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The Analysis of Variance (ANOVA) test has long been an essential tool for researchers conducting 

studies on multiple experimental groups with or without one or more control groups. This article 

encapsulates the fundamentals of ANOVA for an intended benefit of the reader of scientific literature 

who does not possess expertise in statistics. The emphasis is on conceptually-based perspectives 

regarding the use and interpretation of ANOVA results, with minimal coverage of the mathematical 

foundations. Data entry, checking basic parametric assumptions of ANOVA, descriptive statistics of 

the data by treatment groups, fitting ANOVA model, statistical significance of the test based on p-

value, and post-hoc analysis are all explored using R-software. 
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INTRODUCTION 

An experiment occurs when purposeful changes are made to 

the input variables of a process or system so that we may 

observe and identify the reason for changes in the output ([1], 

[2]). For examples: in agricultural field trials, different type 

of fertilizer may be applied on crop to measure their effect on 

growth; in industry, different methods of production using a 

given raw materials to investigate which method gives the 

best product or output etc. When experiments are designed 

with the analysis in mind, the researcher can before 

conducting the experiments, identify sources of variation that 

he considers important and can choose a design that will 

allow him to measure the extent of the contribution of these 

sources to the total variation. There is variation in the 

measurements taken on the individual units of the data set and 

ANOVA investigates whether this variation can be explained 

by the grouping introduced by the classification factor (i.e., 

the identified sources of variation) by partitioning (breaking 

down) the total variation exhibited or present in a set of data 

into several recognized components in the experiment, 

associated with each of these components (treatments, blocks, 

error) is a specific source of variation so that in the analysis 

it is possible to ascertain the numerical magnitude of the 

contribution of each of these sources to the total variation. 

 

The fundamental problem of ANOVA is to test the null 

hypothesis that all of the population means (population means 

≥ 3) are the same (of no difference), i.e.,  

 

𝐻0:  𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘 = 𝜇                             (1) 

 

𝜇  unspecified, against all possible alternative hypotheses 

(𝐻1) that they are not all the same for at least a pair.  

 

𝐻1:  𝜇1 ≠ 𝜇2 ≠ ⋯ ≠ 𝜇𝑘.                (2) 

 

The statement in (2) that the population means are not 

identical does not imply that each population mean is distinct. 

Also, from equation (1) and (2), it is easy to see that ANOVA 

is an extension of t-test. While t-test procedure compare 

between two factor/group, ANOVA/F-test is a procedure of 

testing whether the means of three or more normal population 

with unknown but common variance are equal or testing 

whether a set of three or more samples can be considered as 

being drawn from a homogeneous normal population. Today, 

ANOVA is a commonly used statistical technique in many 

disciplines but finds its widest application in the analysis of 

data derived from experiments. Some areas of application of 
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ANOVA include but not limited to: 

• Agriculture: comparison of varieties of fertilizers on 

growth plant, breeds of animal after administered with dose 

of a particular vaccine etc. 

• Biological and chemical sciences: comparison of different 

level of concentration of a particular chemical on specimens’ 

e.g. different concentration of glucose on the amount of 

insulin released from experimental animals ([3]).  

• Medicine and Pharmacy: comparison of effect (response) 

of different malaria drugs (treatments) on patients 

(experimental material). See [3], [4], [5] and [6].  

• Education: comparison of various teaching methods 

(treatments) on students (experimental units) academic 

performance (response).  

• Others: Several application of ANOVA has been found in 

engineering, economics, commerce, trade and industry ([7], 

[8], [9], [10]) etc. 

 

The simplest ANOVA model is the "one-way" or "one-

factor" or "single-classification" or "completely randomized 

design". In one-way ANOVA, the data is sub-divided into 𝑘 

groups based on a single classification factor provided the 

experimental units are essentially homogeneous (similar in 

characteristics) that the variation among them is small and 

grouping them in blocks would make no difference. This is 

the case in many types of laboratory experiments where a 

quantity of material is thoroughly mixed and then divided into 

small lots to form experimental units to which treatments are 

randomly assigned or in plant and animal experiments where 

environmental effects are much alike. The standard 

terminology used to describe the set of factor levels is 

treatment even though this might not always have meaning 

for the particular application. This can be explained by the 

fact that most ANOVA techniques were originally in 

connection with agriculture experiments where fertilizers, for 

example, were regarded as treatment applied to the soil. 

Statistical model for completely randomized design or one-

way ANOVA model is:  

 

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗;     𝑖 = 1, 2,⋯ , 𝑘,    𝑗 = 1, 2,⋯ , 𝑛𝑖   (3) 

where, 

𝑦𝑖𝑗 =  individual observation in jth plot receiving ith 

treatment, 

𝜇 = grand or overall mean effect, 

𝜏𝑖 = 𝜇𝑖 − 𝜇 = ith treatment effect; amount by which a group 

mean differs from the   

                        grand mean, 

𝜀𝑖𝑗 = 𝑦𝑖𝑗 − 𝜇𝑖 =  experimental error term; the amount by 

which any value differs from its group 

mean. 

 

Let us consider 𝑘 normal distributions with unknown means 

𝜇1,  𝜇2, ⋯ , 𝜇𝑘 , respectively, and an unknown but common 

variance 𝜎2. One inference that we wish to consider is a test 

of the equality of the 𝑘 means (see equation 1). To test this 

hypothesis, let 𝑌𝑖1, 𝑌𝑖2, ⋯, 𝑌𝑖𝑘𝑖  represent a random sample of 

size 𝑘𝑖  from the normal distribution 𝑁(𝜇𝑖 , 𝜎
2) , 𝑖 =

1, 2,⋯ , 𝑘. Table 1 illustrates the randomization procedure or 

framework for a one-way ANOVA design. 

  

Table 1: The data layout under CRD 

 Observations Total 

 Treatment1 Treatment2 ⋯ Treatment k  

 𝑦11 𝑦21 ⋯ 𝑦𝑘1  

 𝑦12 𝑦22 ⋯ 𝑦𝑘2  

 ⋮ ⋮ ⋮ ⋮  

 𝑦1𝑛1
 𝑦2𝑛2

 ⋯ 𝑦𝑘𝑛𝑘
  

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗  

𝑌1. 𝑌2. ⋯ 𝑌𝑘. 

