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Abstract: Scheduling problems are NP-hard in nature. 

Flowshop scheduling problems, are consist of sets of machines 

with number of resources. It matins the continuous flow of task 

with minimum time.  There are various traditional algorithms to 

maintain the order of resources. Here, in this paper a new 

stochastic Ant Colony optimization technique based on Pareto 

optimal (PA-ACO) is implemented for solving the permutation 

flowshop scheduling problem (PFSP) sets. The proposed 

technique is employed with a novel local path search technique for 

initializing and pheromone trails. Pareto optimal mechanism is 

used to select the best optimal path solution form generated 

solution sets. A comparative study of the results obtained from 

simulations shows that the proposed PA-ACO provides minimum 

makespan and computational time for the Taillard dataset. This 

work will applied on large scale manufacturing production 

problem for efficient energy utilization. 

 

Keywords: Permutation Flowshop Scheduling Problem 

(PFSP), probability of Correct Selection (PS), High-performance 

computing (HPC) 

I. INTRODUCTION 

A PFSP consists of a constant sequence set        
   of the 

non-permutable real-world problem. It also states that jobs ‘i’ 

(i =1, 2,… n) have processed on machines ‘m’ (m = 1, 2… m) 

having the processing time (    ). The processing time of the 

machine is assumed to be ‘0’ if the job doesn’t take part in the 

execution. Then this type of problem is assumed that one 

machine can process one job at a time, and the jobs available 

for processing are assumed to be sequence-independent. 

Here, we consider the PFSP to minimizing makespan [14, 10] 

of the solution set. The work presented in this paper is to 

reduce the computational time (CTPJ max) and makespan of the 

Taillard dataset. Flow shop scheduling [8] with 

multiprocessor increase the computational capacity and also 

reduce the cost of the machine. There are various researchers 

have proposed several heuristic algorithmssuch as Genetic 

Algorithm (GA), Tabu Search, Particle Swarm Optimization 

(PSO) algorithms, etc.to provide the near-optimal solution at 

the relatively minor computational expense [9]. Ant Colony 

Optimization (ACO) is widely used for solving combinatorial 

problems. In the year 1992, Dorigo introduced the 

population-based search technique based on the behaviors of 

ant’s hive [13].Ants are the natural food seeker and they use 

pheromone trail to create the shortest routes for their fellow 

ants.  
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Ants do not have any visual power instead of they use 

pheromones to find the shortest route between foods to the 

nest. It has been experimentally proved that the ants will find 

the shortest path by using the pheromone trail. The first 

example of ant pheromone trail search is proposed by Dorigo 

for traveling salesman problem. In computer science, the 

colony of artificial ants helps users to finding the optimal 

solution from the given problem set. There are various 

versions of ACO algorithms are developed by different 

researchers to find the optimal results for various datasets. 

A. Conventional Ant colony optimization 

ACOsolves the complex combinatorial optimization problem 

using graph theory. The basic structure of the graph is as 

follows: the ants are set at the nodes and the edge between the 

nodes is considered for the trails. The higher pheromone 

concentrationon edgeshaving a maximum probability for 

next node selection and also identify the shortest 

path.Travelling Salesman Problem(TSP) is a classic problem 

that is solved by the ACO algorithm [34]. It consists of cost 

and distance between the cities. Here, thegraph   
     containscost at the node ‘i’ and distance between the 

nodes at edge ‘j’. The work of ant has to complete their tour 

in the graph to find the shortest path. The next visiting node is 

selected by using a pheromone update. The Ant ‘k’ selects the 

node ‘vi’ to node ‘vj’ based on the given Eq. 1. 

 

[τ                                       
                       

(1) 

Here, 

        The pheromone level (i, j) 

       Cost at the node,  

       Visited node by ants  

   Edge Cost  

β = Pheromone level 

The next node ‘vj’ is randomly selected based on the 

probability distribution which is represented in the Eq. 2. 

   (i,j)= 
                  

                           
 

                                            (2) 

If         otherwise 

Once the ant tour is completed the local updating rule is 

applied for pheromone update. Eq. 3, is used to avoid the 

search of the near best tour. 

                                                               (3) 

Here, ρ = Pheromone evaporation rate       

           = Initial pheromone rate 

After the ant covers all the nodes and edges the global update 

rule is applied. Eq. 4, is used to find the global best route.  
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                                                               (4) 

Here, 

 δ = Global evaporation rate (0, 1) 

          
   
  

 
    If edge the (i, j) between source to 

destination  global best tour, otherwise. 

