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ABSTRACT 

The timing and power of an embedded neural network 

application is usually dominated by the access time and 
the energy cost per memory access. From a technical 

point of view, the hundreds of thousands of look-up 

tables (LUT) of a field programmable gate array (FPGA) 

circuit are nothing more than small but fast and energy-

efficiently accessible memory blocks. If the accesses to 

the block memory can be reduced or, as in our case, 

avoided altogether, the resulting neural network would 

compute much faster and with far lower energy costs. 

 

We have therefore developed a design scheme that uses 

precomputed convolutions and stores them in the LUT 
memories. This allows small (mostly one-dimensional) 

convolutional neural networks (CNN) to be executed 

without block memory accesses: Activations are stored 

in the local per LUT registers and the weights and biases 

of all neurons are encoded in the lookup tables. Each 

neuron is assigned its exclusive share of logic circuits. 

This completely avoids the need for memory accesses to 

reconfigure a neuron with new weights and allows us to 

perform weight optimisations at design time. However, it 

limits the applicability of the overall method to 

comparatively small neural networks, since we need 

several LUTs per neuron and even the largest FPGAs 
only provide hundreds of thousands of LUTs. 

 

To make this "in LUT processing" possible, we had to 

limit the set of available neural network functions. We 

have identified and implemented a set of functions that 

are sufficient to make the neural network work, but which 

can all be implemented efficiently in an FPGA without 

memory access. Our philosophy is that it is better to adapt 

the neural network during training to make the best use 

of the limited resources available than to try to optimise 

the functions in hardware, resulting in a non-limited 
neural network. 

 

To realise this design scheme, we developed a set of 

design tools, helping the AI designer to convert a given 

reference AI in TensorFlow into an equivalent network 

of the available hardware functions. Our tools also allow 

to finetune the AI to compensate the accuracy loss from 

changing the implementation. The two most powerful 

optimization techniques we applied are variable bitwidth 

quantization and depth-wise separation of convolutions. 
 

In order to demonstrate and evaluate the performance of 

our method, we implemented a CNN-based ECG 

detection. Our implementation only used 40% of the 

available LUTs on the Spartan S15 chip and none of the 

block RAM or DSP circuits. The system processed 500 

pre-recorded ECGs of 5575 samples in 281ms, using 

only 73mJ in total, resulting in 10 million samples per 

second and an energy cost of 26.2nJ per sample. 

 

1. INTRODUCTION 

Artifical intelligence (AI) technologies crossed the 

threshold from interesting object of study to relevant 

application almost ten years ago. This is due to three main 

reasons: (1) the availability of large amounts of data for 

training; (2) new, more efficient algorithms for training 

and inference; and (3) new, very efficient hardware 

components that can handle the enormous amounts of 

data access and computation in little time and with little 

power dissipation. Although all three aspects have 

evolved even further since then, it is the efficiency of the 

hardware that – following Moore's Law – allows the most 

significant improvements in AI. To function properly, 
different categories of AI applications require different 

computational speeds and, more crucially, corresponding 

memory access times, as shown in Figure 1. 

 

Power efficiency is fundamentally limited by the energy 

cost of computing an arithmetic operation and the energy 

cost of accessing and transporting stored information. 

With each technology generation this limit still increases 

exponentially. Each category of AI application operates 

in a certain speed band and accordingly has a certain 

minimum power dissipation that makes it applicable to a 
certain class of system. 

 

As Figure 1 shows, simple AI applications are possible 

today even for edge or IoT applications. Currently, 

however, this is only possible if dedicated hardware is 

adapted for the simplest AI applications at very low 

operating speeds. Furthermore, FPGAs – as they are 



 

currently used as AI accelerators – fall well short of the 

technological possibilities due to their high hardware 

overhead. 

 
Figure 1 Power efficiency of computations is dictating 

the applicability of AI applications (qualitative 

visualization) 

 

The main reason for this is that in today's FPGA-based 

implementations, the very versatile but also very 

complex Look-Up Tables (LUT) are used to realise 
mathematical operations or, at best, logical operations. 