𝑌.. = ∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗 

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗
2  

𝑌1.
2 𝑌2.

2 ⋯ 𝑌𝑘.
2 

𝑌..
2 = ∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗
2  

 

Table 1 above displays a typical data presentation of 

completely randomized design or one-way analysis of 

variance model. From Table 1, 

 �̅�.. =
1

𝑁
∑
𝑘

𝑖=1
∑
𝑛𝑖

𝑗=1
𝑦𝑖𝑗      𝑎𝑛𝑑     �̅�𝑖. =

1

𝑛𝑗
∑
𝑛𝑖

𝑗=1
𝑛𝑗𝑦𝑖𝑗 ,    𝑖 =

1,2,⋯ , 𝑘                              (4) 

The dot in the notation for the means, �̅�.. and �̅�𝑖., indicates the 

index over which the average is taken. Hence, �̅�.. is an average 

taken over both indices while �̅�𝑖. is just taken over the index 

𝑗. The sum of squares associated with the variance of the 

combined samples is  

 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

(𝑦𝑖𝑗 − 𝜇)2

= ∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

(𝑦𝑖𝑗 − �̅�..)
2                                                            (5) 
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To determine a critical region for a test of 𝐻0, we shall first 

partition (5) into two parts by adding and subtract �̅�.𝑖 to get  

 

𝑆𝑆 𝑇𝑜𝑡𝑎𝑙 = ∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

[(𝑦𝑖𝑗 − �̅�.𝑖) + (�̅�.𝑖 − �̅�..)]
2
 

 

which after simple algebra, gives  

 

𝑆𝑆 𝑇𝑜𝑡𝑎𝑙

= ∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

(𝑦𝑖𝑗 − �̅�.𝑖)
2 + ∑

𝑘

𝑖=1

𝑛𝑖(�̅�.𝑖

− �̅�..)
2                                                             (6) 

 

The preceding equation (6) can be summarized as  

 

𝑆𝑆 𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑆 𝐸𝑟𝑟𝑜𝑟 + 𝑆𝑆 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡                                 (7) 

 

which shows that the effects are additive. These sum of 

squares (total, treatment and error) can be re-written as:  

 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗
2 −

(∑
𝑘

𝑖=1
∑
𝑛𝑖

𝑗=1
𝑦𝑖𝑗)

2

𝑁
,                   (8) 

  

𝑆𝑆 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = ∑

𝑘

𝑖=1

[
 
 
 
 ( ∑

𝑛𝑖

𝑗=1
𝑦𝑖𝑗)

2

𝑛𝑖

]
 
 
 
 

−

(∑
𝑘

𝑖=1
∑
𝑛𝑖

𝑗=1
𝑦𝑖𝑗)

2

𝑁
  (9) 

 and from (7),  

𝑆𝑆 𝐸𝑟𝑟𝑜𝑟 = 𝑆𝑆 𝑇𝑜𝑡𝑎𝑙 − 𝑆𝑆 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡             (10) 

  

which are more convenient for computational purpose. 

Analysis of variance procedures rely on a distribution called 

the F-distribution, named in honor of Sir Ronald Fisher [1]. 

The F-statistic is  

𝐹𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =

𝑆𝑆 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑘 − 1
𝑆𝑆 𝐸𝑟𝑟𝑜𝑟

𝑁 − 𝑘

=
𝑀𝑆 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑀𝑆 𝐸𝑟𝑟𝑜𝑟

     (11) 

 

After all the necessary computations has been done, for 

brevity, the computations leading to the F-statistic are usually 

put in a tabular form and (Table 2) is called the analysis of 

variance table for one-way ANOVA model. 

 

Table 2: A typical example of ANOVA table 

Source of 

Variation 

degree of 

freedom (df) 

Sum of squares 

(SS) 

Mean Square 

(MS) 

F-statistic 

Factor 𝑘 − 1 𝑆𝑆 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑆𝑆 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑘 − 1
 𝐹 =

𝑀𝑆 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑀𝑆 𝐸𝑟𝑟𝑜𝑟

 

Error 𝑁 − 𝑘 𝑆𝑆 𝐸𝑟𝑟𝑜𝑟  𝑆𝑆 𝐸𝑟𝑟𝑜𝑟

𝑁 − 𝑘
 

 

Total 𝑁 − 1 𝑆𝑆 𝑇𝑜𝑡𝑎𝑙   

 

Given a pre-assigned significance level (𝛼), the critical value 

𝐹𝛼 with 𝑑𝑓 = (𝑘 − 1,𝑁 − 𝑘) is:  

 

𝐹 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝐹(𝛼, 𝑑𝑓 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 , 𝑑𝑓 𝑒𝑟𝑟𝑜𝑟)

= 𝐹(𝛼, 𝑘 − 1,𝑁 − 𝑘)                  (12) 

 

 To make relevant inference, the rule is: reject 𝐻0 if the value 

of the test statistic falls in the rejection region (i.e., F-

statistic>F-critical); otherwise, do not reject 𝐻0. When 𝑘 −

1 = 1, in other words, when  𝑘 = 2, the test-statistic equals 

the student t-statistic. 