   
  = Global best tour by the ant. 

The best solution is represented by the pheromone matrix. It 

consistsof ‘j
th

’ job at rows and ‘i
th

’ processor at the column.  

II. LITERATURE REVIEW 

Scheduling isone of the demanding areas for operational 

research. The researcher recognized that every year hundreds 

of papers arepublished in this field. In the year 1954 Johnson 

[31], present a brief study on two-machine flowshop 

scheduling problems. For flow shop scheduling 

problemTaillard’s datasetconsists of 120 instances and each 

set of job runs on a different set of machines [6, 7]. There are 

different datasets present such as job shop scheduling 

problems, flowshop scheduling problems, etc. [32]. There are 

various traditional techniques available to solve this type of 

scheduling problem. However to obtain better results 

researcher move toward Metaheuristic algorithms like Tabu 

search [33], evolutionary algorithm [11], and particle swarm 

optimization. Cheng and Kovalyov [15], deals with batching 

and flowshop scheduling problems for the machine to reduce 

total completion time. The single operator flow shop problem 

studied by Iravani and Teo [16]. They suggested an optimal 

chain structure schedule to minimizing setup costs, makespan 

for machine-dependent jobs andmachines. To solve the 

two-machine flowshop scheduling problem T’kindt et al [17] 

introduced a technique SACO, it is a hybrid strategy for no 

wait two machine flowshop to reduce makespan in state 

transition rule. Shyu et al [18], designed a greedy heuristic 

technique that includes pheromone initialization, hybrid state 

transition rule and also local search rule to solve the given 

problem. The max-min ant system introduced by Rajendran 

and Ziegler [19], to solve flowshop scheduling problem. 

They proposed a uniquetechnique to compute the relative 

distance between the given job position. Graham et al. [20], 

studied machine environment limitation to minimize the 

objective function. Zhao and Tang [21] proposed a 

polynomial-time technique that considers process 

contingency with a single machine and also investigates 

scheduling problem deterioration. The objective of this work 

was to reduce makespan, computational time. The result 

shows that the proposed technique was reliable and effective 

for scheduling problems. Yang and Yang [22] suggested a 

polynomial technique, which has a high capacity to reduce 

the makespan and find the optimal solution for the given 

problem. The technique proposed by Yang and Yang [23] for 

a single machine includesthe aging effect and also 

maintainsthe position of the variable. Yang [24] developed a 

Polynomial-time technique that searches for the 

time-dependent learning effect of the machine which 

minimizes makespan and also reduces the total absolute 

deviation of the finished time.  The results show that this 

approach has high efficiency and effectiveness. A 

mathematical model designed for the economic system to 

solve the deteriorated problem of the job sequence to find the 

optimal policy which is efficiently minimizesthe average 

total cost per unit time and computational time. Liu [26] 

proposed an algorithm PSO-EDA_PI which provides a 

0.65% error rate against the other algorithm.  Zhao et al. [27] 

introduced dynamic particle swarm optimization that found 

average relative error approximately 1.19-2.39% against the 

other algorithms. The authors Bauer et.al [28], Herroelen et 

al. [29] and Merkle et al. [30] studied Ant Colony 

Optimization for different scheduling problems that applied 

to RCPSP and also combined with other heuristic techniques 

to find the near-optimal solution. The concept of 

hybridization used for job shop, flowshop, one shop and grid 

computing problems. 

III. PFSP FORMULATION 

The PFSP formulation [1-5] maintains the identical sequence 

for processing ‘J’ jobs on ‘M’ machine. Each processor 

executes a single job at a time and it is also assumed that each 

job is processed at one machine at a given time interval 

(vice-versa). The execution time of processors is 

sequence-independentand each ready job is processed at time 

zero and pre-emption is not allowed at the time of processing. 

