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Abstract: In this analysis results of Elastic-plastic stress 

distributions in a spherical  pressure vessel with Thermo- 

Mechanical loads are discussed. Results of study are obtained 

with Finite element (FE) analysis. A quarter of pressure vessel is 

considered and modeled with all realistic details. In addition to 

presenting the stress distribution of the pressure vessel, in this 

work the effects  thermo-Mechanical autofrettage on different 

limit strength for spherical pressure vessels are investigated. The 

effect of changing the load and various geometric parameters is 

investigated. Consequently, it can be observed that to be the 

significant differences between the present thermo-Mechanical 

autofrettage and earlier (Mechanical autofrettage and Thermal 

autofrettage) method of autofrettage for the predictions of 

Elastic-plastic stress distributions of spherical pressure vessels. 

Some realistic examples are considered and results are obtained 

for the whole vessel by  applying thermal load and mechanical 

load. The actual material curve is used for loading, unloading and 

residual stress behavior of spherical pressure vessel. Kinematic 

hardening material is considered and effect of Bauschinger effect 

factors are studied with thermo-mechanical load. Equivalent Von 

-Mises yield criteria is used for yield criteria. Behavior of 

elastic-perfectly plastic is also studied and compared. Influence of 

Thermo-Mechanical autofrettage over stress distribution and  

load bearing capacity of spherical vessel is examined. The 

question of whether Thermo-mechanical autofrettage gives more 

favorable residual compressive stress distribution and therefore 

extension of pressure vessel  life is investigated in this analysis.  

 

Keywords: Thermo-Mechanical Autofrettage, Strain 

hardening, Tangent modulus, FE Analysis, Residual stress. 

I. INTRODUCTION 

There have been bountiful  study on the analysis of  residual 

stresses and deformation for thick-walled cylindrical and 

spherical vessel subjected to Autofrettage process[1-21]and 

Re- autofrettage process [22-24].Some researchers [25-30]  

further extended their work for Fatigue life of autofrettaged 

vessels. Thermal stress analysis of cylindrical vessels and  

spherical vessels for elastic range were discussed by several 

authors [31-33].It is observed that most of the previous work 

related to Autofrettage had been done based on the 

mechanical load. The only paper of Dixit and Kamal [34] 

presented the feasibility of thermal autofrettage of thick wall 

cylinder in 2015.Research in thermal autofrettage analysis 

and design optimization of autofrettaged sphere had not been 

received proper attention by the research community. 

Residual stresses of spherical vessel by thermal  loading have 
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been obtained by Rupali. al. [35]. The present work present 

fundamental investigation on residual stress distribution of 

spherical vessel subjected to thermo-mechanical combined 

autofrettage processes under thermo-mechanical  loading  

conditions. 

II. THEORETICAL CONCEPT 

The elastic stresses for the combined loading problem are 

simply a superposition of the elastic stresses in the inner- 

surface pressurization problem. If an internal pressure P is 

applied along with the thermal gradient, the stresses in the 

elastic sphere are expressed by the sum of Mechanical stress 

and thermal stress. Fig.1 shows loading and unloading of a 

Kinematic hardening material. The radial and tangential 

stresses for sphere 
r

 and  must satisfy the equilibrium 

equation, 
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Fig. 1 Stress Strain diagram : kinematic hardening 

The residual stress distribution for Mechanical  laod and 

Thermal  load can be determined by using loading stress 

minus corresponding unloading stress, i.e., 

eR sidual loading unloading    . 
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Now, 

The  total  residual stresses are the summation of thermal and 

mechanical residual stresses. So, total  residual  radial and 

total residual tangential stresses are , 

 

Total thermal Mechanicalr r r     

 

Total thermal Mechanicalt t t   
 

 

Equivalent stress, 

 ............... 2p
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Plastic Modulus, 
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The thermal stress -strain  relations can be written in terms of  

the stresses, the coefficient of thermal expansion(α). 
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Accordingly to satisfy the Mises  yield criterion 
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Centripetal temperature gradient are more appropriate for 

thermal Autofrettage than centrifugal  thermal load. For  

centripetal Thermal Load if two regions or zones(inside 

plastic zone and outside elastic zone) are created with 

increasing the outer surface temperature, TO and keeping 

inside temperature Ti fixed, then the stresses for centripetal 

flux satisfying the yield criterion for inner plastic zone, 

( )i cr r r  and outer region  stresses will be  in the elastic 

region ( )c or r r 
.
 If three regions are created with 

centripetal flux then three zones are created, first plastic 

region, ( )
i c

r r r  middle elastic region ( )c fr r r   

and the outer plastic region ( )f or r r  . 

 During combined (Thermal and Mechanical) loading 

behavior of residual stresses has been discussed in this work.  

III. FINITE ELEMENT METHOD 

   A bilinear kinematic hardening quadratic axis symmetric 8 

node elements have been considered for inelastic Finite 

Element (FE) analysis. The material properties used here, 

E=206 Gpa,  Et=Etu=10 GPa, σy=850 MPa, and  =0.3, 

α=17.1×10
-6

°C. The finite element 2-D model of sphere is 

constructed in ANSYS. Different combination of load is used 

for the result. For a spherical vessel with inner 

radii,
i

r =0.12m  and outer radii ,
o

r =0.24m.  

