
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

1296
Retrieval Number: C4787029320/2020©BEIESP

DOI: 10.35940/ijeat.C4787.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract: De-duplication technology is commonly used to

decrease the space and bandwidth requirements of services by

eliminating repeated data and store only a single copy of them.

Unfortunately, it raises issues relating to security and ownership

such as, unauthorized users may claim as owner of that file and

security threat from curious server itself. To overcome these

issues, Secure Block level de-duplication with Proof of Ownership

Scheme is proposed in this work. Proof-of-Ownership Scheme

allows any owner of the same data to prove to the server that he

owns the data in a robust way. This scheme uses convergent

encryption and it protects the data from attackers and honest but

curious server. It also reduces storage space efficiently by

checking the uniqueness of data at block level.

Keywords: de-duplication, encryption, secure, block.

I. INTRODUCTION

Data de-duplication is a process of compression for

removing the multiple copies of same data in the same

database or login. Data de-duplication is operated at the

file-level, block-level, and bit-level. If two files are having the

same content with different file name then it would pointed by

different pointers for the same content. In block-level

de-duplication and bit-level de-duplication, it seems the

content are available within the same file and sometimes it

may saved in different files in different iterations. Block-level

is more efficient process than file-level de-duplication.

Big data is characterized by three features such as an

volume, variety and analysis need to be done on the data. Big

data doesn’t equate to any specific volume of data, the term if

used to describe terabyte, petabyte, and Exabyte. Data may be

raw or preprocessed using separate software tools before

analytics are applied.

To manage encrypted data with de-duplication in an

efficient way is a practical issue. Current industrial

de-duplication solutions cannot handle encrypted data.

De-duplication is suffered from brute-force attacks and it

raises the issues related to security and ownership. To

overcome this problem the Proof of Ownership has been

proposed. Proof of ownership is a protocol used to

communicate between a prover and verifier. By executing this

protocol, the provider has to convince the verifier that he/she

Revised Manuscript Received on February 06, 2020.

* Correspondence Author

V. Ezhilarasi, Department of Information Science and Technology, CEG

Campus, Anna University, Chennai, India. Email: elz.iit@gmail.com

K. Kulothungan, Department of Information Science and Technology,

CEG Campus, Anna University, Chennai, India. Email: kulo.tn@gmail.com

L. Sai Ramesh*, Department of Information Science and Technology,

CEG Campus, Anna University, Chennai, India. Email:

sairamesh.ist@gmail.com

is an owner of a file. Protection mechanisms against this kind

of adversary focus on the convergent encryption.

The main objective of this work is to eliminate the

duplicate copy of a redundant file. Each de-duplicated file is

checked for authorized data owner by implementing the proof

of ownership protocol, thus it identifies the rightful owner of

that file. The Proof of Ownership(POW) protocol verifies the

ownership of the data by generating the hash tree. The hash

tree is verified by the original hash tree that is generated from

a file stored on the server. By implementing the proof of

ownership protocol, the rightful owner of a file can be

identified by generating block level Merkle hash tree.

II. REVIEW OF LITERATURES

Some research works carried out to reduce the attacks and

prevent the data and avoid duplication by effective techniques

which are discussed in this section. Jin Li et al. [1] has

proposed the convergent encryption technique to encrypt the

data before outsourcing. The notion of authorized data

de-duplication was imposed by providing several level of

privileges for user based on their authentication level. The

key generation techniques are also used here to delete the

duplicate files.

Mi Wen et al. [2] proposed a another mode of convergent

key technique by providing session based key management

technique. In this system, the data owner can verify their

information is duplicated or not in somewhere without get

access permission by other data owner in the encrypted form

itself. Lorena Gonzlez-Manzano and AgustinOrfila [3]

proposed the preservation of the confidentiality by verifying

the proof of owner using convergent encryption technique. It

doesn't require any additional key management algorithm to

verify the ownership of the data owner.

Zheng Yan et al. [4] provided the access control mechanism

on cloud data by verifying the encrypted data in cloud storage.