Here, it is assuming that every processor ‘P’ hasa set of job 

‘J’ sequence and after job allocation, the completion time 

(CTPJ) and processing time (PTPJ) are calculated for every 

iteration. Then,  

For (P=1 to P) 

do 

Completion time (CTPJ) = max{C(P-1) J, CP (J-1)} + PTPJ,                                       

P=1, 2, 3… P and  

J=1, 2, 3…J 

Where, 

CTP1 =     
 
    , P=1, 2… P 

CT1J =     
 
   , J=1, 2… J 

IV. DESCRIPTION OF PRPOSED ANT COLONY 

OPTIMIZATION (PA-ACO) 

Ant colony optimization mimics the pheromone trails of a 

real ant for searching food from source to destination. The 

proposed algorithm solves PSFP with a good solution. Where 

each job is to assign with artificial ant with an empty 

sequence. To construct the complete solution. The ant 

iteratively depends on the unscheduled job. At each step, the 

job solution is based on pheromone trails by applying 

transition rule.  The performance quality of the constructed 

solution is then improved by taking the mean of the job set 

and building the two subsets (Smax, Smin) of the set (S) 

respectively. By using the swap technique new set (Snew) is 

generated. The structure of the swap technique as follows: 

A. Proposed Algorithm 

Step 1. Input the job sequence 

Step 2. Calculate the mean of the job sequence 

Step 3. Create two subsets Smaxand Sminof the set (S) onthe 

basis of mean 

Step 4. Set the parameters and generate the two random seeds 

for the subsets (Smin, S max) 

Step 5. Swap the job sets of Sminand Smax 

Step 6. Initialize pheromone trails 

Step 7. The termination conditionis reached by applying the 

transition rule 
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Step 8. Apply the local update rule to search the optimal tour 

and update the solution. 

Step 9. Apply global update rule at every iteration and update 

the trail.  

Step 10. Apply the Pareto analysis for best trail selection. 

Step 11. End the simulation and return the best solution. 

1) Initialization of the Pheromone Trails 

Thetrails intensity (    of job ‘J’at the i
th

 position of the 

sequence is calculated by using pheromone rule. Let M
s
max be 

themakespan of the job sequence and he seed sequence (Snew) 

produced by the heuristic method. Then initial pheromone 

trails intensity calculated for the sequence(S) using the Eq. 

5& Eq. 6, 

 

    = 
     

                                (5) 

    =   
     

                                (6) 

    = lower bound of the pheromone trails. 

     = upper bound of the pheromone trails. 

 

Where, 

 = pheromone trial evaporation rate 

 = parameter between [0-1] 

   =      for the i
th

position of job J= [1… N] 

 

The pheromone trail is modified by using the Eq. 7. 

 

   =(1-      +
 

    
                                (7) 

2) Transition Rule 

The proposed technique, it starts from an empty sequence of 

job set where each artificial ant constructs their complete 

solution by iteratively using the transition rule. So, to build a 

solution ant k, chosen one of the unscheduled jobs at the 

present position ‘í’ which is based on transition rule (i.e. 

pseudo-random proportional rule) as given below, 

The pheromone trail of the scheduled job has probability q0 

and (1-q0) is the probability of an unscheduled job. The next 

node is selected by the ant is based on the J= arg max (   ). 

Eq. 8, states the probability of next job selection (   
 ).  

   
 (Next job selection probability) =   

   

      
          (8) 

From the above equation, the selection of jobs within the 

unscheduled set is calculated by using the selection rule in 

Eq. 9. 

The rule for selection from unscheduled job set  

= 
                           

 
   

                                                                
       

(9) 

%deviation (    = 
  

   
 

    
  (10) 

 

Allocation=    
 
   (11) 

if 

PjkDij 

Then, 

Pjk l 

 

Where, 

j = Total no of processor 

k = No of available processor 

Eq. 10, represents the percentage deviation of each job from 

unscheduled set and Eq. 11, shows the comparison of 

percentage deviation of schedule and unscheduled job set in 

the processing queue. The maximum    
    of the job is 

considered to allocate the next job to the machine. 

3) Single Point Swap 

 

Fig.1.Single Point Swapping 

The single point swapping process is a unique technique that 

uses Smax (Maximum processing time) andSmin(minimum 

processing time) of the jobs set.The new setSnew is created 

after a single swapping process. 

Where, 

S= Set of N jobs 

Smin = Set of jobs {Jmin1, Jmin2 … JminN} with minimum 

processing time i.e.      
 
   (i) 

Smax = Set of jobs {Jmax1, Jmax2 … JmaxM} with maximum 

processing time i.e.      
 
   (i) 

Snew = set of jobs after swapping 

      
 
        

 
     (For all the condition) 

 

After applying the local search procedure the new ant 

solution is buildbased on the modified pheromone trails rule. 

4) Local Search Procedure 

Step 1. Input job sequence 

Step 2. Calculate the mean of the job sequence 

Step 3. Create two subsets Smaxand Sminof the set (S) 

Step 4. Swap the set jobs of Sminand Smax 

Step 5. A new set sequence is generated (Snew) 

Step 6. Generate uniformly distributed random sequence (R) 

for mapping. 

