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Stellar structure is sensitive to convective envelopes
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Fig. 11.2 A lgT –lgP diagram for illustrating typical properties of envelope solutions as discussed
in the text (see there for details)

C > 0: Since B > 0, (11.25) yields

T 8:5

BP 2
> 1: (11.28)

Comparing this with (11.26) and (11.27), we see that in Fig. 11.2, the solutions
with C > 0 lie above that with C D 0 and that they have a smaller slope, r <
2=8:5. The layers are therefore all the more radiative. For P2 ! C equation (11.25)
becomes T 8:5 " BC = constant. This shows that towards the surface these solutions
tend to a constant (and rather high) T: Three of them (for 3 different values C1 <
C2 < C3 of C/ are illustrated by solid lines on the left of Fig. 11.2. On each line,
one point corresponds to the photosphere with T D Teff. Obviously we will find
such radiative-envelope solutions below the photospheres with Teff larger than some
critical value (close to 104 K). Towards the interior, P will finally increase so far
that P2 # C in (11.25) and the solution approximates closely that for C = 0. Since
all solutions with C > 0 asymptotically approach the solution C D 0, the precise
starting values at the surface do not greatly influence the solution in the deep interior.
C < 0: Equation (11.25) now gives

T 8:5

BP 2
< 1; (11.29)
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The mixing length theory (MLT) requires calibration

ℓm

MLT parameter: 
𝛼MLT = 𝓁m/HP
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Standard approach: calibration of  on the SunαMLT

• Possible because mass, radius, and age of the Sun 
are independently known


• Use the same value of  to model other starsαMLT

Fig. 1. Panel (a): The effect of the mixing length parameter on the evolution of a
1M! star. All models have Y0 = 0.278. Panel (b): The effect of the initial helium
abundance Y0 on the evolution of a 1M! star. All models have α = 2.13. In both
panels the intersection of the dotted lines mark the position of the Sun. The star
on each curve marks 4.57 Gyr, the current age of the Sun.

are used. The parameters α and Y0 (and sometime Z0) are adjusted to match
the current solar radius and luminosity (and surface Z/X). No other input
is adjusted to get a better agreement with the Sun. Thus a standard solar
model does not have any free parameters. By comparing standard solar models
constructed with different input physics with the Sun we can put constraints
on the input physics. One can use helioseismology to test whether or not the
structure of the model agrees with that of the Sun. The model in Fig. 1 that
satisfies current solar constraints on luminosity, radius and age is a standard
solar model.

A solar model turns out to be quite simple. Like all stars of similar (and
lower) masses, it has an outer convection zone and an inner radiative zone.
In the case of the Sun, the convection zone occupies the outer 30% by radius.
The outer convection zone is a result of large opacities caused by relatively
low temperatures. The temperature gradient required to transport energy by
radiation in this region exceeds the adiabatic temperature gradient resulting
in a convectively unstable layer. Convective eddies ensure that the convection
zone is chemically homogeneous. In models that incorporate the diffusion and
gravitational settling of helium and heavy-elements, the abundances of these
elements build up below the convection-zone base.

2.4 Sources of uncertainty in standard solar models

Standard solar models constructed by different groups are usually not identi-
cal, and are only as good as the input physics. The models depend on nuclear
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This work: entropy calibration of  using RHD simulationsαMLT

when projected on a rotated glog – Tlog eff plane. The method
proposed in this Letter builds upon the pioneering work of
others, but offers a few advantages. First, a single-valued
functional form is convenient from a modeling perspective. For
example, in stellar evolution codes, the desired stellar model
entropy can be evaluated as the model evolves without the need
for multidimensional interpolation in the glog – Tlog eff plane.
Second, and more importantly, calibrating against thermo-
dynamic quantities is not dependent on particular modeling
codes. In the absence of an improved model that accurately
describes convective dynamics in stars, the most direct route to
improving stellar models through calibration may be to
leverage existing parameterized convection models such as
MLT. While thermodynamic quantities (in this case, the
entropy adiabat, sad) can always be related to parameters like
the mixing length, the translation renders the calibration model
dependent. This is indeed useful if one wishes to calibrate
models with a particular stellar evolution code, but it cannot be
applied generally since the interpretation of parameters such as
α is specific to the model. Instead, we choose to look at how
fundamental physical quantities, such as the specific entropy,
vary in the glog – Tlog eff plane.