 

After conducting an analysis of variance test, we might 

conclude that there is sufficient evidence to reject a claim of 

equal population means (𝐻0: 𝜇𝑖 = 𝜇𝑗  for all 𝑖 ≠  𝑗), but we 

cannot conclude from ANOVA that any particular mean is 

different from the others. Post-hoc (which in Latin means 

"after this") tests explore differences between multiple group 

means while controlling the experiment-wise error rate ([1], 

[2]). There are several procedures for identifying which 

means differ from the others. Yet, no consensus on which test 

is best, but some of the common tests are: Least Significant 

Difference (LSD) or Fisher Least Significant Difference 

(FLSD) test, Dunn-Bonferroni test, Tukey test (or Tukey 

honestly significant difference test), Duncan test, Student-

NewmanKeuls test (or SNK test), Scheffé test, Dunnett test 

etc. To use FLSD procedure, the theory compare the observed 

difference between each pair of mean to the corresponding 

LSD ([11], [12], [13]). The quantity LSD is given by  

 

𝐿𝑆𝐷 = 𝑡
(
𝛼
2
,𝑁−𝑘)

√𝑀𝑆𝐸 (
1

𝑛𝑖

+
1

𝑛𝑗

)       (13) 

 

where, 𝑁 = total number of observed values, 𝑘 = number of 

distinct group/treatment, 𝑀𝑆𝐸 =  Mean square error from 

ANOVA, and 𝑛𝑖, 𝑛𝑗  are the number of observation in ith 

group and jth group, respectively. In case where the groups 

sample sizes are equal, that is, 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑘 = 𝑛,  
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𝐿𝑆𝐷 = 𝑡
(
𝛼
2
,𝑁−𝑘)

√
2𝑀𝑆𝐸

𝑛
.                  (14) 

 

 If |�̅�𝑖 − �̅�𝑗| > 𝐿𝑆𝐷, we conclude that the pairs of means are 

significantly different. Otherwise, it is not. 

 

John Tukey’s honest significant difference method is to reject 

the equality of a pair of means based, not on the t-distribution, 

but the studentized range distribution ([11], [12], [14]). To 

implement Tukey’s method with a FER of 𝛼, reject 𝐻0: 𝜇𝑖 =

𝜇𝑗 if  

|�̅�𝑖 − �̅�𝑗| ≥
𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

√2
√𝑀𝑆𝐸 (

1

𝑛𝑖

+
1

𝑛𝑗

)                (15) 

 

where 𝑞𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  is the 𝛼 level critical value of the studentized 

range distribution. 

 

In this study, the objective is neither to study mathematical 

theory of ANOVA nor modify the conventional Fisher’s 

Snedecor distribution, but to demonstrate computation of 

necessary statistic and fitting of ANOVA model using R-

software. 

 

MANUAL COMPUTATION 

For the sake of clarity and ease of calculation, a data set with 

an inappropriately small sample size (an unbalanced design, 

i.e., unequal sample sizes in each group) is used as illustration 

to achieve the aforementioned objective. In addition, it is very 

important to know that R, as well as many other software 

programs, are not substitute for your brain. Therefore, 

researchers are strongly advised to figure out from time-to-

time whether R-commands do what they want. Hence, this 

justify the exploration of mathematical computation of 

ANOVA in this study. 

 

Example 2.1: The drug Scopolamine is often used as a 

sedative to induce sleep in patients. Medical researchers, [15] 

examined Scopolamine’s effect on memory for word-pair 

associates. A total of  28  human subjects were randomly 

divided into three treatment groups. Group 1 subjects were 

administered an injection of Scopolamine, group 2 subjects 

were given an injection of Glycopyrrolate (an active 

placebo), and group 3 subjects were not given any drug. Four 

hours later, subjects were tested on how many of the 

associated word pairs they could recall. The data on number 

of pairs recalled (based on summary information provided in 

the research article) are presented in Table (3) below.  

 

Table 3: Amount of word recalled 

Scopolamine 5 8 8 6 6 6 6 8 6 4 5 6 

Glycopyrrolate (Placebo) 8 10 12 10 9 7 9 10     

No drug 8 9 11 12 11 10 12 12     

 

Conduct the ANOVA F-test on the data. Is there sufficient 

evidence (at 𝛼 = 0.05) to conclude that the mean number of 

word pairs recalled differs among the three treatment groups? 

 

Solution: The model is a completely randomized design 

since classification is based on single factor (drug). The 

treatment is drug and response variable is the number of word 

pairs recalled. The hypotheses to be tested are:  

 

𝐻0: 𝜇1 = 𝜇2 = 𝜇3     𝑣𝑒𝑟𝑠𝑢𝑠     𝐻1: 𝜇1 ≠ 𝜇2

≠ 𝜇3     𝑓𝑜𝑟  𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑎  𝑝𝑎𝑖𝑟. 

 

Table 4 presents a summary statistics of Table 3 indicating 

the number of times each treatment was replicated, sum and 

sum of squares of observations in each group.  

 

Table 4: Summary statistics of amount of word recalled 

 Drugs  

Statistic Scopolamine Active placebo No drug Total 

𝑛𝑖 12 8 8 28 

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗  

74 75 85 

∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗 = 234 

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗
2  

474 719 919 

∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗
2 = 2112 

 

First and foremost, the correction factor is  

 

  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛  𝑓𝑎𝑐𝑡𝑜𝑟 =
( ∑

𝑘

𝑖=1
∑

𝑛𝑖

𝑗=1
𝑦𝑖𝑗)

2

𝑁
=

(234)2

28
=

54756

28
= 1955.571 
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Sum of squares are: 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑

𝑘

𝑖=1

∑

𝑛𝑖

𝑗=1

𝑦𝑖𝑗
2 −  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛  𝑓𝑎𝑐𝑡𝑜𝑟 

= 2112 − 1955.571 = 156.429 

𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = ∑

𝑘

𝑖=1

[
 
 
 
 ( ∑

𝑛𝑖

𝑗=1
𝑦𝑖𝑗)

2

𝑛𝑖

]
 
 
 
 

−  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛  𝑓𝑎𝑐𝑡𝑜𝑟                           

 =
(74)2

12
+

(75)2

8
+

(85)2

8
− 1955.571 =

107.0123   

 𝑆𝑆𝐸𝑟𝑟𝑜𝑟 = 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑆𝑆𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =

156.429 − 107.0123 = 49.4167  

  

More often than not, we summarize the computation in 

tabular form as shown in Table 5. 