However, LUT cells are much more powerful and 

capable of realising highly efficient AI applications very 

close to the technological limit. 

 

Our paper is structured as follows. In the following 

chapter, we will review the relevant state of the art in 

embedded and edge AI technologies. Afterwards, we will 

describe our idea, give some details on the 

implementation and report on the initial application’s 

performance. 
 

2. RELATED WORK 

There are various ideas on how FPGAs can be used to 

implement AI algorithms. The two most important 

classes so far are the generation of a dedicated, bitwidth-

optimised computing kernel [1] and the efficient 

implementation of binary neural networks [2,3]. 

 

The key idea of the dedicated kernels is to analyse the 

neural network to be implemented in hardware and to 

optimize the bitwidth to an unrestricted value. The 

OpenVINO synthesis engine for instance, will set up a 
computation kernel which is highly optimized to 

compute all layers of the AI model to be implemented 

one after the other and is implemented in exactly the 

required bitwidth. 

 

The key idea for implementing binary neural networks is, 

that in the binary form, a multiplication of two values 

falls back to a simple Boolean operation (either XOR or 

AND), which can be very efficiently implemented in 

FPGA. In order to mitigate the accuracy loss, introduced 

by the extreme quantization, the network topology can be 

enlarged before quantization [4]. 

 

Both schemes still require the use of LUT cells, typically 

implemented as 32bit or 64bit programmable memory 

tables for arithmetic or binary operations. An ASIC 

implementation of these topologies could approach the 

technology limit in terms of efficiency, but as an FPGA 

implementation these ideas still fall far short due to the 
overhead of replacing a 6-input gate (typically 12 

transistors) with a 64bit 5T SRAM array (>320 

transistors) plus additional logic. 

 

As we will describe in the next section, we instead try to 

exploit the full potential of these small local memory 

arrays. We follow the philosophy of developing 

structures that can be efficiently represented in an FPGA 

and then using AI training to make the best use of the 

available resources. 

 
However, we have to impose strict constraints on the AI 

topologies, which have to be compensated for in the 

synthesis and training of the AI applications. The 

following work describes useful techniques for 

implementing such topology constraints with little loss of 

system accuracy: 

 

[5] presents the PACT activation function, which 

introduces clipping, which normally only occurs during 

quantisation for hardware conversion, already during 

training. In this way, the unavoidable clipping artefacts 

resulting from quantisation can be compensated for or 
even exploited during training. 

 

There are many ways of reducing the complexity, in our 

case especially the synapses count of a convolutional 

layer. One of the most effective ones is depth-wise 

separable convolution [6], which is also used in many 

high efficiency applications such as MobileNetV2 and 

Xception. 

 

Extreme quantisation down to 2 bits must be done as 

cleverly as possible to prevent a large loss in accuracy 
[7]. A good possibility for this is statistics-aware weight 

binning [8], in which statistical moments of the weight 

distribution are used to determine the optimal 

quantisation levels. 

 

3. CORE IDEA 

Our goal is to develop an approach with which small, 

simple neural networks can be implemented highly 

energy efficiently on an FPGA. In order to do so, we 

restrict ourselves to stream processing based problems, 

i.e. to one-dimensional convolutional neural networks 

(Conv1D). In terms of activation function, we only 
support the most common and most simple of them all, 
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which is the ReLU function. Besides this, only the one 

dimensional pooling and the dense layers are supported, 

yet. A Conv1D layer in a stream processing environment 

implements the following general equation: 

 

𝑦𝑓(𝑡) = 𝑚𝑎𝑥(0, ∑ ∑ 𝑤𝑖,𝑐,𝑓 ⋅ 𝑥𝑐(𝑡 − 𝑖 ⋅ Δ𝑡) + 𝑏𝑓
𝑁−1
𝑖=0

𝐶−1
𝑐=0 )

 (1) 

 

where 𝑦𝑓(𝑡) is the layer’s output vector (one value per 

filter) and 𝑥𝑐(𝑡) is the layer’s input vector, which is only 

relevant at discrete and equidistant time steps 𝑥𝑐,𝑖 =
𝑥𝑐(𝑡 − 𝑖 ⋅ Δ𝑡). Also 𝑦𝑓(𝑡) is only defined at certain 

discrete timesteps 𝑦𝑓,𝑗 = 𝑦𝑓(𝑗 ⋅ Δ𝑡). 