2. MIXING LENGTH THEORY AND
CONVECTION ZONE ENTROPY

One of the major weakness affecting models constructed
using the MLT is the freely adjustable scale factor α, which
permits a wide range of adiabatic structures. This, and three
other free parameters (see, e.g., Ludwig et al. 1999; Arnett
et al. 2010) in the MLT formalism to account for geometric
properties of convection, set the entropy profile below the
photosphere and determine the asymptotic limit of the entropy
(or sad) that is reached when convection is efficient, and the
stratification is very near to adiabatic. This is in turn reflected in
a large uncertainty in the calculated radii.

With MLT models alone, there is no way to determine which
asymptotic entropy, or adiabat, is correct. To illustrate this, in
Figure 1, we show the specific entropy profiles of four 1D
stellar models with identical stellar atmosphere parameters,
each computed with a different value of α. The specific entropy
in both 1D models and 3D simulations was calculated with the
OPAL (Rogers & Nayfonov 2002) equation of state tables.
Near the surface there exists a steep entropy gradient where
radiative transfer of energy dominates, and the stratification is
convectively stable. Further down, the entropy reaches a
minimum and the entropy gradient switches sign, indicating
that the region is convectively unstable. The entropy gradient
continues to flatten with depth, with the entropy approaching a
near-constant value sad that depends on α, and remains roughly
constant throughout the convective region until the effect of
overshoot near the interior edge of the convective envelope
changes the profile again.

One advantage of 3D simulations over 1D models is that
simulations do not have an arbitrarily set mixing length
parameter, and instead converge to a thermal structure that self-
consistently links the deep adiabatic layers to the radiative
atmosphere. Also shown in the upper panel of Figure 1 is the
mean entropy profile for a 3D simulation with the same glog
and Tlog eff as the 1D models. There are no free parameters
(beyond factors for artificial viscosity and the subgrid scale
model), so the resulting entropy profile is unique to the surface
gravity, effective temperature, and chemical composition of the

simulation. Comparing the simulated entropy profile to the
MLT models, we see that there is a value of α that can
reproduce the simulated sad. However, the complete entropy
profile in the simulation cannot be matched by any of the MLT
models, and this can be for a number of reasons, such as the use
of an inconsistent T–τ relation or more likely, the absence of
dynamical effects in the 1D models. We shall concentrate only
on sad in our approach to mixing length calibration. This is
similar to the recent work of Magic et al. (2015), where the
entropy adiabat is related to the mixing length parameter; what
we show here is that the evolution of sad could potentially be
described as a function of a single variable, which would be
simpler to implement in 1D stellar evolution codes.

3. THE ENTROPY CALIBRATION

In the lower panel of Figure 1, we show contours of constant
sad as obtained from 3D simulations by Magic et al. (2015)

Figure 1. Top panel: specific entropy near the surface of several 1D stellar
models and one 3D RHD simulation. The models and simulation all share the
same surface parameters ( �glog 4.30 and �Tlog 3.76eff ) and chemical
composition (Z = 0.001, X = 0.754), but the 1D models are computed with
different mixing length parameters, and so have different envelope entropy
(sad). The simulation does not contain a mixing length parameter, so the
specific entropy is determined self-consistently and uniquely. Bottom panel:
contours of adiabatic entropy (sad) in the glog – Tlog eff plane, as determined by
the 3D simulations of Magic et al. The contours of sad (ranging from 16 · 108 to
24 · 108 erg s−1 K−1 from the lower left to the upper right) are equivalent to
contours of constant polytropic K (see, e.g., Kippenhahn & Weigert 1990) and
denote the convective envelope adiabats. Evolutionary tracks for a range of
stellar masses (Me = 0.75–1.40), all with the same composition parameters,
and with the same constant value of the mixing length parameter α, are shown
for reference.
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Fig. 1a and b. Depth dependence of the entropy in the solar surface layers as obtained from hydrodynamical simulations (Teff = 5770K,
log g = 4.44, model code L71D07) performed on a 140 (x) by 71 (z) grid with frequency-dependent radiative transfer. The mean entropy
(horizontal and temporal average) is shown in panel a, spatially resolved entropy profiles in panel b. Geometrical height zero corresponds to
τRoss = 1. Note that the model comprises only the uppermost part of the 200Mm deep solar convective zone.

tural quantity, namely the entropy of the adiabatically stratified
layers deep in the convective stellar envelope. In the following
we shall refer to this entropy as senv. Its relevance for stellar
structure stems from the fact that it strongly influences the ra-
dius of a star. To obtain handy numbers, all entropy values in
this paper — unless stated otherwise — are given in units of
s0 = 109 erg/g/K. To link our results more directly to standard
stellar structure modeling we translate senv into an equivalent
mixing-length parameter.