 

Table 5: ANOVA table for effect of drug on amount of word recalled 

Source of  

Variation 

degree of freedom 

(df) 

Sum of squares (SS) Mean Square 

(MS) 

F-statistic 

Drug k-1=3-1=2 107.0123 53.50615 27.06886 

Error N-k=28-3=25 49.4167 1.976668  

Total N-1=28-1=27 156.429   

 

Due to the abridge nature of the adopted statistical table, the 

critical-value 𝐹(0.05, 𝑑𝑓𝑑𝑟𝑢𝑔, 𝑑𝑓𝑒𝑟𝑟𝑜𝑟) = 𝐹0.05,2,25  is not 

directly obtained. Thus, we use two-points Langrangian 

interpolation formula to obtain the approximated value as 

follows: From standard statistical table of F-distribution, 

𝐹(0.05,2,24) = 3.40  and 𝐹(0.05,2,30) = 3.32 . By 

Langrangian interpolation,  

 

 𝑓(𝑥) ≊
𝑥−𝑥1

𝑥0−𝑥1
𝑓(𝑥0) +

𝑥−𝑥0

𝑥1−𝑥0
𝑓(𝑥1) =

(𝑥−30)

24−30
(3.40) +

(𝑥−24)

30−24
(3.32) 

 

Putting 𝑥 = 25 in the preceding equation gives  

 

 𝑓(25) ≊
1

6
[−3.40(25 − 30) + 3.32(25 − 24)] =

3.386667 

Therefore,  

 

𝐹 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝐹(𝛼, 𝑑𝑓 𝑑𝑟𝑢𝑔, 𝑑𝑓 𝑒𝑟𝑟𝑜𝑟) = 𝐹(0.05,2,25)

= 3.386667 

 

 
Figure 1: F-curve for 𝜈1 = 2 and 𝜈2 = 25 at 𝛼 = 5% 

 

Decision rule: Since 𝐹𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 27.06886 > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =

3.386667 and consequently fall in the critical region (see 

Figure 1), then the study reject 𝐻0. Hence, data suggest that 

the population mean word-pair recalled differ across drug 

groups for at least a pair. 

 

At the first step, we reject the hypothesis that the population 

mean are equal. At the second step, we compare all pairs of 

drugs at the 5% level to determine which of the group means 

differ from each other. Using FLSD as a basis for 

comparison, there is a significant difference between pair 𝑖 

and 𝑗 if  

|�̅�𝑖 − �̅�𝑗| ≥  𝑡
(
𝛼

2
,𝑁−𝑘)

√𝑀𝑆𝐸 (
1

𝑛𝑖
+

1

𝑛𝑗
) = 𝐹𝐿𝑆𝐷   (16) 

 

Otherwise, it is not. The t-critical-value for a two-sided test 

based on 25 df (df of Error) is:  

 

𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑡
(
𝛼
2
,𝑁−𝑘)

= 𝑡
(
0.05
2

,28−3)
= 𝑡(0.025,25) = 2.060 

 

So, the FLSD for No-drug and Scopolamine comparison for 

example is:  

 

𝐹𝐿𝑆𝐷 = 𝑡
(
𝛼
2
,𝑁−𝑘)

√𝑀𝑆𝐸 (
1

𝑛𝑖

+
1

𝑛𝑗

)

= 2.060√1.976668 (
1

8
+

1

12
)

= 1.321945 

 

Any two sample means that differ by at least 𝐹𝐿𝑆𝐷𝑖𝑗  (LSD of 

pair 𝑖 and 𝑗) in magnitude are significantly different at the 

5% level. An easy way to compare all pairs of drugs is to 

order the samples by their sample means. The samples can 

then be grouped easily, noting that two drugs are in the same 

group (not significantly different) if the absolute difference 
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between their sample means is smaller than the FLSD/LSD. 

The treatment group means is:  

 

Table 6: The mean for each drug group 

Drug groups Mean 

No drug 10.625000 

Placebo 9.375000 

Scopolamine 6.166667 

 

 There are (
𝑘
2
) = (

3
2
) = 3  possible comparisons of two 

drugs. From this table, you can visually assess which sample 

means differ by at least their corresponding LSD, and which 

ones do not. Therefore, multiple comparisons for all pairwise 

comparisons among levels of drugs using FLSD is succinctly 

illustrates in the Table 7 below.  

 

Table 7: Comparison of absolute difference in means with LSD 

Comparison |�̅�𝒊 − �̅�𝒋| LSD Absolute difference in means 

exceeds LSD? 

No drug and Placebo 1.25 1.448118 No 

No-drug and Scopolamine 4.458333 1.321945 Yes 

Placebo and Scopolamine 3.208333 1.321945 Yes 

The groupings imply that we have sufficient evidence to 

conclude that population means No drug and Scopolamine, 

Glycopyrrolate (active placebo) and Scopolamine are 

significantly different while No drug and Glycopyrrolate 

(active placebo) are not significantly different. 

 

COMPUTATION WITH R-SOFTWARE 

What is, and Why R? 

One may ask a question: What is, and Why R? Answer to 

this question is simple and direct. R is a computer language 

initially written by Ross Ihaka and Robert Gentleman in the 

mid-1990s specifically for statistical computing [16]. R is 

excellent software to use while first learning statistics, it 

provides a coherent, flexible system for data analysis that can 

be extended as needed. The open-source nature of R ensures 

its availability. The R home page (http://www.r-project.org/) 

contains more information about R and instructions for 

downloading a copy. A large and growing fraction of the 

world’s quantitative methodologists and statisticians are 

moving to R, and the base of programs available for R is 

quickly surpassing all alternatives ([17], [18]). In addition to 

built-in functions, R is a complete programming language, 

which allows you to design new functions to suit your needs. 

Finally, despite its reputation, R is as suitable for students 

learning statistics as it is for researchers using statistics. In 

this study, we use in-built R functions in conjuction with 

extended R-packages "vioplot", "nortest", "car", "plyr", 

"ggplot2" developed by [13], [17], [19], [20], [21], [22], 

respectively. 