Step 7.  When  R   S newthen 

For everyi
th

position, if the job     is not present at    position, 

then insert the job without changing sequence order. Start the 

new ant tour and calculate the makespan. Select only 

enhanced sequence and exchange the current job with the 

optimal one.  

5) Selection of pheromone trails solutions 

The multiple numbers of solutions are constructed by all the 

ants using local search procedure which shown in Table-I 

given below for Taillard data set instances.   
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The next step is to select the best solution from multiple 

numbers of solutions. Here, Eq. 12 & Eq. 13 is used for the 

probability of a correct solution (PS) andthe best solution 

(M-best) selection. 

 

PS=
        

 

    
       

                              (12) 

Where, 

   =
   

  
   

                         
                             (13) 

 

    
 = minimum makespan of solution constructed by ants. 

    
 = maximum makespan of solution constructed by ants. 

   = mean of the best solution (M-best). 

Table-I, represents the makespan values obtain for different 

datasets using the PA-ACO algorithm. 
 

 

Table-I: Makespan of the proposed algorithm 

S.No 205 2010 2020 505 5010 5020 1005 1001

0 

1002

0 

20010 20020 50020 

1 1278 1648 2345 2735 3116 3882 5472 5769 6529 10982 11562 26845 

2 1297 1606 2330 2752 3134 4011 5495 5792 6970 11101 12080 26880 

3 1316 1604 2315 2729 3109 4055 5493 5762 6944 11076 12048 26975 

4 1322 1600 2291 2740 2990 4021 5519 5899 6899 11002 11959 27009 

5 1324 1589 2257 2711 2956 4008 5540 5887 6785 10987 11948 27053 

6 1347 1587 2323 2692 2932 4010 5527 5869 6698 10986 11541 27116 

7 1367 1605 2321 2674 3156 3916 5529 5748 6893 10953 11516 27198 

8 1285 1536 2334 2647 3151 3958 5514 5840 6735 11079 11503 27252 

9 1281 1602 2274 2724 3123 4015 5495 5848 6642 10952 11672 27341 

10 1289 1474 2272 2706 3143 3896 5514 5813 6536 10950 11684 27413 

Let us consider to select the best makespan for simulated 

data. Here, the upper bound of the Taillard data set (205) is 

considered for makespan selection. According to table-I 

(205) dataset’s makespan is considered for PS calculation.  

For selection the two hypotheses (Z) are constructed for 

makespan selection. 

Z0 = Makespan lies within the selection set. 

Z1 = Makespan doesn’t belong to the selection set 

According to Eq. 12 and Eq. 13, the PS is calculated from 

table-I, which is mention in table-II. 

Table-II: PS values for different makespan 

S.No     
      

     PS 

1 1278  

 

 
1367 

 

 

 

 
1310 

 

0.35 

2 1297 0.185 

3 1316 -0.117 

4 1322 -0.266 

5 1324 -0.325 

6 1347 -1.85 

7 1285 0.304 

8 1281 0.337 

9 1289 0.26 

 

 

Fig.2. Graphical representation of PS values 

Fig. 2 represents the makespan selection probability for 

(205) dataset. The selection is based on maximum 

probability achieve by individual makespan value. From 

table-II, it is found that there are four negative values that do 

not take part in the selection procedure due to their higher 

value of makespan. The rest of five positive values (0.35, 

0.185, 0.304, 0.337, and 0.26) are selected for selection of 

makespan. The value which is nearer to ‘1’ provides the best 

probability for selection of makespan. Therefore, 0.35 is 

selected for the best makespan solution. Initially, two 

hypotheses are considered as mentioned above Z0 and Z1.  So, 

from fig. 1. It is clearly shownthat Z1 is rejected and the null 

hypothesis is accepted. Similarly, this procedure is applied 

for different datasets for the selection of makespan. 

6) Update pheromone trails 

The solution obtained from the probability of correct solution 

is modified by using Global update rule. Firstly each 

pheromone trail is obtained as the best solution after that 

global update rule is applied for updating the set using Eq. 14. 

 

    = (1-ρ)     + 
    

    
                                    (14) 

Where, 

    
       = Best makespan of entire ant tour 

   = Positive values of tour 

Eq. 15, is used to calculate the compatible pheromone trail. 

    = (1-ρ)     + 
  

    
                               (15) 

Where, 

    
  = makespan of the complete sequence of ant k. 

