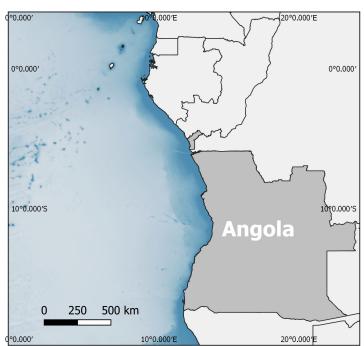
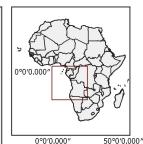


A FIRST APPROACH TO DECIPHER THE MEGABENTHIC TROPHIC NETWORK IN THE ANGOLAN COLD-WATER CORAL MOUNDS THROUGH STABLE ISOTOPE ANALYSIS

Vinha B, Rossi S, Pennetta A, Gori A, Mienis F, Huvenne V, Hebbeln D, Wienberg C, Freiwald A, Piraino S, Orejas C

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818123 (iAtlantic). This output reflects only the author's view and the European Union cannot be held responsible for any use that may be made of the information contained therein.

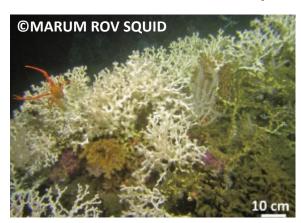



iAtlantic ANGOLA BASIN (SE ATLANTIC)

SE ATLANTIC

ONE OF THE MOST UNEXPLORED AREAS IN TERMS OF DEEP-SEA BENTHIC MEGAFAUNA

- Benguela Current Large Marine Ecosystem
- **Upwelling System** one of the most productive in the world (0.37 Gt/Year)
- Oxygen Minimum Zone (OMZ)

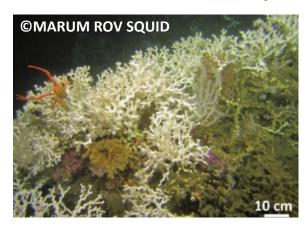


iAtlantic ANGOLAN COLD-WATER CORAL MOUNDS

- Recently discovered CWC reef in the SE Atlantic composed mainly by Lophelia pertusa and Madrepora oculata
- L. pertusa CWC reef thriving in:
 - Temperatures ranging: 6.8 to 14.2°C
 - Low dissolved O₂ concentrations: 0.5 to 1.5 mL/L

M122 ANNA on R/V METEOR (2016)

Hebbeln et al., 2017, Hanz et al., 2019, Hebbeln et al., 2020



iAtlantic ANGOLAN COLD-WATER CORAL MOUNDS

CWC might compensate low O₂ concentrations due to:

high food availability associated with a high quality Organic Matter (OM)

M122 ANNA on R/V METEOR (2016)

Büscher et al., 2017, Hebbeln et al., 2017, Hanz et al., 2019, Hebbeln et al., 2020

iAtlantic ANGOLAN COLD-WATER CORAL MOUNDS

M122 ANNA on R/V METEOR (2016)

Associated Fauna in the CWC reefs

- **Sponges**
- Bryozoa
- **Hydroids**
- **Octocorals**
- Actiniaria

- Antipatharia
- Crustaceans
- Starfish
- **Ophiuroids** Etc.

Hebbeln et al. 2017, 2020

What is the trophic structure of the Angolan CWC habitat?

STABLE ISOTOPE ANALYSIS

 δ^{15} N

Trophic Position Resource use

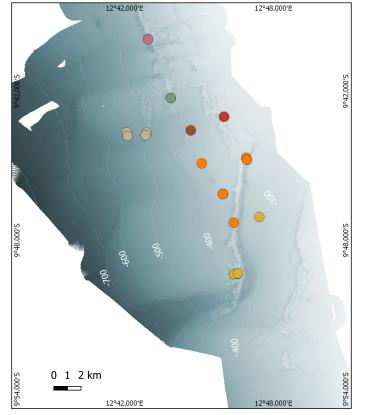
MAIN OBJETIVE

 δ^{13} C

To decipher, for the first time, the deep-sea megabenthic trophic network of the Angolan CWC mounds through Stable Isotopes Analysis

www.iatlantic.eu

iAtlantic STUDY AREA
INTEGRATED ASSESSMENT OF ATI
MARINE ECOSYSTEMS IN SPACE A


10°0.0001
10°0.0001
20°0.0001

M122 ANNA on R/V METEOR (2016)

CWC Mounds

- Anna Ridge
- Buffalo Mounds
- Castle Mounds
- Scary Mounds
- Snake Mounds
- Twin Mounds
- Valentine Mounds

www.iatlantic.eu material & methods

SAMPLE COLLECTION

Angolan Benthic Megafauna

Van-Veen Grab

MARUM ROV SQUID

Freeze-dried at -80°C
 Stored at -25°C until analysis

Cnidaria, Bryozoa, Porifera, Echinodermata, Annelida, Arthropoda, Mollusca, and Chordata

Sampling from 259 to 447m of depth

Total of 59 samples collected **Preliminary results for 39 samples**

Lophelia pertusa

Madrepora oculata

Echinus sp.