This technique integrates the existing re-encryption technique

with the de-duplication to implement the proposed scheme.

Jin li et al. [5] gives the suggestion to avoid duplication in the

stored data by storing data in different servers in the form of

chunks. The chunks are tagged b secret key that will known

only to the data owner by secret key sharing mechanism.

Junbeom Hur et al. [6] suggested the server side

de-duplication scheme for the encrypted data. This

considered as the centralized mechanism for data sharing

where the duplicate data will be removed by the server itself

with the notification to the data owner. It reduces the overload

on the individual data owner side and also maintains the cloud

storage without duplicate data. It also prevent the data leakage

because of centralized management. Nesrine Kaaniche et al.

Secure Block Level De-Duplication on Big Data

using Proof of Ownership

V. Ezhilarasi, K. Kulothungan, L. Sai Ramesh

Secure Block Level De-duplication on Big Data Using Proof of Ownership

1297
Retrieval Number: C4787029320/2020©BEIESP

DOI: 10.35940/ijeat.C4787.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

[7] suggested the side scheme for avoiding duplication in

the cloud storage by providing the privileges to the data owner

to verify their data contains any duplication before it going to

be stored in the public cloud. The usage of symmetric

encryption is enciphering the file and identifies the

duplication over the encipher information.

 Roberto Di Pietro et al. [8] presented a protocol for

maintaining the ownership of the data owner in de-duplication

environment. It tries to reduce the computational complexity

on client side by implementing de-duplication mechanism on

cloud server. Ruiying Du et al. [9] introduced a technique for

retrieving the deleted duplicated information from the cloud

based on proof of ownership mechanism. This work considers

the proof of ownership provided by actual owner and based

on that the data will retrieved for the specific data owner

based on the request. Shai Halevi et al. [10] proposed a

another kind of PoW mechanism by achieving the

identification of ownership of the client by analysing the piece

of information provided by the user instead of analyzing

whole data file. This also makes the attackers to fail in their

attacking status by only providing the piece of data even in

cipher text.

Sairamesh et. al [11] gives the system for sharing data from

multiple owners in the common cloud on more secure way.

The key management algorithm is proposed to ensure the

secure transmission of data among multiple user's.

Thangaramya et. al [12] used the Map reduce technique to

share the same data with multiple user's based vertically

partitioned data mechanism. And the work mentioned in [13]

discusses about secure data storage with decentralized access

control. This technique reduces the cost for common server

for key management.

III. PROPOSED SYSTEM ARCHITECTURE

Data de-duplication is carried out for checking data

redundancy and eliminate the duplicate files. This technique

is used to improve storage utilization and can also be applied

to network data transfers to reduce the number of bytes that

must be sent. A file is encrypted using convergent encryption

before uploaded. It is a cryptosystem that produces identical

cipher text from identical plaintext files. For that a tag is

generated for each file and with that tag, file de-duplication is

carried out. Each deduplicated file is checked for authorized

data owner by implementing the proof of ownership protocol,

thus it identifies the rightful owner of that file.

The Proof of ownership(POW) protocol verifies the

ownership of the data by generating the Merkle hash tree.

Hash trees allow efficient and secure verification of the

contents of large data structures. Hash trees are a

generalization of hash lists and hash chains. The proof is

verified by the original hash tree that is generated from a file

stored on the server. Figure 1 describes the system

architecture of the de-duplication on encrypted data using

proof of ownership.

A. User Authentication

The purpose of this module is to provide an authentication

service, allowing callers to determine whether a

username/password combination is valid or not.

Authentication is a process in which the credentials provided

are compared to those on file in a database of authorized

user’s information. If the credentials match, the process is

completed and the user is granted authorization for access.

This module checks the given username and password is

correct or not based on already registered details.

B. Convergent Encryption

Convergent encryption, also known as content hash keying,

is a cryptosystem that produces identical cipher text from

identical plaintext files. This has applications in cloud

computing to remove duplicate files from storage without the

provider having access to the encryption keys. The main idea

of the convergent encryption is that each data owner encrypts

his data by using a convergent key K with symmetric

encryptions.