IV. RESULTS  AND DISCUSSION 

The combined inner -surface pressurization and outer 

surface heating problem is far more complicated then either 

the inner surface pressurization problem or the yielding  

initiation portion of the outer-surface heating problem. In 

inner surface pressurization problem, the plastic region that 

start at the inner-surface and merely grows outward toward 

the outer surface as pressure increases until the entire shell has 

yielded [Fig.2]. For outer-surface heating, the yielding 

initiation behavior is identical to that of inner-surface pressure 

problem. However, for outer-surface heating, the plastic 

region cannot simply grow to encompass the total thickness of 

the spherical shell as it does for the inner surface  

pressurization problem [Fig.3]. With the combined loading 

we seeing some changes in yielding pattern of thermal loading 

and here mechanical loading pattern is dominating the 

thermal loading pattern [Fig.4]. Fig.4 shows the hoop stress 

distribution of thermo-mechanical load with fixed 

temperature gradient and different varying pressure. It is very 

clear with thermo-mechanical load yielding is start from inner 

radius and with increasing load grow towards outer-surface.  

Fig. 5 shows the thermo-mechanical radial stress distribution 

with fixed temperature gradient and with different pressure 

load. Fig. 6 and 7 shows the residual thermo-mechanical  

radial and hoop stress behaviour respectively with increasing 

load keeping thermal load constant. Here with increasing load 

residual hoop stress near bore is less compressive and at the 

outer surface tangential hoop stress increase which loosing 

potential benefits of autofrettage. Fig.8 shows the residual 

Thermo-mechanical hoop stresses distribution when pressure 

load is constant and gradually increasing temperature gradient 

keeping inside wall temperature constant. Here under a 

certain limit if we increase the temperature gradient residual 

hoop stress near inside radius is more compressive but after 

that limit if we increase thermal load keeping pressure load 

constant residual compressive  hoop stress is decreasing or 

less compressive and yielding is start at outside radius it 

means its loosing benefits  of autofrettage. Fig.9 shows the 

residual radial stress distribution keeping pressure load 

constant and gradually increasing temperature gradient. Here 

with increasing thermal load radial stress taking positive sign 

and it's also loosing benefits of autofrettage.  
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So from last two conditions we can say that  with some initial 

temperature gradient if we increase the pressure load the 

residual hoop and radial stress distribution pattern is similar 

with conventional mechanical autofrettage and we can obtain 

the required residual stress easily. Fig.10 shows the residual 

hoop and radial stress distribution with different radius ratio 

keeping thermo- mechanical load constant. Here with 

increasing radius ratio hoop stress near bore is less 

compressive and it's also decreasing positive hoop stress at 

outside radius. Fig.11 shows the radial and hoop stress 

distribution of different type of loading for same percentage 

of overstrain with radius ratio 2. Fig.12 shows the residual 

hoop stress and radial stress for different type of loading for 

same percentage of overstrain with  radius ratio 2. With same 

percentage of overstrain residual tangential stress near inside 

radius somewhat similar for both thermo-mechanical and 

thermal loading alone and  in both case it is more compressive 

than mechanical loading, but at the outside radius positive 

tangential hoop stress is more for thermal loading alone then 

Thermo-mechanical loading and its reaches to the yield stress. 

In Fig.12 it is clear that with thermo- Mechanical  load we are 

getting favorable  residual stress distribution which is a 

improvement in autofrettage technique. Fig.13 showing how  

Bauschinger effect limits the benefits of autofrettage and  how 

the residual hoop stresses changes with Bauschinger effect 

factor. Fig.14 shows the  residual  stress distribution of  a 

Thermo-mechanical load with radius ratio 2 for 

elastic-perfectly plastic and strain hardening material. For 

strain-hardening sphere under Thermo-mechanical load prior 

to yielding at the inner surface radial stress and hoop stress 

differ by less than yield stress by definition of no yielding. 

Above the yield load (which ,incidentally, is identical to the 

yield load for elastic-perfectly plastic sphere), the radial 

stresses and hoop in the plastic region differ by more than 

yield stress for  elastic -perfectly plastic material the  stresses 

reduce for the case zero strain hardening or zero tangent 

modulus. For both type of material autofrettage with 

Thermo-mechanical load showing good agreement. 
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V. CONCLUSION 

Autofrettage of sphere can also be created by Thermo- 

mechanical load. Autofrettage of sphere created by Thermo- 

mechanical load are more convenient and gives favorable 

stress distribution then mechanical load and thermal load. In 

Thermal loading If the temperature gradient exceeds some 

limit yielding at outside of the sphere, due to significant 

increase in tensile residual hoop stress at the outside diameter.    

 So we are not able to overstrain after some limit  but with 

combined loading this problem we can minimize and can get 

identical yield initiation behavior to that for inner surface 

pressure. Plastic region simply continue to grow  from 

inner-surface until the entire shell is plastic as in the collapse 

analysis for inner- surface pressurization. Mechanical load 

dominating combined gives more favorable stress distribution 

than thermal load dominating combined load. With combined 

load Yielding is initiate at  very lower pressure than 

mechanical loading. Like residual mechanical and thermal 

stresses thermo-mechanical residual stresses are also 

extremely dependent on the Bauschinger effect and a large 

reduction in bore hoop stress due to the Bauschinger effect.  
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  NOMENCLATURE 

 

 r              : Radius 

or                : Outside Radius 

ir                 : Inside Radius 

 
c

r                 : Loading first yield radius 

 
f

r                : Loading second yield radius 

d
r                  : Unloading yield radius 

 oT                 : Outside temperature 

 
i

                 : Inside temperature                      

                    : Strain (Deformation) 

, ,
t r 

     : Stresses in Principal Direction. 

, ,t r            : Strain in Principal Direction. 

i
                  : Equivalent stress 

i                    : Equivalent strain 

r                  : Radial stress 

t                   : Hoop stress,   

                    : Poisson’s ratio
 

t
                   : Loading Tangent Modulus 

tu
                  : Unloading Tangent Modulus  

p                   : Modulus of plasticity  

 u                   : Displacement  
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