or), [| _ |] (quotes), { _ | _ }
(comprehension), |=

! ! (not), != (neq), !~ (nomatch)

> > (gt), >= (geq), => (case), < _ >
(PatternVariable), < _ > (tuple)

< < (lt), <= (leq), < _ > (PatternVariable), < _ >
(tuple), <: (subtype)

? ? (anno operator), _ ? _ : _ (cond expr)

: ~~ (match), !~~ (nomatch), case _ : (case), in
generator, <: (subtype)

[ and ] [| _ |] (quote), [ _ ] (projection), [ _ | _ ] (list
comprehension), [ _ ] (list), type decls

{ and } { _ } (statements), { _ } (set/rel), { _ | _ } (set/rel
comprehension)

Visitor definitions (UNDECIDED and
INCOMPLETE)

Visitor definitions are a new idea that borrow the programmability of Systems S's single level
traversals and add them to Rascal. The idea is to be able to define the strategy annotations of visit
statements and generators using a simple expression language. A definition takes as formal argument
the code block of the visit statement (s), which is what needs to be done at every node (the visitor).

%% first recurse to the arguments, then try v, 
%% which if it fails returns the original structure.
visitor bottom-up(v) = all(bottom-up(v)) ; (v <+ id)

visitor innermost(t,v) = all(innermost(t,v)) ; repeat(v <+ id) 
    

We demand that all visitors are infallible, which means that when the v block fails, they must return
a default result of the correct type. In most cases, this would be the identity (id).
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We can also try to give these definitions a more imperative look, as if they are patterns for generating
code for the visitors, as in:

visitor bottom-up(v) {
  all {
     bottom-up(v);
  }

  try {             %% try is the '<+' of System S, 
                    %% only if v fails the catch block is executed.
    v;
  } catch fail(t) {
    yield t;
  } 
}

%% innermost goes down and only returns after 
%% nothing changes anymore

visitor innermost(v) {
  all {
    innermost(v);     %% apply this to all children first.
  }
  while (true) { {    %% then until kingdom come, apply this block:
    try {
      v;              %% if v succeeds, it has a yield or a return
                      %% statement that updates the current node. 
    } catch fail(t) { %% if v fails after all, we obtain a reference
                      %% to the current node visited which we can 
                      %% return;
      yield t;
    } 
  }
}   

visitor bottom-up-dbg(v) {  
  all {
     bottom-up(v);
  }

  try {              %% try is the '<+' of System S,
                     %% only if v fails the catch block is executed.
    v;
  } catch fail(t) {
    printf("DBG: bottom-up visitor failed on: " + t);
    yield t;
  } 
}

After such definitions, most of which would be in the standard library of Rascal, we can use them to
program actual visits:

visit bottom-up (t) {
  pattern => pattern
  pattern2 : { effect; }
}