KeyGenCE(M) – K is the key generation algorithm that

maps a data copy M to a convergent key K.

EncCE(K,M) – C is the symmetric encryption algorithm

that takes both the convergent key K and the data copy M as

inputs and then outputs a cipher text C=E(K,M).

DecCE (K,C) – M is the decryption algorithm that takes

both the cipher text C and the convergent key K as inputs

and then outputs the original data copyM.

TagGen(M) – T(M) is the tag generation algorithm that

maps the original data copy M and outputs a tag T(M).

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

1298
Retrieval Number: C4787029320/2020©BEIESP

DOI: 10.35940/ijeat.C4787.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Fig. 1. Block level Data De-duplication with Proof of Ownership

Fig. 2. De-duplication Process

C. Key Generation

Key generation is the process of generating the key

using the hash algorithm. A key is used to encrypt and decrypt

the data whatever data being encrypted and decrypted. To

apply convergent encryption at the file level, each file should

be encrypted using the secret key which is derived from the

file itself. The user has to maintain a secret key for decryption.

The SHA (Secure Hash Algorithm) is the cryptographic hash

functions used to generate the unique key based on the file

content.

Convergent Encryption(CE) is a deterministic symmetric

encryption scheme in which the key K is derived from the

message M itself by computing K = H(M) and then

encrypting the message as C=E(K,M) =E(H(M),M) where, H

is a cryptographic hash function and E is a block cipher.

D. Tag Generation

Tag generation is the process of generating

unique file tags for user files using the hash algorithm.

Convergent encryption algorithm also has a tag generation

algorithm that derives a tag from a cipher text. The tag of a file

is generated for checking the de-duplication of a file. Secure

Hash Algorithm (SHA) is a hash function used in

cryptography which is used to generate the unique tag based

Secure Block Level De-duplication on Big Data Using Proof of Ownership

1299
Retrieval Number: C4787029320/2020©BEIESP

DOI: 10.35940/ijeat.C4787.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

on the ciphertext. After the tag generation, each tag is

uploaded to the server and it is cross verified with previously

uploaded tags. If the tag exists, it links that tag to the

previously existing tag.

Tag generation algorithm derives a tag T from the

ciphertext C by itself by computing T=H(C). The cipher text

is derived from the message M as C=H(K,M)=H(H(M),M)

where H is a cryptographic hash function and E is a block

cipher.

E. De-duplication

Data de-duplication technique ensures that only one

unique instance of data is retained in storage. In file level

de-duplication the data redundancy is exploited on the file

level and thus only a single copy of each file is stored on the

server. For de-duplication check, the tag is generated from the

encrypted file is needed. The de-duplication process is carried

out by checking the file tag. It checks the newly uploaded tag

with previously updated tags. If the file tag is not present in

the previously updated tags the file gets uploaded otherwise,

the file tag will be linked to the already stored file. It reduces

the storage space and cost for storage. Figure 2 describes the

flow of the de-duplication process.

To perform de-duplication each encrypted file is

hashed using SHA-256. A 32-byte hash value will be

generated which is assigned as file tag. Now, file tag is

uploaded into the server to check redundancy of the file. If

duplication occurs the file tag will be linked to the previously

existing tag. Otherwise, it creates a new file.

F. Proof of Ownership

Proof-of-Ownership is an interactive protocol between a

prover and a verifier. By executing the protocol, the prover

convinces the verifier that he is the owner of a file stored by

the verifier. In client side de-duplication anyone in possession

of the file hash can gain ownership of the file by uploading the

file hash. Motivated by this observation, proof of ownership

(POW) has been proposed. A POW scheme is jointly

executed by the server and client such that the client can prove

to the server that it is indeed in possession of the file.

Pseudo code for de-duplication process

Input: File Tags

Output: Duplicate File Tag

1. f1 and f2

2. Both file f1 and f1 has a same content

3. Start with an empty list x []

4. if tag[f1]== tag[f2] then

5. The file f2 is deduplicated and need share path of

file f1.

