De-RIJC

www.derisc-project.eu

De-RISC: Launching RISC-V into space

Jimmy Le Rhun – Thales Research & Technology

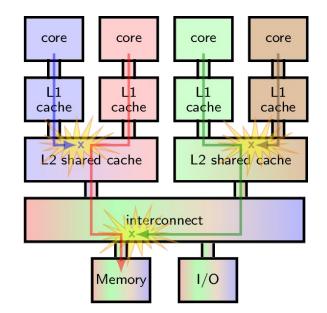
OBDP'21 - 17/06/2021

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement EIC-FTI 869945

Context and Challenges

Context of safety-critical systems

- Strict requirements for dependability
 - Robustness in harsh environments
 - Fault tolerance, fail-operational
 - Deterministic real-time behaviour
- Increasing need for performance
 - Algorithms get more complex, with larger datasets
 - Adaptive or multi-mode applications, multiple applications
 - Autonomous systems
- New requirements
 - Increased connectivity
 - Cybersecurity
 - Free from export control restrictions



Context of COTS multicore processors

- To address performance needs, increase the number of processor cores
- Other resources are not duplicated accordingly
 - Memory hierarchy, peripherals, datapaths
- Timing interference
 - Delay due to concurrent access to shared resource
 - Need for interference channels identification and mitigation
 - Required by safety standards (e.g. CAST32A)
 - Often non-documented hardware arbitration policies
- Mitigation of contentions
 - Allocate resource to a single initiator
 - Global scheduling of transactions on shared resources, not just tasks on cores

Open-source Opportunities

- · Safety-critical systems is a small market
 - Previously not cost-effective to design dedicated hardware
 - Except for radiation-tolerance constraints in space
 - But it's also increasingly costly to use multicore COTS
- Open-source advantages
 - Openness: observability, ability to document, cybersecurity audit
 - Respect of standards, interoperability
 - Better test coverage by a broader user base
- Open-source Hardware
 - LEON Sparc is a European success story in Space
 - Recent rise in popularity with RISC-V
 - Opportunity for community-driven designs with safety constraints in mind

9/06/21

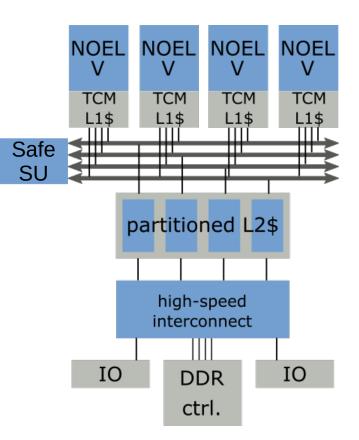
RISC-V open-source standard

- RISC-V instruction set
 - Maintained by RISC-V International
 - Permissive open-source licence
 - Efficient and modular ISA, with optional extensions
 - Some peripherals : interrupt controller, MMU, etc.
- Technical Groups and Special Interest Groups
 - Security Standing Commitee
 - Cache Management Operation Task Group
 - Functional safety SIG
- Industrial associations
 - OpenHW Group
 - CHIPS Alliance

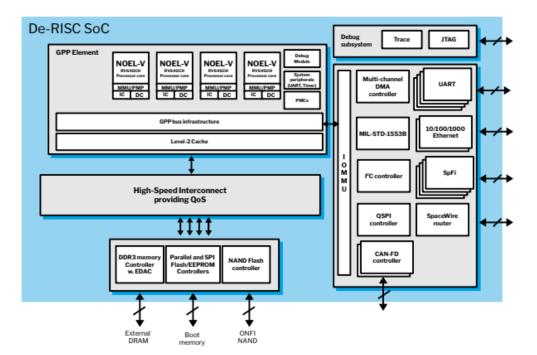
De-RISC approach

De-RISC project overview

- Dependable realtime infrastructure for Safety-critical Computers
 - H2020 Fast Track to Innovation project
 - 4 partners: Fentiss, Cobham Gaisler, Barcelona Supercomputing Center, Thales R&T
 - Started in October 2019 for 30 months
- Goal: to develop a full computing platform for space
 - Multicore NOEL-V architecture on FPGA
 - XtratuM hypervisor
 - Advanced monitoring and interference mitigation
 - Validation with space applications
- Made in Europe