 

3.1. Convolution 

Assuming, that the 𝑥𝑐,𝑖 can be quantized to a very low 

bitwidth (e.g. 2bit), a push register is a hardware friendly 

and convenient complexity reduction, making a hardware 

implementing Equation 1 only depending on the recent-

most values 𝑥𝑐(𝑡). 

 

 
Figure 2: A shift register at the input side simplifies the 

Conv1D layer to a series of fully connected neurons. 

 

As presented in Figure 2, the shift register not only takes 

over the storage of the older input values, but it also 

implements the entire shift and recompute aspect of the 

convolutional layer. The remainder to be implemented is 
a pure dense layer. Stride values larger than 1 can also be 

easily realized by reducing the activation frequency of 

the dense part of the system, and thus also reducing the 

sampling frequency of the output signals. 

 

3.2. Neuron implementation 

In order to implement the dense neurons efficiently and 

in a hardware friendly way, we need to apply two steps: 

The first step is to strictly reduce the number of inputs to 

each neuron. Network topologies with huge input counts 

have to be replaced with a tree like structure of neurons, 

each with only a fraction of the number of inputs of the 

original neuron. Several different methods are available 

for such a reduction, but we focus in our work on 

depthwise separable convolutions, as shown in Figure 3, 

which allows to process the per channel convolution first 

(full kernel size, but per one channel) and the per channel 

convolution afterwards (kernel size already reduced to 1, 
but all channels).  

 

The implementation of the filters is straight forward: For 

each filter, a version of the separated neurons is 

instantiated, reading from the same push register, but 

resulting in a separate output structure (rf. Figure 1, 

indicated in green for filter 0 and orange for filter 1). 

 

 
Figure 3: Depthwise separable convolution reduces the 

number of inputs per neuron 

 

In the second step, which is the core idea of the entire 

methodology, we exploit the low bitwidth of the input 

and output signals and the low number of inputs and thus 

the finite amount of possible input combinations: Instead 

of actually implementing a series of low bitwidth 

multiplications, we precompute the per neuron output for 
all possible input states, downsample them to the output 

bitwidth ny and store them in a number of look-up tables. 

For a neuron with N inputs of nx bit input width and ny 

bit output width, we can precompute the function 

 

𝑦 = 𝑚𝑎𝑥(0, ∑ 𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏𝑁−1
𝑖=0 ) (2) 

 

as an 𝑛𝑦 bit value for all 2𝑁⋅𝑛𝑥 possible input states, 

requiring 𝑛𝑦 ⋅ 2𝑁⋅𝑛𝑥 bit of memory, or 𝑛𝑦 ⋅ 2𝑁⋅𝑛𝑥−6 recent 

FPGA look up tables. Such a structure is referred to as an 

n-to-m cell with 𝑛 = 𝑁 ⋅ 𝑛𝑥 the number of overall input 

bits and m the number of output bits (rf. Figure 4 left). 

The major advantage of this approach in comparison to 

all other approaches is, that it allows the weights and 
biases to remain real values. Only the input- and output 

values have to be quantized, which allows for quick and 

easy training, avoiding techniques such as straight 

through estimators [9]. 

 

Additionally, it is not even needed to interpret the 

quantized inputs as integer values or round the output 

values to integer values, but instead each of the possible 
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input- and output-states can code one arbitrary real value, 

allowing the much more powerful codebook quantization 

[10] for zero-effort. 