 

Data Entry to R-environment 

The study used information from Table 3 to illuminate how 

ANOVA can be carried out with R-software. First and 

foremost, reading the data into R-environment using list-

wise approach as shown below:   

 

#### Data entry using "listing format"  

y1 <- c(5,8,8,6,6,6,6,8,6,4,5,6) # Group 1: Scopolamine  

y2 <- c(8,10,12,10,9,7,9,10) #Group 2: Glycopyrrolate 

(active placebo)  

y3 <- c(8,9,11,12,11,10,12,12) # Group 3: No drug  

amount <- c(y1, y2, y3) # combined data  

drugs <-c(rep("Scopolamine",length(y1)), 

rep("Placebo",length(y2)), rep("No drug", length(y3)))  

drugs.long <- data.frame(amount, drugs) View(drugs.long)  

 

It is pertinent to understand that in real work with data using 

R, one would generally not import data into R by explicit 

listings in an R-script file as done here. This only works for 

very small data set. The more realistic approach is to import 

the data from somewhere else, e.g. from a spread sheet 

program such as Microsoft Excel. Note: In R, #  is for 

comment. 

 

Descriptive Statistics 

Researchers’ may be interested to have the summary statistics 

(the mean, the standard deviation, the sample size 𝑛 or the 

number of times each factor/treatment is being replicated, 

standard error, coefficient of variation, confidence intervals) 

for all the set of factor or groups (drug-type, in this case).   

 

library(plyr)## download this from R package repository  

drug.summary <- ddply(drugs.long, "drugs", 

 function(X){  

data.frame(m = mean(X$amount),  

s = sd(X$amount),  

n = length(X$amount) )}) 

drug.summary$se <- 

drug.summary$s/sqrt(drug.summary$n)# standard errors 

drug.summary$cv<- 

(drug.summary$se/drug.summary$m)*100  

drug.summary$ci.l <- drug.summary$m - qt(1-.05/2, 

df=drug.summary$n-1) * drug.summary$se  

drug.summary$ci.u <- drug.summary$m + qt(1-.05/2, 

df=drug.summary$n-1) * drug.summary$se  

drug.summary  
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This helps obtain descriptive statistics as shown in the Table 

8 below. 

 

Table 8: Descriptive statistics of the data by treatment group 

 drugs m s n se cv ci. l ci. u 

1 No drug 10.625 1.505941 8 0.5324304 5.011110 9.3660 11.883998 

2 Placebo  9.375 1.505941 8 0.5324304  5.679258 8.1160 10.633998  

3 Scopolamine  6.167 1.267304 12 0.3658393 5.932529 5.3615 6.971874  

 

In addition, boxplot of the distributions of the amount of 

word-pair recalled for each of the drug classification/type 

(individual points, mean and CI) is created using the ggplot, 

Hmisc packages as shown below:   

 

library(ggplot2)## download both from R package repository  

p <- ggplot(drugs.long, aes(x = drugs, y = amount))  

p <- p + geom_hline(yintercept = mean(drugs.long$amount), 

colour = "black", linetype = "dashed", size = 0.3, alpha = 

0.5)# boxplot,  

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)# points for 

observed data  

p <- p + geom_point(position = position_jitter(w = 0.05, h = 

0), alpha = 0.5)  

p <- p + stat_summary(fun = mean, geom = "point", shape = 

18, size = 6,  

aes(colour = drugs), alpha = 0.8)# confidence limits based on 

normal distribution  

p <- p + stat_summary(fun.data = "mean_cl_normal", geom 

= "errorbar", width = .2, aes(colour=drugs), alpha = 0.8)# 

confidence limits based on normal distribution  

p <- p + labs(title = "Word paired-associate memory task") + 

ylab("amount of word recalled")  

print(p)  

which gives  

 
Figure 2: Combined boxplot of the data by drug-type (a) 

  

 

A simpler alternative code for the boxplot is:   

 

library(ggplot2)## download both from R package repository  

ggplot(drugs.long, aes(x =drugs, y = amount)) +  

geom_boxplot(fill = "grey80", colour = "blue") +  

scale_x_discrete()+xlab("Treatment Group (i.e varieties of 

drug)") +  

ylab("amount of word recalled")+  

labs(title="Combined boxplot of the data by drug-type")  

  

to produce  

 
Figure 3: Combined boxplot of the data by drug-type (b) 

 

Interpretation: From Figures 2-3, initial inspection of the 

data suggests that there are differences in the recalling rate 

for the two groups Scopolamine and No drug but it is not so 

clear to conclude for No drug and Glycopyrrolate(active 

placebo). Except for the mild outlier in the Glycopyrrolate 

and Scopolamine sample, the observed distributions are fairly 

symmetric, with similar spreads. The small deviations we are 

seeing here are not likely to impact our conclusions. We 

expect the standard ANOVA to perform well. 

Prior to fitting ANOVA model, the entire body of classical 

statistical inference techniques is based on fairly specific 

assumptions regarding the nature of the underlying 

population distribution: usually its form and some parameter 

values must be stated. Given the right set of assumptions, 



“Analysis of Variance: The Fundamental Concepts and Application with R” 

2415 Adeniran, A. T.1, IJMCR Volume 09 Issue 10 October 2021 

 

certain test statistics can be developed using mathematics 

which is frequently elegant and beautiful. The derived 

distribution theory is qualified by certain prerequisite 

conditions, and therefore all conclusions reached using these 

techniques are exactly valid only so as the assumptions 

themselves can be substantiated ([11], [14], [23]). Similarly, 

first, the basic parametric assumptions of ANOVA is that the 

effects are additive. Secondly, the experimental errors are 

randomly, normally and independently distributed about zero 

mean and a common variance, 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2 = 𝜎2 . 

Mathematically, 𝜀𝑖𝑗 ∼  𝑁𝐼𝐷(0, 𝜎2) . This assumption of 

common variance is popularly known in applied statistics as 

homoscedasticity assumption. 