Some words concerning our nomenclature: we use the term
“solar-type” for stars with extended convective envelopeswhere
the thickness of the superadiabatic layers at the top of this enve-
lope is small in comparison to the stellar radius. “Grey” radia-
tive transfer means that frequency-independent (mean) opaci-
ties were used in the computation of the radiation field. The
opacities still depend on temperature and density and include
contributions from spectral lines.

In the paper we proceed as follows: we start with method-
ical aspects describing our hydrodynamical models, the basic
idea and the procedure to derive senv, and the translation of senv

into an equivalent mixing-length. We continue with the valida-
tion of our method by showing that we are able to predict the
solar structure derived from helioseismic measurements within
small uncertainties. We then present the calibrations of MLT
and CMT. We discuss the application of our results to stellar
modeling, point out consequences of stellar stability consider-
ations, present a derivation of the gravity-darkening exponent,
and contrast our approach with others. We conclude with future
perspectives. In the appendix we provide some auxiliary data
helping to utilize our findings in stellar structure models.

2. Methodical aspects

2.1. Hydrodynamical models of solar-type surface convection

We have obtained detailed 2-dimensional models of the surface
layers of solar-type stars from extensive numerical simulations
solving the time-dependent, non-linear equations of hydrody-
namics for a stratified compressible fluid. The calculations take
into account a realistic equation-of-state (EOS, including the

ionization of H and He as well as formation of H2-molecules)
anduse an elaborate scheme todescribemulti-dimensional, non-
local, frequency-dependent radiative transfer. Similar to classi-
cal model atmospheres, the hydrodynamical models are char-
acterized by effective temperature Teff , acceleration of grav-
ity log g, and chemical composition. They include the photo-
sphere as well as part of the subphotospheric layers, with an
open lower boundary, allowing a free flow of gas out of and
into the model. A fixed specific entropy s∗ is (asymptotically)
assigned to the gas entering the simulation volume from be-
low. The value adopted for s∗ uniquely determines the effective
temperature of the hydrodynamical model. For details about
the physical assumptions, numerical method and characteris-
tics of the resulting convective flows see Ludwig et al. (1994)
and Freytag et al. (1996).

2.2. From the surface to the base of a convection zone

Fig. 1a shows the mean entropy as a function of depth obtained
from a hydrodynamical granulationmodel of the Sun by averag-
ing over horizontal planes and over time. As in this example, our
models in general do not extend deep enough to include those
layers where the mean stratification of the convection zone be-
comes adiabatic. While the mean entropy stratification of the
hydrodynamical models does not permit a direct determination
of the entropy corresponding to the adiabat of the deep convec-
tion zone, the spatially resolved entropy profiles contain addi-
tional information. Fig. 1b displays the entropy profiles for an
arbitrary instant of the sequence fromwhich the mean stratifica-
tion in Fig. 1a was computed. The granular convection pattern
at the surface of solar-type stars is formed by broad hot upflows
accompanied by concentrated cool downdrafts. Fig. 1b shows a
remarkable entropy plateau in the subsurface layers, indicating
that — in contrast to the narrow downdrafts — the gas in the
central regions of the broad ascending flows is still thermally
isolated from its surroundings. Neither radiative losses nor en-
trainment by material of low entropy can produce significant
deviations from adiabatic expansion until immediately below
the radiating surface layers. The height of the entropy plateau
is essentially independent of time and corresponds to s∗.
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τRoss = 1. Note that the model comprises only the uppermost part of the 200Mm deep solar convective zone.
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Entropy-calibrated evolutionary tracks
3132 F. Spada, P. Demarque and F. Kupka

Figure 3. Entropy-calibrated tracks in the Kiel diagram, calculated at
solar metallicity and using the RHD simulations of Magic et al. (2013).
The location of the RHD simulations (empty squares), and the domain of
interpolation of the fitting function (light blue shading) are also shown. The
grey contour lines represent the function sRHD

ad used in the calibration, in units
of 109 erg g−1 K−1. The location of the present Sun in the diagram is also
marked by a yellow circle with a central dot.

for instance for log g ! 1.5, although extrapolation of the fitting
function is in principle possible, the fit is expected to quickly lose
accuracy and meaning.