6. for i = 0,i <= 10,i + + do

7. f 1path randomGenerator.nextInt[i]

8. end for

a. fpath f 1:get path

9. path[f1] f

10. Path of file f1 is assigned to f2 and content has been

shared.

11. else

12. for i = 0,i <= 10,i + + do

13. newpath randomGenerator.nextInt[]

14. end for

15. f 2: path newpath;

16. New path has been assigned for file f2.

17. end if

Fig. 3. De-duplication using Merkle tree

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

1300
Retrieval Number: C4787029320/2020©BEIESP

DOI: 10.35940/ijeat.C4787.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

G. Block level Merkle Hash Tree

Merkle tree is a tree in which every non-leaf node is

labeled with the hash of the labels or values (in case of leaves)

of its child nodes. In Block level Merkle hash tree, big data

file is split into equal sized blocks and each block is hashed

and stored as nodes. Hash trees are a generalization of hash

lists and hash chains obtained from the above process is

assigned as a parent of the leaf nodes. This process keeps

running until a single root is obtained. Server preprocesses the

file and stores some short information per file (Tags). Figure 3

provides the structure of the Block level Merkle hash tree.

When user uploads the file, user has to generate Block

level Merkle hash tree and has to send the block hash to

server, server checks for the uniqueness of block hashes sent

from client. If unique block hash is identified then, the client

is added as one of the owner of that block and pointer is given

to that block. So, this proposed scheme efficiently provides

de-duplication of big data files by checking even for the

similarity in blocks.

Proof stage: A challenge response is done only during file

upload.

Prf: Prover takes a challenge Q and a file M as input, returns

a response R.

Ver: Verifier takes a challenge Q, the file M and the response

R as input, returns that he/she has a file or not.

IV. EXPERIMENTS AND RESULT ANALYSIS

 The experiments are conducted in Cloudsim environment

where the four different instances are created and considered

as users. Every user's are stored their data in the cloud

environment and system verifies the occurrence of

duplication in the stored data by executing the proposed

technique. Based on that experiments, the performance of the

proposed technique is evaluated and comparative analysis are

carried out. Table 1 shows the actual space utilized by

individual memory in the available space.

Table I. Space Utilized by Individual user

User

Space utilization in GB

Before De-duplication After De-duplication

u 1 8.2 8.2

u2 5.5 0

u3 2.5 0

u4 5 5

Fig. 4. User Memory Space - Before De-duplication

Fig. 5. Space Utilization of user before and After

de-duplication

Figure 4 shows the chart for registered users and how much

memory space it has occupied before de-duplication. This

chart shows multiple users trying to upload the same file, in

which the server that stores each file separately. It consumes a

lot of memory space to store the same file again.

Figure 5 shows the chart for registered users and how much

memory space it has occupied after de-duplication. This chart

shows multiple users trying to upload the same file, in which

the server that does not store the file separately. Instead of

storing the same file, it will provide the reference of that file

which is already updated by another user.

V. CONCLUSION

In recent days, people move to the public cloud to store

their data and managing their transactions over the cloud

itself. In this regard, duplication is the important scenario

where sometimes data can be deleted by the cloud server to

avoid duplication or sometimes any other data owner can

update the duplicate information with their data. This

proposed system is provided the scheme for de-duplication in

an encrypted data to maintain the proof of ownership for data

file. This work supports the data updation in encryption form

and block level chunking helpful to avoid the overwriting of

unwanted data in other data owner files.

The results of our computer simulations further showed the

practicability of our scheme. In future, the work can be

extended for dynamic data access control for block level

de-duplication with proof of ownership, so that the storage

efficiency and security can be further enhanced.

REFERENCES

1. Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick P.C. Lee, and Wenjing Lou. A

hybrid cloud approach for secure authorized de-duplication. IEEE

Transactions on Parallel and Distributed Systems, vol. 26:pp. 1206 –

1216, 2015.

2. Mi Wen, Kaoru Ota, He Li, Jingsheng Lei, Chunhua Gu, and Zhou Su.

De-duplication with reliable key management for dynamic updates in

cpss. IEEE Transactions on Computational Social Systems, vol.2:pp. 137

– 147, 2015.