 

Test of Normality of Error Assumption 

There is more than one way to skin a cat, as the saying goes, 

and more than one way to test the normality of error 

assumption. In this study, we shall embrace two distinct 

approaches: Exploratory Data Analysis (EDA) or graphical 

approach and Inference-based techniques (Shapiro-Wilk 

[24], Anderson-Darling, and Cramer-von Mises normality 

test). First and foremost, for data visualization approach, use 

the R-code below:   

  

library(vioplot) ## download this package from R package 

repository  

library(car) ## download this package from R package 

repository  

fit.d <- aov(amount ~ drugs, data = drugs.long)  

win.graph(width=6, height=7, pointsize=6) # this is optional 

as it is used to re-size the graph 

par(mfrow=c(2,2))  

hist(fit.d$residuals, freq = FALSE, breaks = 20)# Histogram 

with kernel density curve points(density(fit.d$residuals), 

drugs = "l")  

rug(fit.d$residuals)  

vioplot(fit.d$residuals, horizontal=TRUE, col="gray")# 

violin plot boxplot(fit.d$residuals, horizontal=TRUE)# 

boxplot  

qqPlot(fit.d$residuals, las = 1, lwd = 1, main="QQ Plot")# 

QQ plot  

 

This produce the following figures:  

 
Figure 4: Inspection of basic parametric assumptions of ANOVA 

 

  

To elucidate more on the first graph in the matrix of Figure 

(4) above, we write:   

 

win.graph(width=7, height=6, pointsize=5) # optional: is 

used to re-size the graph hist(residuals(fit.d), freq=FALSE, 
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col="grey", main="normal curve over histogram", 

ylim=c(0.00,0.35))  

curve(dnorm(x, mean=mean(residuals(fit.d)), 

sd=sd(residuals(fit.d))), add=TRUE, col="red")  

lines(density(residuals(fit.d)), col="blue", lwd=2)  

legend("topright", legend=c("normal density","empirical 

density"), fill=c("red","blue"), col=c("red", "blue"))  

 

 to get  

 

 
Figure 5: Visualization of normality of error assumption with histogram 

 

The Figure 4 and 5 show a visual inspection of the nature of 

normality. The histogram, violin plot, box plot and QQ plot 

are all look pretty normal which indicate that there is no 

strong evidence against normality. In short, any distribution 

that resembles a bell-shaped curve will be "normal enough" 

to pass normality tests, especially if the sample size is 

adequate. There is no fixed definition of "large enough", but 

a rule of thumb is 𝑁 ≥ 30 ([1], [2], [25]). 

For the inferential statistical techniques, we set hypothesis 

𝐻0: 𝜀𝑖𝑗 ∼  𝑁(0, 𝜎2)  against 𝐻1:  𝐻0  is false and employ 

Shapiro-wilk test for normality using the R-code:  

 

shapiro.test(fit.d$residuals) ## Shapiro-Wilk normality test  

  

and we have this result:  

 

Shapiro-Wilk normality test  

 

data: fit.f$residuals  

W = 0.97096,   p-value = 0.6067  

 

Interpretation: Result of Figure 4–5 is supported by (or 

conform with) the results of Shapiro-Wilk test with test-

statistic 𝑊 = 0.97096  and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.6067  indicating 

the test is not significant. That is, no indication that normality 

is violated. Hence, we do not reject the null hypothesis (𝐻𝑜) 

which state that 𝐻𝑜 : errors are approximately normally 

distributed against alternative hypothesis 𝐻1: error terms are 

not normally distributed. Other alternative tests are 

Anderson-Darling and Cramer-von Mises normality test 

presented as follows:   

  

library(nortest) ## download this package from R package 

repository ad.test(fit.d$residuals) ## Anderson-Darling 

Normality Test  

  

which gives  

  

Anderson-Darling normality test  

 

data: fit.f$residuals A = 0.33208, p-value = 0.4932  

 

and   

  

cvm.test(fit.d$residuals)## Cramer-von Mises normality test  

  

with results output as  

  

Cramer-von Mises normality test  

 

data: fit.f$residuals  

W = 0.057227, p-value = 0.399 
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Interpretation of Anderson-Darling normality and Cramer-

von Mises normality test results follow same as in Shapiro-

Wilk normality test. Suppose there is violations of normality, 

in the context of one-way ANOVA, the easiest solution is 

probably to switch to a non-parametric test (i.e., one that 

doesn’t rely on any particular assumption about the kind of 

distribution involved) known as Kruskal-Wallis rank sum 

test. 

 

Homogeneity of Variance Assumption 

Three commonly invoked tests of homogeneity of variance 

assumption: Bartlett, Fligner-Killeen and Levene [25] are 

adopted in the study.   

 

bartlett.test(amount ~ drugs, data = drugs.long)## Bartlett test 

of homogeneity of variances  

 

and this gives: 

Bartlett test of homogeneity of variances data: amount by 

drugs  

Bartlett's K-squared = 0.34085, df = 2, p-value =0.8433  

Alternatively, we use Fligner-Killeen test of homogeneity of 

variances with the aid of R-code presented as:   

 

fligner.test(amount ~ drugs, data = drugs.long)  

  

which give result as:   

Fligner-Killeen test of homogeneity of variances  

data: amount by drugs  

Fligner-Killeen:med chi-squared = 1.086, df = 2, p-value = 

0.581 

 

 Interpretation: Formal tests of equal population variances 

are far from significant. The p-values for Bartlett’s test and 

Fligner-Killeen homogeneity of variances test are greater 

than 0.05 . In case of Bartlett’s test, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =

0.8433 > 0.05. So, we fail to reject the null hypothesis that 

the population variances are equal. This result is not 

surprising given how close the sample standard deviations 

(evidenced from Table 8) are to each other. Thus, the standard 

ANOVA appears to be appropriate here. For Levene-test, the 

R-code is as follows:   

 

library(car) ## download this package from R package 

repository  

leveneTest(amount ~ drugs, data = drugs.long)  

  

The result is  

  

Levene's Test for Homogeneity of Variance (center = 

median)  

 

Df     F value         Pr(>F)  

group     2        0.3253         0.7253  

25 

 

Interpretation: The result in this case is Levene’s Test. 

𝑇𝑒𝑠𝑡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 0.3253 , 𝑑𝑓 = 2 , 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.7253 >

0.05, indicating that the test is not significant. That is, there 

is no sufficient evidence to reject the null hypothesis which 

states that 𝐻𝑜: variances assumed equal versus 𝐻1: variances 

assumed not equal. Thus, Levene’s test conforms to Bartlett’s 

and Flinger’s test. 