The two panels of Fig. 4 show a comparison in the HR diagram of
the entropy-calibrated tracks with standard ones (i.e. using constant,
solar-calibrated αMLT), implementing the Eddington grey and the
Krishna Swamy atmospheric T–τ relation, respectively.

It should be emphasized that, in contrast with the standard tracks,
the entropy-calibrated tracks are utterly insensitive to the choice
of the atmospheric T–τ relation, except, of course, for the actual
numerical value of the calibrated αMLT along the track. This feature
of the entropy calibration was first demonstrated in Paper I for the
case of the solar model (see in particular Section 5 and fig. 11 of that
paper). We recovered this property in our current entropy-calibrated
models, and we verified that it also applies to the red giant branch
evolution. More specifically, we have verified that entropy-calibrated
tracks constructed with the Eddington grey or the Krishna Swamy
T–τ relation, or even using surface boundary conditions given by the
photospheric pressure derived from PHOENIX model atmospheres
(see Spada et al. 2017 for the details of the implementation in our
stellar evolution code) are essentially indistinguishable from each
other in all the evolutionary phases considered in this work (i.e. from
early pre-main sequence to mature red giant branch). For model
details on this comparison, see Appendix B.

For the main sequence and the sub-giant phase, the difference
between the entropy-calibrated and standard tracks is larger, the lower
the mass. The location of the red giant branch, on the other hand,
is shifted approximately equally for all the tracks. With respect to
the standard tracks implementing the Eddington grey T–τ relation,
the shift is approximately 50 K towards hotter effective temperatures
between the base of the red giant branch and the bump (the tracks
implementing the sad from Ludwig et al. 1999 feature a Teff shift
in the same direction, but larger, !100 K). For the standard tracks
implementing the Krishna Swamy T–τ relation, similar qualitative
considerations apply. Interestingly, these tracks are closer to the
entropy-calibrated ones than the standard tracks implementing the
Eddington T–τ relation.

Beyond the red giant branch bump, the entropy-calibrated tracks
intersect and cross over the standard ones (both for the Eddington
and the Krishna Swamy standard tracks). It is not clear whether the
different slope of the red giant branch in the HR diagram represents
a real effect or it is an artefact due to the poor coverage of the upper
region of the red giant branch by the RHD simulations. Relatedly,
a worse quality of the representation of the results of the RHD
simulations by the fitting function at low log g is also a possibility. It
should be recalled that the fitting functions of Magic et al. (2013) and
Ludwig et al. (1999) also differ the most in this regime (see Fig. 1).

Our results are in good qualitative agreement with those discussed
in Paper I and Paper II in the pre-main sequence and main sequence
portions of the tracks. For the red giant branch, however, we
find a large quantitative and qualitative disagreement: our previous
results predicted a shift towards lower effective temperatures. This
discrepancy is a consequence of the inclusion of the correction factor
discussed above (see Section 2.4).

Our current results are also in agreement with those of Salaris &
Cassisi (2015), and of Mosumgaard et al. (2020). Considering that
the approaches used in those papers are largely independent from
each other and from ours, this agreement is encouraging.

3.2 Evolution of the interior entropy profile

To gain more insight into the physics of the entropy calibration, we
analyse in detail the evolution of the entropy profile for the 1 M"
track, illustrated in Fig. 5. Several interior profiles are shown in
the two panels to the right, corresponding to the instants along the
evolutionary track indicated by the coloured circles in the panel to
the left.

The entropy profiles in the top right-hand panel correspond to
pre-main sequence and main sequence models. The specific entropy
of the starting model is uniform except for the dip in the outermost
layers, corresponding to the SAL, consistent with a fully convective
structure. In the next model, at the transition between the Hayashi and
the Henyey track, an inner core in radiative equilibrium is present,
where the entropy increases from the centre outwards. The following
profile, corresponding to the ZAMS model, is qualitatively similar,
with a shallower convective envelope. At the main sequence turn-off
(≈7 Gyr), the entropy of the stellar core is significantly lower, due to
the increase in mean molecular weight produced by the conversion
of hydrogen into helium during the main sequence. We note that in
the evolution from the birth-line to the end of the main sequence the
entropy of the adiabatic region of the envelope first decreases, then
increases, according to the prescription of the fitting function of the
RHD simulations (contour lines in the left-hand panel of Fig. 5).

