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Abstract: The problem of triple diffusive surface tension driven 

convection is investigated in a composite layer in the presence of 

vertical magnetic field. A closed form solution is obtained under 

microgravity condition.  The parameters suitable for fluid layer 

dominant and porous layer dominant composite layers are 

determined.  The parameters appropriate for controlling the 

convection are determined which are useful to manufacture pure 

crystals. 

 

Keywords: Triple diffusive, Species concentration, Magnetic 

field, Surface tension, Composite layer. 

I. INTRODUCTION 

    The presence of more than one chemical dissolved in fluid 

mixtures is very often requested for describing natural 

phenomena such as contaminant transport, warming of 

stratosphere, magmas and sea water. The multi component 

has wide applications in crystal growth, geothermally heated 

lakes, earth core, solidification of molten alloys, underground 

water flow, acid rain effects and so on. For single fluid layer, 

Chand [1] has applied the linear stability analysis and a 

normal mode analysis to study the triple-diffusive convection 

in a micropolar ferromagnetic fluid layer heated and saluted 

from below. Suresh Chand [10] has investigated the 

triple-diffusive convection in a micropolar ferrofluid layer 

heated and saluted below subjected to a transverse uniform 

magnetic field in the presence of uniform vertical rotation.  In 

porous medium, the triply diffusive convection in a Maxwell 

viscoelastic fluid is mathematically investigated in the 

presence of uniform vertical magnetic field through porous 

medium studied by Pawan Kumar Sharma et al. [8] using 

linearized stability theory and normal mode analysis.  

 For the composite layers, Sumithra [9] has studied the 

triple-diffusive Marangoni convection in a two layer system 

and obtained the analytical expression for the thermal 

Marangoni Number. Manjunatha and Sumithra [3-6] have 

investigated the combined effects of magnetic field and non 

uniform basic temperature gradients on two and three 

component convection in two layer system.  

In this paper the lower rigid surface of the porous layer and 

the upper free surface are considered to be insulating to 

temperature, insulating to both salute concentration 
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perturbations.  At the upper free surface, the surface tension 

effects depending on temperature and salinities are 

considered. At the interface, the normal and tangential 

components of velocity, heat and heat flux, mass and mass 

flux are assumed to be continuous and intended for 

Darcy-Brinkman model.  The resulting eigenvalue problem is 

solved exactly and an analytical expression for the thermal 

Marangoni number is obtained for composite layer. 

II.  FORMULATION OF THE PROBLEM 
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Figure 1: Physical configuration 

   Consider a three different diffusing components with 

different molecular diffusivities, electrically conducting fluid 

layer of thickness d  horizontal above the isotropic sparsely 

packed porous layer saturated with same fluid of thickness 

md  in the presence of magnetic field 0H   in the vertical Z-   

direction. The lower surface of the porous layer is considered 

to be rigid and the upper surface of the fluid layer is free at 

which the surface tension effects depending on temperature 

and both the species concentrations is considered.  Both the 

boundaries are kept at different constant temperatures and 

salinities.  A Cartesian coordinate system is chosen with the 

origin at the interface between porous and fluid layers and the 

Z- axis, vertically upwards.  

The basic equations for fluid and porous layer respectively 

as,    
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Here  , ,q u v w


is the velocity vector, H


 is the magnetic 

field,  t  is the time,   is the fluid viscosity,

2

2

p H
P p


    

is the total pressure, 0  is the fluid density,
p  is the 

magnetic permeability,  is the porosity, 
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0
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C
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C




    is 

the ratio of heat capacities, 
pC  is the specific heat, K  is the 

permeability of the porous medium, T is the temperature,   

is the thermal diffusivity of the fluid,  1 and 2 are the 

solute1 and solute2 diffusivity of the fluid in the fluid layer,  

1C and 2C are the concentration1 and concentration2  for the 

fluid in the fluid layer, 
1

m

p


 

  is the magnetic viscosity, 

m is the effective viscosity of the fluid in the porous layer,  

1mC  and 2mC are the concentration1 and concentration2 for 

the fluid in  porous layer, m

em





 is the effective magnetic 

viscosity and the subscripts 'm' and 'f ‘ refer to the porous and 

the fluid layer respectively. 

 

The basic steady state is assumed to the quiescent and 

consider the solution of the form, 
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The temperature and species concentration distributions 

respectively are found to be 
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  are the interface temperature and 

concentrations and the subscript 'b' denotes the basic state. 

 

To examine the stability of the system, we give a small 

perturbation to the system as 
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Where the primed quantities are the dimensionless ones. 

Equations (23) & (24) are substituted into the  (1) to (14), 

apply curl twice to eliminate the pressure term from (3) & (10) 

and then the variables are  nondimensionalized. 