Delectopecten vitreus

Bryozoa

not included

Hebbeln et al. 2017

SAMPLE COLLECTION

Potential Food Sources Particulate Organic Matter (POM)

Sediment

sampled at 259 and 345m of depth

Van-Veen Grab

Box Corer

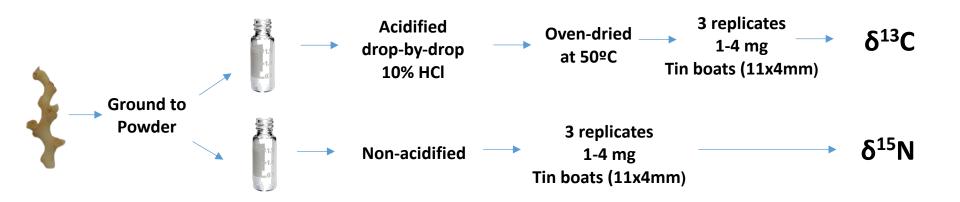
 Sediment trap material

sampled at a daily interval at 342 and 532 m of depth

 Suspended Particulate Organic Matter (SPOM)

sampled over a complete tidal cycle at 342 and 532 m of depth

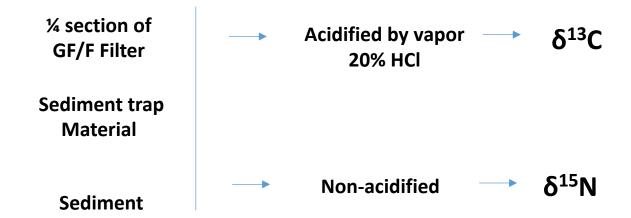
ALBEX Lander (NIOZ)


Stored at -20°C until analysis

Hebbeln et al. 2017

SAMPLE PREPARATION

Angolan Benthic Megafauna



www.iatlantic.eu

SAMPLE PREPARATION

Potential Food Sources Particulate Organic Matter (POM)

PRIMARY CONSUMERS

Fish, Crustacean, Polychaeta

Cold-water corals (CWC)

Antipatharia

iAtlantic COLD-WATER CORALS (CWC)

Fresh SPOM is not a food source for the analyzed CWC species

Potential food sources for Octocorals and Antipatharia

- Resuspended Organic Matter (OM) from sediment and degraded OM – this has been seen in Antarctic CWC species
- Zooplankton might be an important food source – as seen in other studies and in aquaria experiments

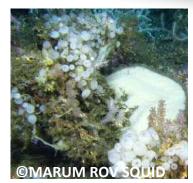
Octocorals

Antipatharia

Elias-Piera et al., 2013, Carlier et al., 2009, Coppari et al., 2020, Rakka et al., 2021

www.iatlantic.eu RESULTS & DISCUSSION

What could explain the high Trophic Position occupied by sponges?


• High $\delta^{15}N$ values for deep-sea sponges have been reported in literature

Bacterial symbionts

 in OMZs increase of remineralization of bacteria might increase N ratios

DOM and bacterioplankton as food source

hexactinellid species assimilate bacteria
 more efficiently
 Bart et al., 2021

Deep-sea sponges in Angolan CWC mounds

iAtlantic DEPOSIT FEEDERS / PREDATORS

Group with the most enriched values of δ^{13} C -15.38 to -13.65 %

Eunice novergica assimilation of 4 times more C in the presence of *L. pertusa*

Ophiuroids

Asteroidea

Mueller et al., 2013

 Resuspended Organic matter and Zooplankton as a potential food source for CWC

Sponges occupy the highest trophic position

Similar Trophic structure compared with other CWC habitats

Further steps: Incorporation of L.
 pertusa and M. oculata to validate
 fresh SPOM as a food source

Thank you!

beatriz.vinha@studenti.unisalento.it