In the bottom right-hand panel, interior profiles corresponding
to the post-main sequence are shown. During the sub-giant phase,
the adiabatic specific entropy is approximately constant, and then
increases significantly during the red giant phase. We also note that
the entropy profiles feature (i) a very steep profile in correspondence
to the hydrogen burning shell (log10P ≈ 17.5 in this model); (ii)
a moderate, step-like discontinuity between the radiative interior
and the convective envelope, due to the chemical composition
gradient, which is smoothed out after the RGB bump (last two
models); (ii) a steady increase of the entropy jump in the SAL,
and decrease of the entropy at the centre, where the inert helium core
is dominated by degeneracy. All these features of the entropy profile
are qualitatively similar to those of a standard (constant αMLT) model,
the quantitative differences between the two being the result of the
entropy calibration.
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Figure 4. Comparison of the entropy-calibrated tracks (solid lines) with standard ones (i.e. with constant, solar-calibrated αMLT; dashed lines) in the HR diagram.
Left-hand panel: comparison with standard tracks implementing the Eddington grey T–τ relation, for which the solar-calibrated αMLT = 1.84. Right-hand panel:
comparison with standard tracks implementing the Krishna Swamy T–τ relation, for which the solar-calibrated αMLT = 2.15. In both panels, the position of the
present Sun is marked by a yellow circle with a central dot.

Figure 5. Evolutionary track and interior entropy profiles at different ages for the 1 M! entropy-calibrated track. Left-hand panel: Evolutionary track (solid
black line), and level curves of adiabatic specific entropy from the fitting function of Magic et al. (2013) used in the calibration; for illustrative purposes, two
tracks calculated with an artificial offset added to the adiabatic specific entropy, δsRHD

ad , are also shown (dot-dashed: positive offset; dashed: negative offset). All
entropy values are quoted in units of 109 erg g−1 K−1. The coloured circles mark the locations at which interior profiles are plotted in the panels on the right.
The position of the present Sun is shown as a yellow circle with a central dot. Right-hand panel: interior profiles for the same track shown in the left-hand panel;
models up to the main sequence turn-off are shown in the top panel, while models on the sub-giant and red giant branch are plotted in the bottom panel. The
triangles mark the centre of the model, while the stars mark the location of the photosphere.

The left-hand panel of Fig. 5 also shows two extra entropy-
calibrated tracks, obtained by restarting the evolution from the
base of the red giant branch and introducing an artificial specific
entropy offset of 0.02 × 109 erg g−1 K−1. From their comparison
with the unaltered track we see that a positive (negative) entropy
offset produces a shift of the red giant branch towards lower (higher)
effective temperature. This behaviour can be understood in simple
physical terms as follows. At the leading order, an increase in the
adiabatic specific entropy results in a model with a larger radius, as
discussed, for instance, in section 7.3.3 of Hansen et al. (2004). Since
the entropy calibration leaves the luminosity of the star essentially
unchanged (see Paper I), an increase in radius corresponds to a
decrease in the effective temperature. This is a clear illustration
of how the entropy budget of the star has a direct impact on its
observable parameters.

3.3 Radius and effective temperature calibration of red giants

In practical terms, the entropy calibration yields a revised estimate
of the radius and effective temperature of the stellar models. In
agreement with our earlier results (Paper I and Paper II), we find that
the luminosity is essentially unaffected. The differences in radius and
effective temperature with respect to standard models are modest
during the late pre-main sequence, main sequence, and sub-giant
evolutionary phases, but they are quite substantial when the star is
close to the Hayashi line, i.e. during the early pre-main sequence and
the red giant branch phases (cf. Fig. 4).

Our results are relevant, among other things, to the characterization
of red giant stars, and represent a testable prediction of the entropy
calibration. In Fig. 6 we compare our entropy-calibrated tracks with
data from the APOKASC2 catalogue (Pinsonneault et al. 2018).
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Figure 6. Top panel: Evolution of entropy-calibrated αMLT (solid lines)
compared with its constant value in the standard models (dashed lines). The
difference in αMLT at t = tA = tB is 3.3 per cent and 1.2 per cent for α Cen
A and B, respectively. Middle and bottom panels: Depth of the convection
zone in stellar radii for for α Cen A and B, respectively.

Changes to the depth of the convection zone can affect the mixing
of the outer layers, and have observable consequences in terms of
the surface metallicity, or the abundance of light elements.