To render the equations nondimensional, we choose different 

scales for the two layers (Chen and Chen [2], Nield [7]), so 

that both layers are of unit length such that 

   ' ' ', , , ,x y z d x y z and    ' ' ', , , , 1m m m m m m mx y z d x y z  . 

Omitting the primes for simplicity, we get in 0 1z   and 
0 1mz   respectively 
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Where, for the fluid layer Pr



  is the Prandtl number, 

2 2

0p
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  is the Chandrasekhar number, 1
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  is the 

ratio salinity1 diffusivity to thermal diffusivity, 2
2





  is 

the ratio salinity2 diffusivity to thermal diffusivity.  For the 

porous layer, Pr m

m
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   is the Prandtl number, 
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    is the Darcy number,   porous parameter,
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  is the viscosity ratio, 
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1

m

m

m





  is the ratio salinity1 

diffusivity to thermal diffusivity, 2
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  is the ratio 

salinity2 diffusivity to thermal diffusivity,   and m  are the 

temperature in fluid and porous layers respectively,  1 2,S S  

and 1 2,m mS S are the concentrations in fluid and porous layer 

respectively and W and mW are the dimensionless vertical 

velocities in  fluid and porous layer respectively. 

 

We apply normal mode expansion on dependent variables as 

follows, 
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With 2 2

2 0f a f    and 2 2

2 0m m m mf a f   , where a  and 

ma  are the nondimensional horizontal wavenumbers, n  and 

mn   are the frequencies.  Since the dimensional horizontal 

wavenumbers must be the same for the fluid and porous 

layers, we must have m

m

aa

d d
  and hence ˆ

ma da . 

Introducing Eqs. (35) and (36) into the  Eqs. (25) to (34)   then 

we get an Eigen value problem consisting of the following 

ordinary differential equation in 0 1z   and 0 1mz   
respectively 
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It is known that the principle of exchange of instabilities holds 

for triple diffusive magneto convection in both fluid and 

porous layers separately for certain choice of parameters. 

Therefore, we assume that the principle of exchange of 

instabilities holds even for the composite layers. In other 

words, it is assumed that the onset of convection is in the form 

of steady convection and accordingly we take 0mn n  . 

Eliminating the magnetic field in Eqs. (41) and (46). The 

Eigen value problem becomes, in 0 1z   and 0 1mz   

respectively. 
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III. BOUNDARY CONDITIONS 

The boundary conditions are nondimensionalized then 

subjected to normal mode analysis and finally they take the 

form 
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IV. METHOD OF SOLUTION 

From eqs (47) and (51), we get velocity distributions for fluid 

and porous layer respectively 
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arbitrary constants are obtained by using velocity boundary 

conditions of (55). The expressions for ( )W z  and 
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We get the species concentration for fluid layer 1 2,S S  from 

Eqs. (49) & (50) also from Eqs. (53) & (54), we get the 

species concentration for porous layer 1 2,m mS S  using the 

species concentration boundary conditions of (55) as  
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V. THERMAL MARANGONI NUMBER 

From eqs (48) & (52), we get temperature distributions for 

fluid and porous layers using temperature boundary 

conditions of (55) and they are 
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Now the thermal Marangoni number is obtained by the 

boundary condition (55) as 
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VI. RESULT AND DISCUSSION 

The thermal Marangoni number M obtained as a function 

of the parameters is drawn versus the depth ratio ˆ md
d

d
 and 

the results are represented graphically showing the effects of 

the variation of one physical quantity fixing the other 

parameters. The dimensionless fixed values are  

ˆ ˆ1.0, 1.2, 2.0, 0.3, 1.0, 50,T a Q        1 10sM 

2 1 2 1 2 1 2
ˆ ˆ10, 0.75s m mM S S          .  

The effects of the parameters 1 1 2
ˆ, , , , , , ,s sa Q M M    and 

1m   on thermal Marangoni number are depicted in figures 2 

to 10. 

 

Figure 2: Effects of horizontal wave number a  

Figure 2 show the effects of a , horizontal wave number on 

the thermal Marangoni number M for the values a =1.3, 1.4, 

1.5. It is evident from the graph that an increase in the value of 

a , the thermal Marangoni number decreases and its effect is 

to destabilize the system. Also the curves are converging 

indicating that the effect of horizontal wave number is drastic 

for fluid layer dominant composite layers. 
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Figure 3:  Effects of porous parameter 


 

 

Figure 3 show the variations of the porous parameter 

2

m

K
d

  on the thermal Marangoni number for the values 

 =0.2, 0.3, 0.4. Increase in the value of  , that is, increasing 

the permeability, the thermal Marangoni number increases.  