 

Test of Independence of error components 

This assumption is not only limited to ANOVA, rather, a 

general assumption of parametric analysis is that the value of 

each observation for each subject is independent of (i.e., not 

related to or influenced by) the value of any other 

observation. For independent groups designs, this issue is 

addressed with random sampling, random assignment to 

groups, and experimental control of extraneous variables. 

This assumption is an inherent concern for repeated measures 

designs, in which an assumption of sphericity comes into 

play. When subjects are exposed to all levels of an 

independent variable (e.g., all treatments), it is conceivable 

that the effects of a treatment can persist and affect the 

response to subsequent treatments. For example, if a 

treatment effect for one level has a long half-time (analogous 

to a drug effect) and there is inadequate "wash out" time 

between exposures to different levels (treatments), there will 

be a carryover effect. A well designed and executed cross-

over experimental design can mitigate carryover effects. 

Mauchly’s test of sphericity is commonly employed to test 

the assumption of independence in repeated measures 

designs. If the Mauchly test is statistically significant, 

corrections to the F-statistic calculation are warranted. The 

two most commonly used correction methods, the 

Greenhouse-Geisser and Huynh-Feldt, are not discussed here. 

  

drug.mod = data.frame(Fitted = fitted(lm(amount~drugs, 

data=drugs.long)),  

Residuals = resid(lm(amount~drugs, data=drugs.long)), 

Treatment = drugs.long$drugs)  

library(ggplot2) # download this package from R package 

repository  

ggplot(drug.mod, aes(Fitted, Residuals, 

colour=Treatment))+geom_point()  
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Figure 6: Diagnostic plot for linearity and independence of 

error components 

 

Interpretation: From Figure 6, we can see that there is no 

major problem with the diagnostic plot but some evidence of 

different variability in the spread of the residuals for the three 

treatment groups. Moreover, it seems that this increase occurs 

in a linear fashion.  

 

In a nutshell, all the assumptions can be investigated in a 

single computation by plotting the model residuals against the 

fitted values. First, create a data frame with the fitted values, 

residuals and treatment identifiers:   

 

win.graph(width=7, height=7, pointsize =6) ## optional: used 

to re-size the graph par(mfrow=c(2,2)) ## to put the figure in 

matrix form of dimension 2 by 2 plot(lm(amount~drugs, 

data=drugs.long))

 

 
Figure 7: Checking model assumption and adequacy 

  

Interpretation of the Plots in Figure 7: 

• Residuals versus Fitted: This checks for a pattern in the 

residuals, and ideally should show similar scatter for each 

condition. Here, no worrying effect, there is 

homoscedasticity. There is a worrying effect if there are 

larger residuals for larger fitted values. This is called 

heteroscedasticity meaning that not only is variance in the 

response not equal across groups, but that the variance has 

some specific relationship with the size of the response. In 

fact, you could see this in the original boxplots. This is also 

separately illustrated in the Diagnostic plot in Figure 6 below. 

 

 • Normal QQ: This looks for normality of the residuals 

assumption. If they are not normal, the normality assumption 

of ANOVA is potentially violated. Here, normality is 

achieved. The result which corroborates Shapiro-Wilk 
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normality test and Histogram plot. 

 

• Scale-Location: This is like the first plot, but now to 

specifically test if the residuals increase with the fitted values, 

which they do not. Hence, no worrying effect.  

     

• Constant Leverage:  This gives an idea of which levels of 

the factor (treatments) are best fitted. Here, is Scopolamine.  

How far is the points to the centre of the treatment factor. 

From Figure 7d, to what extent are the points 15, 18, 21 

actually influence the ANOVA model. 

  

Remarks: Theoretically speaking, whenever any of these 

assumptions is not met, the ANOVA technique cannot be 

employed to yield valid inferences. However, in some 

situations, departure from one of these assumptions does not 

markedly affect conclusions based on F-test. For example, 

looking for exact normality is a bit of a red herring because, 

we also have the "Central Limit Theorem (CLT)" that says 

that if the errors are not normal but still identically and 

independently distributed then the distribution of the 

coefficients will approach normality as the sample size 

increases ([2], [24], [27]). This is what make statistics doable 

because no real data set entered into the computer is perfectly 

normal. The more important question is, are the residuals 

"normal enough"? for which there is no a definitive test 

(experience and plots help). 

According to [26] and [28], ANOVA is robust even when the 

homogeneity assumption is not fulfilled, as long as the 

sample sizes are roughly equal or the deviation is only of a 

moderate level. As a rule of thumb, if the largest std.dev <

2 × the smallest std.dev) then we need not to be concerned 

about this assumption. 

 

ANOVA Model 

Finally, we run ANOVA model to assess whether there are 

differences between pair(s) of drugs using the R-code:   

 

fit.d <- aov(amount ~ drugs, data = drugs.long)  

summary(fit.d)  

 

The following results are generated  

 

Df     Sum Sq    Mean Sq      F value         Pr(>F)  

Drugs       2      107.01        53.51           27.07     5.55e-07 ***  

Residuals 25                      49.42          1.98  

---  

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 >  

  

Interpretation: Theoretically, the rule is: reject 𝐻0  if 𝑃 −

𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 ; otherwise, do not reject. From the model 

summary output, the 𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 5.55𝑒 − 07 < 𝛼 = 0.05. 

We therefore, reject 𝐻0 at any of the usual test levels (such 

as, 0.05 or 0.01). The data suggest that there is sufficient 

evidence to conclude that the population mean of word 

recalled differ across drugs in some way. This is desirable 

since it is expected that the Scopolamine affect memory. 

 

The function confint is used to calculate confidence intervals 

on the treatment parameters, by default 95%  confidence 

intervals:   

 

confint(fit.d, level=0.95)  

 

and we have the results as  

2.5%                    97.5% 

(Intercept)                9.601255              11.6487447  

drugsPlacebo           -2.697794             0.1977936  

drugsScopolamine     -5.779982         -3.1366847  

 

Post-Hoc Analysis 

We shall use Fisher’s Least Significance Difference (FLSD), 

Bonferroni and Tukey test to identify between which pair the 

difference is significant. 