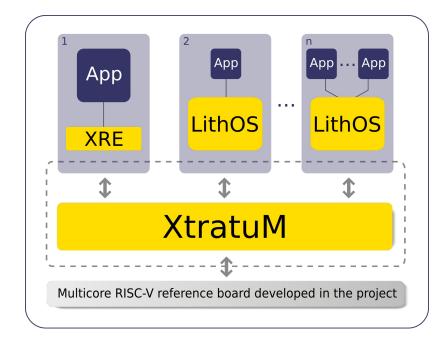
Barcelona Supercomputing Center Centro Nacional de Supercomputación


De-RISC approach

- Leveraging the RISC-V architecture for critical systems
 - High-performance NOEL-V core
 - Designed with fault-tolerance capabilities
- Building a full platform
 - A complete SoC with a wide selection of peripherals
 - A full software stack with certifiable hypervisor and RTOS
 - Advanced monitoring capabilities with SafeSU
 - Request duration, Cycle contention, Max. contention control
- Minimized interference channels
 - Private scratchpad memories
 - Multiple L2 busses and partitioned L2 cache
 - Multichannel DDR controller

De-RISC hardware overview

- Quad-core SoC
 - Extensible to multiple clusters
 - Provision for Accelerators
- Implemented on FPGA
 - Xilinx KCU105 prototype board
 - DeRISC embedded board
 - Plans of future ASIC version
- Space-grade IO
 - SpaceWire, SpaceFibre, CANbus
 - MIL-STD-1553 provision



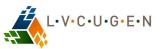
De-RISC software overview

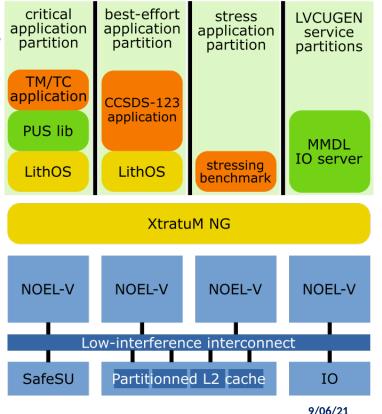
• XNG

- Lightweight hypervisor
- Simple XRE execution environment
- Support of LithOS as guest-OS, support of Linux and RTEMS in development
- Used in OneWeb constellation
- LithOS
 - ARINC-653 RTOS running in a XNG partition
 - Planned certification ECSS level B (expected after end of project)

De-RISC validation use cases

- Basic benchmarks
 - Standards for performance estimation such as Dhrystone, Coremark
 - RISC-V ISA compliance suite
 - Stressing benchmarks to characterize interference channels
- Representative space payload software
 - Based on LVCUGEN from CNES
 - Hyperspectral image compression as data-intensive application
 - Realtime services as critical application
- Space use case for comparison with previous platforms
 - Control & Data Handling application from Thales Alenia Space Italy
 - Previously used in EMC² project on LEON-4 platform





Flight software use-case

- Critical partitions based on LVCUGEN services appl par
 - TM/TC messaging
 - IO server
- Memory-intensive partitions
 - CCSDS-123 lossless image compression
 - Hyperspectral data cube
 - Predictor and propagation
 - Additional stressing benchmarks in some configurations
- Validation of time and space isolation
 - Using SafeSU to monitor timing interference

14

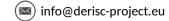
www.derisc-project.eu

Current status

- Prototype SoC is functional on FPGA
 - Scheduled integration of new features (incl. H extension)
 - Integration of SafeSU monitoring unit
 - Flight-capable 6U cPCI Space Serial board in development
- Successful porting and integration of hypervisor and RTOS
 - XtratuM Next Generation with SMP support, LithOS guest OS
 - Linux and RTEMS porting as guest OS ongoing (out of scope of the project)
 - Development and deployment tools
- Validation phase is started
 - Performance and stressing benchmarks ported
 - Ongoing integration of space use-cases

Conclusion

- Current challenges of safety-critical systems
 - Robustness
 - Timing interference on multicore COTS
 - New challenges of cybersecurity and export control
- Current solutions
 - Fault-tolerant technology
 - Observability and Deterministic Platform Software
 - Rising opportunities with Open Source Hardware
- De-RISC approach
 - Open-source, safety- and determinism-oriented multicore SoC
 - Complete and certifiable software stack
 - Advanced interference measurement and mitigation techniques
 - Validation with representative use-cases



www.derisc-project.eu

(in) De-RISC

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement EIC-FTI 869945