Hence the surface tension driven triple diffusive magneto 

convection sets in earlier on increasing the porous parameter, 

this may be due to presence of diffusing components. Also, 

for ˆ 0.4d  the thermal Marangoni number decreases to 

destabilize the system. 

 

 

Figure 4:  Effects of porosity   

 

Figure 4 show the effects of porosity  for the values  =0.8, 

0.9, 1.0. It is observed that there is no effect of porosity for 

smaller value of depth ratio up to ˆ 0.4d  . For ˆ 0.4d  the 

curves are diverging indicating that, its effect is drastic for 

larger depth ratios, hence its effect is immense for porous 

layer dominant composite layer. Whereas  increases, the 

thermal Marangoni number decreases i.e., to destabilize the 

system. 

 

 

Figure 5: Variations of viscosity ratio 
̂

 

 

Figure 5 show the variations of viscosity ratio ̂ for the 

values ̂ = 1.5, 2.0, 2.5. Increase in the value of ̂ , the 

values of the thermal Marangoni number M increases for 
ˆ 0.4d  . Also, ˆ 0.4d   the increase in the values of viscosity 

ratio decreases the thermal Marangoni number. By increasing 

the viscosity ratio the system can be stabilized or destabilized 

and hence the surface tension driven triple diffusive magneto 

convection is delayed or faster. 

 

 

Figure 6:  Effects of Chandrasekhar number 
Q

 

Figure 6 exhibits the effects of the magnetic field on the onset 

of triple diffusive surface tension driven magneto convection 

by the Chandrasekhar number Q  for the values Q= 50, 60, 70 

.When the value of the Q is increasing, the thermal Marangoni 

number increases for smaller depth ratio.  
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The curves are converging between the ˆ0 0.5d  , which is 

evident that the effect of Q is drastic for fluid layer dominant 

composite layer. Also, ˆ 0.5d  the curves are diverging 

indicating that the effect of Q is effective for porous layer 

dominant composite layer. 

      

 

Figure 7: Effects of  1  

 

Figure 7 display the effects of 1 is the ratio of solute1 

diffusivity to thermal diffusivity fluid in fluid layer for the 

values 1 = 0.50, 0.75, 1.0. As increase in the value of 1 ,   

there is a decrease in the values of the thermal Marangoni 

number. Increasing the value of 1 the surface tension driven 

triple diffusive magneto convection sets in earlier i.e., system 

can be destabilized.  

 

 

Figure 8: Effects of 1sM
solute1 Marangoni number 

 

Figure 8 show the effects of 1sM is the solute1 Marangoni 

number   for 1sM =10, 20, 30. By increasing the values of 

solute1 Marangoni number, the thermal Marangoni number 

increases. The surface tension driven triple diffusive magneto 

convection can be delayed by increasing solute1 Marangoni 

number, hence the system can be stabilized. Also the curves 

are converging which is evident that the effect of 1sM is 

drastic for fluid layer dominant composite layer. 

 

 

Figure 9. Effects of 2sM
solute2 Marangoni number 

 

Figure. 9 illustrates the effects of 2sM is the solute2 

Marangoni number for 2sM =100, 300, 500. From the graph it 

is evident that, by increasing the values of solute2 Marangoni 

number the thermal Marangoni number decreases also for 

smaller depth ratio solute2 Marangoni number increases to 

stabilize the system.  So, the surface tension driven triple 

diffusive magneto convection can be preponed by increasing 

solute2 Marangoni number, hence the system can be 

stabilized or destabilized. 

Figure 10 display the variations of the value of 1m  is the ratio 

of salute1 diffusivity to thermal diffusivity of the porous layer 

for the values 1m = 0.50, 0.75, 1.0. Increasing this ratio, 

thermal Marangoni number decreases. So, the surface tension 

driven triple diffusive magneto convection is preponed i.e., 

system can be destabilized. The converging curves indicating 

that 1m parameter is effective for the fluid layer dominant 

composite layer. 

 

Figure 10: Effects of  1m  
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VII. CONCLUSION 

(i) By decreasing horizontal wave number, porosity, ratio of 

solute1 diffusivity to thermal diffusivity fluid in fluid layer, 

solute2 Marangoni number, ratio of solute1 diffusivity to 

thermal diffusivity fluid in porous layer and by increasing the 

porous parameter, viscosity ratio, Chandrasekhar number, 

solute1 Marangoni number, the surface tension driven triple 

diffusive magneto convection can be delayed and hence the 

system can be stabilized. 

(ii) The parameters  1
ˆ, , , ,Q      and 2sM are effective for 

porous layer dominant composite layers. 

(iii)   The parameters 1, sa M and 1m are effective for fluid 

layer dominant composite layers. 
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