
Gateways 2021, October 19-21, 2021

Leveraging Traits for Highly Interactive

Computational Tools in Jupyter

Nicole Brewer

Research Computing

Purdue University

West Lafayette, USA

brewer36@purdue.edu

ABSTRACT

We describe our experience designing and implementing a
highly interactive, online computational tool in Jupyter
Notebooks. The lessons learned and subsequent design choices
can be applied to similar tools in various domains. This tool,
Superpower [1], is a graphical interface for a set of functions
designed to help users to perform power analysis on their study
design in psychology. The supported statistical functions are
computationally non-trivial in that each power analysis
function requires many multidimensional parameters that
unavoidably make use of lists or numpy arrays. It is also highly
interactive such that user manipulation of any single value or
element may require a cascade of updates to others.

We chose an MVC design pattern to separate
computational logic from the view. We used ipywidgets for
view components such as selection boxes and numeric
parameter settings, as it is the de facto standard for interactive
components in Jupyter. Additionally, we used Interactive
Matplotlib (ipympl) to create features such as a click and drag
bar chart. ipywidgets is built on a traits library called traitlets
[2]. Traits are object attributes that are designed to create and
send a notification upon an event or a change in value.
Correspondingly, event listeners are functions or methods
designed to respond to these notifications. For example, the
IntText widget is frequently used to manipulate the number of
subjects in the user interface (UI). An observe function can be
used to update the corresponding value in the model upon
change of this number in the view (UI).

However, traitlets proved insufficient for our use case due
to the lack of support for “container traits”. Container traits are
important in our models because of the need to monitor
changes in multi-dimensional lists and arrays. For example, a
grid of IntText and FloatText widgets were used to represent a
set of related multidimensional parameters represented in the

model as numpy arrays. Changing any value in this grid would
require updates to others. Therefore, it was imperative to use
lists observable at the item level. Consequently, we used
Enthought’s traits library [3] to implement our models; traitlets
is, in fact, a lightweight implementation of traits that is missing
support for “container traits (list, dict, tuple) that can trigger
notification if their contents change” [2].

traits is syntactically similar to traitlets, with a few
additional complexities that may make it more difficult to learn
for someone not already familiar with a traits library; for
example, traits does not raise errors that occur in observe
functions, making debugging more difficult. Furthermore,
unlike traitlets, traits does not support “links” that simplify the
setup of bi-directional mapping between the view and the
model. Traditional ipywidgets is likely to be sufficient for tools
that do not have multilevel data structures or heavily interactive
components. For tools with these complexities, we recommend
the use of the traits to monitor changes in a model class. Our
design choices can serve as a guide for developers looking to
address complex interactivity in a Jupyter-based gateway tool.

Keywords—gateways, traits, Jupyter Notebook, interactive tools

REFERENCES

[1] Nicole Brewer; Rob Campbell; Jaewoo Shin; Lan Zhao; Erin P Hennes;
Sean P Lane (2021), "SuperPower,"
https://mygeohub.org/resources/superpower

[2] M. Dickinson, I. Tziakos, K. Choi, C. Webster (2021) traits [Software]
Enthough, Inc. Austin, TX. Available:
https://github.com/enthought/traits

[3] M. Bussonnier. (2021) Traitlets [Software]. The IPython Development
Team Available:
https://github.com/ipython/traitlets/blob/main/traitlets/traitlets.py

https://github.com/enthought/traits
https://github.com/ipython/traitlets/blob/main/traitlets/traitlets.py

	Abstract
	References