3.4 Structural effects of the entropy calibration

As a consequence of the cumulative effect of different mixing
histories, the entropy-calibrated models have different interior
composition profiles. This is shown in the top panels of Fig. 7.
The differences in X and Z are most prominent in the convective
envelope (which displays a flat profile characteristic of the efficient
convective mixing), near the lower boundary of the convection
zone, and close to the centre. Note, in particular, the large difference
(amounting to more than 10 per cent) in the central hydrogen
abundance of α Cen A.

In general, the differences in the density and sound speed profiles
(bottom row plots of Fig. 7) reflect both the different convection
zone depth at the current age of the models, and the cumulative
evolutionary effects, as the layers closest to the bottom of the
convective envelope have undergone significantly different mixing
in the entropy-calibrated models with respect to the standard ones.
In the entropy-calibrated model of α Cen A, both the density and
sound speed differences clearly show the effect of the higher central
hydrogen content.

4 D ISCUSSION

We have modelled the stars α Cen A and B, comparing the standard
approach, in which the MLT parameter is freely adjusted, with an
entropy-based calibration of αMLT, specified according to the results
of 3D RHD simulations of convection. The entropy calibration
of αMLT, recently proposed by Tanner et al. (2016), is based on

matching the adiabatic specific entropy obtained in the 1D stellar
model with the corresponding value from a 3D RHD simulation of
appropriate effective temperature, surface gravity, and metallicity.
This approach has been successfully used to construct a realistic
solar model by Spada et al. (2018).

It should be emphasized that the main goal of the entropy
calibration approach is not to improve the estimate of the MLT
parameter. Indeed, the numerical value of αMLT is well known to
be sensitive to the specific implementation of the MLT formalism,
and is of little physical significance, since MLT does not provide
a consistent description of convection (see e.g. Trampedach 2010;
see also Tanner et al. 2016).

In the entropy calibration method, the MLT formalism is adopted
as a convenient procedure to provide more realistic boundary
conditions for a 1D stellar model. Although the MLT does not
reproduce the detailed structure and position of the SAL faithfully,
the appropriate choice of αMLT yields the correct entropy jump in the
outer layers of a star. The specific entropy sad in the adiabatic part
of the convective envelope, in turn, determines the stellar radius.
The accuracy of the radius thus depends on that of the entropy jump
in the transition layer between the deep, optically thick layers, and
the outer atmospheric layers (the SAL; see e.g. the discussions of
Straka et al. 2006, Kim & Chan 1997, 1998, and of Tanner et al.
2014). The value of sad is not sensitive to the precise stratification
and detailed structure of the SAL region and of the atmosphere: the
density in both layers is low, and they comprise only a very small
fraction of the envelope mass. Their combined geometrical extent
and the details of their stratification contribute little to the total
stellar radius. As a result, the radii of individual 1D stellar models
along an evolutionary track constructed with entropy-calibrated
αMLT are more accurate than those of standard models, even if
the accuracy of the stratification of the SAL and of the outer layers
is not improved by this approach. In the entropy calibration method,
the value of αMLT is then used to map parametrically the dependence
of sad on the effective temperature, surface gravity, and metallicity
derived from the RHD simulations in a form that can be readily
incorporated into a 1D stellar evolution code.

The main ingredient of our entropy calibration of αMLT is the
calibration curve sad versus x, where x = A log Teff + B log g (see
equations 4 and 5 and Fig. 3), which was derived by Tanner et al.
(2016) from 3D RHD simulations of convection. The function
sad(x) depends parametrically on the surface metallicity [Fe/H].
Remarkably, this function is insensitive to the details of the input
physics and numerics of the 3D RHD simulations (see Tanner et al.
2016), as well as those of the 1D stellar evolution code (as was
shown in Paper I). This property allows the construction of an
accurate radius calibration for the 1D stellar models in terms of
sad(x), even if the structure of the outer layers is calculated with
the MLT formalism. Such a calibration of αMLT effectively removes
one adjustable parameter in comparison with standard models.

Our entropy-calibrated models of α Cen A and B reproduce the
observed radii of both stars with an accuracy of 1 per cent, or better,
even if the freedom to adjust the value of αMLT has been removed (all
other parameters, such as masses, ages, and chemical composition,
being the same). Together with the application to the solar model
discussed in Paper I, this work provides a solid test of the entropy
calibration method. It should be stressed that the accuracy on the
stellar radius of the entropy-calibrated models is determined by that
of the calibration curves sad(x).