3. Lorena Gonzalez´-Manzano and Agustin Orfila. A efficient

confidentiality-preserving proof of ownership for de-duplication. Journal

of Network and Computer Applications, vol. 50:pp.49 – 59, 2015.

4. Zheng Yan, Wenxiu Ding, Xixun Yu, Haiqi Zhu, and Robert H Deng.

De-duplication on encrypted big data in cloud. IEEE Transaction on big

data, vol. 2:pp.138 – 150, 2016.

Secure Block Level De-duplication on Big Data Using Proof of Ownership

1301
Retrieval Number: C4787029320/2020©BEIESP

DOI: 10.35940/ijeat.C4787.029320

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

5. Jin Li, Xiaofeng Chen, Xinyi Huang, Shaohua Tang, and Yang Xiang.

Secure distributed de-duplication dystems with improved reliability.

IEEE Transaction on computers, vol. 64:pp. 3569 – 3579, 2016.

6. Junbeom Hur, Dongyoung Koo, Youngjoo Shin, and Kyungtae Kang.

Secure data de-duplication with dynamic ownership management in

cloud storage. IEEE Transactions on Knowledge and Data Engineering,

vol. 28:pp. 3113 – 3125, 2016.

7. Nesrine Kaaniche and Maryline Laurent. A secure client side

de-duplication scheme in cloud storage environments. IEEE

International Conference on New Technologies, Mobility and Security

(NTMS), pages . 1–7, 2014.

8. Roberto Di Pietro and Alessandro Sorniotti. Proof of ownership for

de-duplication systems:a secure, scalable and efficient solution. IEEE

Transactions on computer communication, vol. 82:pp. 71–82, 2016.

9. Ruiying Du, Lan Deng, Jing Chen, Kun He, and Minghui Zheng. Proofs

of ownership and retrievability in cloud storage. IEEE International

Conference on Trust, Security and Privacy in Computing and

Communications, pages 328 – 335, 2014.

10. Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra

Shulman-Peleg. Proofs of ownership in remote storage systems.

Proceedings of the 18th ACM conference on Computer and

communications security, pages 491 – 500, 2012.

11. SaiRamesh, L., S. Sabena, K. Thangaramya, and K. Kulothungan.

"Trusted multi-owner data sharing among dynamic users in public

cloud." Australian Journal of basic applied sciences, vol. 10, no. 2,

pages. 315-319, 2016.

12. Kalidoss, Thangaramya, Ganapathy Sannasi, Sairamesh Lakshmanan,

Kulothungan Kanagasabai, and Arputharaj Kannan. "Data

anonymisation of vertically partitioned data using Map Reduce

techniques on cloud." International Journal of Communication

Networks and Distributed Systems 20, no. 4 (2018): 519-531.

13. Jayakumar, J., Sairamesh, L., Pandiyaraju, V., Muthurajkumar, S. and

Rakesh, R., 2015. Secure data storage using decentralized access control

in cloud. Advances in Natural and Applied Sciences, 9(6 SE),

pp.192-197.

AUTHORS PROFILE

Ms. V. Ezhilarasi is the research scholar in

Department of Information Science and

Technology, Anna University. She completed her

B. E from Bharathidasan University and M. E from

Anna University in the year of 2004 and 2013

respectively. Her research area is cloud security

including key management and block level

duplication.

Dr. K. Kulothungan currently working as an

Associate professor in Department of Information

Science and Technology, Anna University. He

completed his Ph. D from Anna University in the

year of 2013. He guided more than ten research

scholars. He has published more than 50 research

articles in reputed International Journals and

Conferences. His current area of research is

Wireless Networks and security.

Dr. L .SaiRamesh is currently working as a

faculty in Department of Information Science and

Technology, Anna University. He completed his Ph.

D from Anna University in the year of 2015 in the

area of cloud security. He published more than 50

research articles in reputed International Journals and

Conferences. His current area of research is Cloud

security and Machine learning approaches in Image

processing.