 

3.3. Pooling 

An optional max or average pooling layer can be 

implemented by yet another push register in combination 

with either a low bitwidth summation operation for 

average pooling or a max function for maximum pooling 

(rf. Figure 4 right). 
 

Both, a stride larger than 1 as well as a pooling effectively 

result in a frequency reduction of the signal to be 

analysed, which then leads to a lower power consumption 

of the respective hardware blocks, as they operate and 

thus switch and thus dissipate energy less frequently. 

 

A much more relevant aspect of this frequency reduction 

is, that each value of the later, lower frequency layers 

represents a larger interval of time. Due to the restrictions 

in the input number for synapses, it is not feasible, to do 
a very long convolution in order to observe features, 

occurring on a much larger timescale than the sampling 

frequency. Even with depthwise separation, the kernel 

size is limited to 𝑁 ≈ 10  for binary (𝑛𝑥 = 1) and 𝑁 ≈ 5 

for 2bit values (𝑛𝑥 = 2), as otherwise, the LUT count for 

the (𝑁 ⋅ 𝑛𝑥)-to-𝑛𝑦 block would rise exponentially.  

 

Thus, for an input signal entering with a sampling 

frequency of 𝑓𝑠, the initial convolution layer can only 

observe a timeframe 𝑁/𝑓𝑠  . Each stride or pooling size 

multiplies this time so that single values in the later layers 

can represent arbitrarily large time intervals. 

 

 
Figure 4 left: The separated sub-neurons can be 

represented as n-to-m lookup tables. Right: A push 

register and a sum (or max) function implement an 

average (or maximum) pooling. 

 

4. SYNTHESIS AUTOMATIZATION 

The principles presented above allow to design small AI 

systems on FPGA in an exclusive and memory free way: 

As each logical neuron is realized as some explicit and 

exclusive hardware, i.e. a few LUT cells somewhere on 

the chip, it is possible for the weights and biases to 

permanently remain coded implicitly into the LUT cell’s 

configuration. The activations are passed from layer to 

layer through the configurable metal connections of the 

FPGA and they are stored between the layers in local 

registers. Thus, at no point is it necessary to read or write 

any kind of data from or to the block RAM of the FPGA. 

This allows for extremely high sampling rates to be 

processed, as all computations are done in parallel. 

Additionally, this also allows neural network execution 

at very low energy per computation costs.  
 

In typical AI implementations, inference time as well as 

energy costs are dominated by the time and energy costs 

for memory accesses. Optimizing hardware execution of 

neural networks usually means reorganization of the 

execution in order to reduce memory accesses or to 

replace a global memory access by a more local one, 

exploiting the various memory hierarchies. In this 

approach we have taken this to the extreme by completely 

shifting the weights and bias storage from the main 

memory into the tens of thousands local 64bit storages, 
the LUT cells are. Storing activations is shifted even 

further from the main memory into the registers of the 

FPGA. 

 

As a drawback, the resulting structure is extremely hard 

to program, requiring the usage of a hardware description 

language and the translation of millions of training 

parameters from a training framework into parameters of 

the hardware description itself.  

 

In order to make this idea applicable, we thus had to 

automate the transition from a trained model in a high-
level AI framework such as TensorFlow into a 

configuration bitfile for the FPGA without the need of 

manual processing in between. 

 

4.1. Network simplification 

We started with defining a list of valid TensorFlow layers 

(the LUTNet library), for which a hardware efficient 

FPGA implementation is possible. For our first 

demonstrator, we limited ourselves here to the one-

dimensional convolution and the pooling as described 

above as well as a batch normalization layer, several 
implementations of dense layers and a few variations of 

the convolution layer. 

 

The designer can then train and evaluate a reference 

model, still computing on float values and test and try 

different configurations, trying to maximize accuracy 

and/or efficiency. Afterwards the designer can initiate an 

automated variable quantization and a depthwise 

separation of the convolution. 

 

The final simplified TensorFlow model can be tested and 

if necessary updated. The extreme quantization is 
represented in Tensorflow by customized and 
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configurable activations, representing the effects of 

quantization in TensorFlow. The final network can then 

be translated into our hardware independent intermediate 

description language, called macro transfer language 

(MTL).  