While the entropy-calibrated model of α Cen B reproduces
its radius within the observational uncertainty, for α Cen A the
agreement is only to the 2.5σ level. This result suggests that other
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Figure 2. Posterior probability distributions for the best-fitting parameters
of the standard models of α Cen A and B. Note that the fit requires distinct
values of αMLT for the two stars, and that αMLT, B is significantly non-solar.
A moderate difference in the helium mass fraction is also visible.

Table 2. Best-fitting parameters for the standard models of α Cen A and B.

Parameter Mode Median "+ "− Adopted

αMLT, A 1.710 1.779 0.2171 0.1273 1.71+0.22
−0.13

αMLT, B 2.039 2.076 0.1366 0.1120 2.04+0.14
−0.11

YA 0.2785 0.2788 0.0155 0.0119 0.2785+0.016
−0.012

YB 0.2668 0.2677 0.0140 0.0101 0.2668+0.014
−0.010

ZA 0.0270 0.0282 0.0050 0.0025 0.0270+0.0050
−0.0025

ZB 0.0273 0.0286 0.0048 0.0024 0.0273+0.0024
−0.0048

tA (Gyr) 5.211 5.509 1.1425 0.6675 5.21+0.67
−1.14

tB (Gyr) 5.212 5.509 1.1421 0.6674 5.21+0.67
−1.14

Note. "+ = 84th − 50th percentile; "− = 50th − 16th percentile.

ibration method: it makes the determination of the parameters
in equation (4) robust, and directly applicable to any 1D stellar
evolution code.

The calibration of αMLT is performed at each evolutionary time-
step, consistently with the current values of log g, Teff, and surface
metallicity. This approach relies on the simplicity of the MLT
framework, but suffices to specify more realistic surface boundary
conditions and improve the radius calibration of the 1D stellar
models. The stratification of the outer layers, however, is still
modelled using the MLT, and its accuracy is therefore not improved
with respect to the standard approach.

We have constructed entropy-calibrated models of α Cen A and
B with the same composition and age as the standard models
discussed in the previous subsection. It should be emphasised that
the evolution of αMLT in the entropy-calibrated runs is entirely
determined by the calibration of αMLT against the adiabatic specific
entropy. In other words, the treatment of convection in the entropy-
calibrated models contains no adjustable parameters.

3 R ESULTS

3.1 α Cen A and B as a test of the entropy calibration

Entropy-calibrated and standard models of α Cen A and B are
compared in Table 3. All the models are constructed using the best-

Table 3. Standard versus entropy-calibrated models of α Cen A and B.

Parameter Observed Standard Entr.-cal.

α Cen A
R/R" 1.2234 ± 0.0053 1.2235 1.2097
L/L" 1.521 ± 0.015 1.5091 1.5045
Z/X 0.039 ± 0.006 0.0315 0.0348
Age (Gyr) N/A 5.21 5.21
αMLT N/A 1.71 1.758
sad N/A 1.876 × 109 1.853 × 109

α Cen B
R/R" 0.8632 ± 0.004 0.8647 0.8612
L/L" 0.503 ± 0.007 0.5122 0.5107
Z/X 0.039 ± 0.006 0.0346 0.0364
Age (Gyr) N/A 5.21 5.21
αMLT N/A 2.04 2.045
sad N/A 1.649 × 109 1.639 × 109

Note. The units of adiabatic specific entropy are: erg g−1 K−1.

fitting values of the composition and age parameters (and of αMLT,
for the standard models) listed in Table 2.

As expected, the observable that is most affected by the entropy
calibration of αMLT is the radius. For α Cen A, the agreement of the
entropy-calibrated model with the observed radius is within 2.5σ ,
significantly worse than for the standard model with freely adjusted
αMLT, but still within ≈ 1 per cent. For α Cen B, the entropy-
calibrated model reproduces the observed radius equally well as
the standard model (within 1σ , or 0.2 per cent).

The impact of the entropy calibration on the luminosity is very
modest, and as a result the fit of the observed luminosity is compara-
ble to that of standard models for both stars. The entropy-calibrated
models reproduce the observed surface metallicity slightly better
than the standard ones for both stars; this improvement is however
not significant with respect to the relatively large observational
uncertainties on Z/X.

Regarded as a test of the entropy calibration approach, the
comparison with the standard models of α Cen A and B is very
encouraging. It shows that the entropy-calibrated models reproduce
the observed radii of α Cen A and B with an accuracy of 1 per cent,
or better, even if the freedom in adjusting the parameter αMLT has
been removed.