 

Fisher’s Least Significance Difference (FLSD) 

One way to get Fisher comparisons in R uses pairwise.t.test() 

with p.adjust.method. The resulting summary of the 

multiple comparisons is in terms of p-values for all pairwise 

two-sample t-tests using the pooled standard deviation from 

the ANOVA, pool.sd=TRUE. This output can be used to 

generate groupings. The treatment group means is obtained 

using   

  

combined_mean<-tapply(drugs.long$amount, 

drugs.long$drugs, mean) combined_mean  

  

to get  

  

No drug                 Placebo                   Scopolamine  

10.625000           9.375000                      6.166667  

 

Therefore, multiple comparisons for all pairwise comparisons 

among levels of drugs using FLSD in R is:   

 

pairwise.t.test(drugs.long$amount, drugs.long$drugs, 

pool.sd = TRUE, p.adjust.method = "none")  

 

This generates the following results:  

 

Pairwise comparisons using t tests with pooled SD  

 

data: drugs.long$amount and drugs.long$drugs 

No drug            Placebo  

Placebo                          0.088                 -  

Scopolamine                  2.8e-07          3.7e-05  

P value adjustment method: none  

  

Interpretation: The output above indicate that there is no 

significance difference between pair No drug-placebo since 
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absolute difference in means does not exceed FLSD and 𝑝 −

𝑣𝑎𝑙𝑢𝑒 > 0.05 but there is significance difference between 

pairs: No drug-scopolamine and placebo-scopolamine since 

their absolute difference in means exceed FLSD and 𝑝 −

𝑣𝑎𝑙𝑢𝑒𝑠 < 0.05. We judge the significant based on their p-

value being > or < 𝛼 (preassigned significance level). 

 

Bonferroni Test 

Assuming all comparisons are of interest, you can implement 

the Bonferroni adjustment in R by specifying 

p.adjust.method= bonf. A by-product of the Bonferroni 

adjustment is that we have at least 100(1 − 𝛼)% confidence 

that all pairwise t-test statement hold simultaneously. 

Bonferroni 95%  individual p-values for all pairwise 

comparisons among drugs is obtained by   

  

pairwise.t.test(drugs.long$amount, drugs.long$drugs, 

pool.sd = TRUE, p.adjust.method = "bonf")  

  

This produce  

  

Pairwise comparisons using t tests with pooled SD  

 

data: drugs.long$amount and drugs.long$drugs 

No drug                  Placebo  

Placebo                    0.26263                   -  

Scopolamine              8.3e-07              0.00011  

P value adjustment method: bonferroni 

  

Interpretation: There is significance difference between No 

drug-scopolamine and placebo-scopolamine while the pair 

No.drug-placebo is not significant. The criterion is the same 

as in Fisher’ least significance difference. 

 

Tukey Test 

A commonly-used alternative is Tukey’s honest significant 

difference method (HSD). Procedure for post-hoc analysis 

using Tukey test is as follow:   

 

fit.d<-aov(amount~drugs, data=drugs.long)# this has been 

previously defined TukeyHSD(x=fit.d, 'drugs', 

conf.level=0.95)  

 

or in a more simpler form as   

 

TukeyHSD(fit.d)  

 

In either case, results of the Tukey test is:  

 

Tukey multiple comparisons of means  

95% family-wise confidence level 

 

Fit: aov(formula = amount ~ drugs, data = drugs.long)  

 

$drugs  

 diff   lwr   upr                        p adj 

Placebo-No 

drug             

-

1.25000

0 

-

3.00097

9 

0.50097

86        

0.19738

18 

Scopolamin

e-No drug      

-4.4583 

33 

-6.0567 

51 

-2.859 

9159      

0.00000

08 

Scopolamin

e-Placebo        

-3.2083 

33 

4.80675

1       

-1.6099 

159      

0.00010

73 

 

Interpretation: John Tukey’s honest significant difference 

method is to reject the equality of a pair of means based, not 

on the t-distribution, but the studentized range distribution. 

This output indicates that the differences between 

Scopolamine-No drug and Scopolamine-Placebo are 

significant, while Placebo-No drug is not significant. An 

easier way to interpret this output is visualizing the 

confidence intervals for the mean differences. That is, one can 

see that Scopolamine-No drug differ significantly. How? 

because the interval does not contain 0 . The confidence 

intervals for Placebo-No drug contain 0. Thus, it appears that 

those pairs do not differ among themselves. For the drug data, 

the groupings based on Fisher’s LSD, Bonferroni and Tukey 

comparisons are identical. This is coincident and not 

conventional. 

Readers are encourage to consult [14] to learn about False 

Discovery Rate (FDR): expected proportion of false 

discoveries amongst the rejected hypotheses. The method 

FDR by Benjamini, Hochberg, and Yekutieli is a less popular, 

less stringent but a more statistically powerful test. By 

statistical power, we mean, ability of an inferential test to 

detect a difference that actually exists, i.e., a true positive. 

 

CONCLUSION 

In this study, concept of ANOVA is expounded.  A real-life 

survey data was analysed using manual (theoretical formulas) 

and R-software, and results from the two approaches are well-

agree in terms of magnitude and interpretation. Hence, this 

study is able to achieve its set objective. Therefore, if all the 

necessary details (as elucidated in the methodological 

framework of this paper) are put into consideration, future 

researchers should worry-less on theoretical or manual 

method and employed the statistical tools (R-codes) 

explicated in this study for sake of computational advantage. 

 

SIGNIFICANCE STATEMENT  

This material should be of pedagogical interest to researchers 

whose data layout follows analysis of variance and intends to 

use R. In addition, it can serve as an excellent teaching 

reference in computing classes where understanding of some 

elementary rudiment of statistical inference, introduction to 

R-environment and basic R-code are the only background 

requirements. The procedures and results discussions are 

straightforward, comprehensive and lucidly presented. 
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