Lemma 1. The two parameters     and     
       are set 

such that        
       

Proof: let          is the average of pheromone trails 

calculated from Eq. 13, and at the end PS is calculated which 

is nearer to 1.  
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So, before selection of the current M (best), none of the trails is 

minimum then        .Let us assume that    
      denotes 

the best makespan at the end of the iteration. According to 

Eq. 15,      =   
     

       is used before updating the 

sequence. The   provides the M-best solution and theholds 

the inequality  
  

    
           . It is clearly adequate 

that
  

    
            .  

Let us consider the case if solution M-best is not updated 

during the current iteration i.e.        
      . Then the 

selection of M-best      
       in given as Eq. 16. 

 
  

    
       > 

      
           

 =      (16) 

V. RESULT AND DISCUSSIONS 

The proposed Algorithm PA-ACOis simulated using 

pythonlanguage at high-performance computing (HPC) 

[12].HPC environment is consists of 2- Master Node with 

Intel Xeon processors havinga clock speed of 2.4GHz.It 

having the 8 cores and 64 GB memory for processing the 

task. The performance evaluation ofPA-ACO is based on 

Taillard’s benchmark problem dataset. The test problems 

consist of various range of job sizes from (20 to 100) and it is 

processed on the machines at (5 to 20) defines (n × m).  The 

performance evaluation is based on the makespan. The 

parameters for PA-ACO are set as ρ= 0.4, the number of ant = 

5, u=0.005, z=20, and also the total number of iterations is 

taken as 150. The performance measurement is taken for the 

5 Trail. Eq. 17, is used for calculating the makespan quality 

(M) between PA-ACO andTaillard’s upper bound (UB). 

 

         = 
     

     
   100                                (17) 

 

Table-III. Shows the performance comparison between 

proposed technique (PA-ACO) and existing techniques like 

MMAS [1], M-MAS [2], PACO [2], ACA [4], ACS [3], and 

NACA [5] for benchmark problems. From table-III, it is 

observed that the proposed technique (PA-ACO) obtains the 

better solution in a shorter CPU time period or nearer as 

compare to ACS and ACA. Which shows the superiority of 

the PA-ACO technique.  

 

Table –III: Represents Result Evolution 

Dataset (n × p) PA-ACO NACA ACA ACS M-MMAS MMAS PACO 

Best time Best Time Best Time Best Time 

20 × 5 -1.16 0.72 0.000 0.84 0.368 0.44 1.19 3.67 0.762 0.408 0.704 

20 × 10 -0.66 1.12 0.079 1.57 0.831 0.50 1.70 4.00 0.890 0.591 0.843 

20 × 20 -0.12 2.91 0.102 3.61 0.944 0.63 1.60 5.33 0.721 0.410 0.720 

50 × 5 -0.58 4.62 0.011 5.03 0.085 2.77 0.43 14.67 0.144 0.145 0.090 

50 × 10 -0.25 9.36 0.257 11.14 1.241 3.73 1.89 18.00 1.118 2.193 0.746 

50 × 20 -0.10 20.44 1.252 22.71 1.990 5.91 2.71 24.33 2.013 2.475 1.855 

100 × 5 -0.38 18.34 -0.006 19.46 0.070 14.15 0.22 54.33 0.084 0.196 0.072 

100 × 10 1.31 40.17 0.283 43.68 1.059 21.93 1.22 65.67 0.451 0.928 0.404 

100 × 20 0.23 90.12 0.761 93.94 1.833 37.79 2.22 88.00 1.030 2.238 0.985 

200 × 10 0.23 170.84 0.150 177.39 0.434 141.52 0.64 275.33    

200 × 20 0.12 352.41 0.306 389.67 1.236 254.06 1.30 631.67    

500 × 20 2.90 3040.47 0.230 2447.4 1.444 3744.3 1.68 5133.0    

 

VI. CONCLUSION 

The paper introduced the PA-ACO algorithm for PFSP. The 

objective of the paper is to reduce the makespan given 

problem sets. The simulation results evidence that PA-ACO 

provides the fast local search procedure and achieves high 

optimal path solutions constructed by artificial ants at a 

limited CPU time period. Once all the solution is constructed 

by artificial ants the probability of correct solution is applied 

to select the trails solution is generated by ants. The 

makespan is updated by using a global update rule. The 

results ofPA-ACO for PFSP are very promising and it is 

suggested that the proposed technique successfully applied 

for scheduling problems. 
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