 

MTL can be simulated in our tool flow to determine if the 

current neural network will meet all resource constraints. 

Otherwise, the user can adapt the reference model, restart 

the conversion flow and recheck if the hardware 
requirements are met. 

 

Once this step is converged, the MTL together with pre-

implemented hardware templates for each valid layer in 

the LUTNet library can be send to the final tool we 

developed, which is a VHDL code generator. This 

generator is combining and configuring the library 

templates using the structure and parameters described in 

the MTL into a fully pipelined VHDL hardware 

description of the neural network. From there the design 

can be handed over to a standard FPGA design tool such 
as Xilinx Vivado. 

 

5. EXAMPLE APPLICATION 

In order to test the methodology and to assess the 

resulting hardware, we applied it to a medical application 

which was part of the national KI-Sprung challenge [11], 

where the task was to detect artefacts in a stereo 500Hz 

16bit ECG signal.  

 

The demonstrator uses a reference neural network 

consisting of the following sequence of layers: 

- a regular (not separated) CONV1D as input layer 
- a one-dimensional max pooling layer 

- three depth-wise separated CONV1D layers 

- a one-dimensional max pooling layer 

- one depth-wise separated CONV1D layer 

- a one-dimensional max pooling layer 

- a final dense classifier 

 

This neural network was described in TensorFlow, then 

trained using a quantization-aware training scheme, and 

finally evaluated. The final AI model is then translated 

into MTL and finally synthesized into a bitfile for the 
Spartan 7 S15 FPGA in 28nm technology. 

 

The final design uses 2155 LUT cells, which is 26% of 

all available LUTs as well as 7.6% of the available Flip-

Flops. An additional 14% of LUTs is used to interface 

with the environment of the FPGA.  

 

The final system was able to detect over 90% of all 

artefacts in the ECG data and could infer a total of 2.8 

million samples in 0.28s while consuming 258mW of 

power of which one quarter (63mW) is due to a flash 

buffer, which is used to process the low frequency input 
data in bursts. 

 

In a high frequency application, the same system would 

be able to apply a six layer neural network on a 10 MHz 

stereo input signal, only dissipating 182mW.  

 

In this low frequency scenario, the system is working in 

bursts, duty cycling in between and needs only 26nJ of 

energy for a complete inference. 

 

For comparison, recent low power AI accelerators such 
as the Intel Neural Compute Stick 2 (16nm technology 

node) ranks around 2W/Tops, which translates to 2fJ per 

operation. In conventional hardware, our neural network 

would need roughly 30,000 operations to perform and 

thus would need 60nJ per inference, but admittedly in 16 

bit, instead of 2-3 bit. 

 

6. CONCLUSION 

In this paper, we presented a radically new scheme for 

using FPGAs for AI inference. We showed that our 

implementation can keep pace with highly optimized AI 
accelerators having two generation better technology. 

 

There are still many open issues in our flow that we can 

use to further optimize produced neural networks. First, 

we used the smallest available FPGA and still only 

needed a quarter of it for our network. Thus, there is a 

huge potential for much larger applications and 

redundant components, which we will focus on in future 

work. 

 

Additionally, there are the block RAM and DSP cells, 

completely unused so far, which could be used for 
instance for a high bitwidth input layer, a high bitwidth 

dense classifier or a single unconstrained 1D or 2D 

convolution layer. These would increase the accuracy 

and applicability of this approach a lot. 

 

Finally, if reconfigurability in field is not necessary, the 

VHDL file, describing the inference engine could of 

course also be synthesized into a full custom ASIC chip. 

Such a device, even though having high development 

cost, would by far outperform any available AI 

accelerator hardware in terms of inference speed and 
efficiency. Using radiation hardened Flip-Flops it would 

also be a good candidate for Aeronautic and Space 

applications as an ASIC implementation would be 

completely memory-free. 
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