3.2 Accuracy of the entropy calibration

The performance of the entropy-calibrated models in reproducing
the radius of α Cen A and B can be put in a broader context, which
illustrates the accuracy and limitations of the method. Table 3 reports
sad for the standard and entropy-calibrated models. For the latter, sad

is consistent with equation (4) by construction. Note, however, that
the adiabatic specific entropy of the standard models (with freely
adjusted αMLT) also agree within ! 1 per cent with equation (4).
This is a consequence of the tight relation between sad and the
stellar radius, upon which the entropy calibration rests. Since the
radii of α Cen A and B are known with high precision, this can also
be interpreted as an independent test of equation (4).

Furthermore, the results in Table 3 imply that the accuracy of the
determination of sad and of the stellar radius are directly linked. To
clarify this point, Fig. 3 shows the analytic sad versus x relations of
Tanner et al. (2016) obtained as best fits of the 3D RHD simulations
of Magic et al. (2013a,b), Magic et al. (2015a,b), and Tanner et al.
(2013a,b, 2014), based on equations (4) and (5). The scatter of the
open circles, representing the individual 3D RHD simulations, give
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Figure 6. Entropy-calibrated evolutionary tracks in the Kiel diagram compared with observational data for evolved stars. Left-hand panel: 1.0 M!; right-hand
panel: 1.2 M!. Data from the APOKASC2 catalogue (Pinsonneault et al. 2018), selected at solar metallicity (−0.1 < [Fe/H] < +0.1) and mass appropriate for
each panel (within ±0.05 M! from that of the tracks). Two standard solar-calibrated tracks of the same mass, implementing the Eddington atmospheric T–τ

relation (grey dashed line) and the Krishna Swamy one (grey dash-dotted line), are also shown for comparison. An enlargement of the area near the red giant
bump is plotted in the insets in both panels. The position of the Sun is marked in the left-hand panel by a yellow circle with a central dot.

This catalogue contains stellar properties for a large sample of
6676 evolved stars, derived with a combination of ground-based
spectroscopy (from the Apache Point Observatory Galactic Evolution
Experiment, APOGEE), and Kepler asteroseismic data, analysed
using five independent techniques.

Fig. 6 shows a subsample of stars from the APOKASC2 catalogue
selected at solar metallicity (−0.1 < [Fe/H] < +0.1), and mass equal
to 1.0 ± 0.05 M! (left-hand panel) and to 1.2 ± 0.05 M! (right-
hand panel). Together with the data, entropy-calibrated tracks of
appropriate mass are plotted, implementing the sRHD

ad fitting function
of both Ludwig et al. (1999) and Magic et al. (2013). Standard
tracks constructed with both the Eddington and the Krishna Swamy
atmospheric T–τ relations are also plotted for comparison.

With respect to the standard track with Eddington grey T–τ

relation, the red giant branch of both the 1.0 M! and the 1.2 M!
entropy-calibrated tracks is shifted to hotter effective temperatures
by ≈50 K (≈100 K for the Ludwig et al. 1999 calibration), resulting
in a better agreement with the data. The standard track implementing
the Krishna Swamy atmospheric T–τ relation, on the other hand, lies
much closer to the entropy-calibrated ones.

It should be emphasized at this point that in the standard tracks,
by construction, the parameter αMLT has been calibrated to fit the
present Sun. There is, however, no theoretical basis to justify that the
solar-calibrated value of αMLT also applies to the red giant branch
evolution, and/or to a track of different mass. The close agreement
with the data of the standard tracks implementing the Krishna Swamy
atmospheric T–τ relation thus comes at the price of one additional
adjustable parameter with respect to the entropy-calibrated tracks,
and could also be just a coincidence.

In fact, the solar calibration of the mixing length parameter is
well-known to be sensitive, among other things, to the details of
the treatment of the atmospheric layers, in particular to the T–τ

relation, and to the optical depth at which the atmosphere is fitted
to the model. Such an interplay between αMLT and the surface
boundary conditions can result in large uncertainties in the effective
temperature calibration of standard models (see Choi et al. 2018;
Salaris et al. 2018). The sensitivity of our entropy-calibrated tracks
to these modelling choices, in contrast, is minimal (see Appendix B
for details).

The figure insets show an enlargement of the area around the
red giant bump. We note that while the effective temperature of the
bump is shifted by the entropy calibration, its log g and luminosity
are essentially unaffected. Indeed, the luminosity and log g at which
the bump occurs are essentially controlled by the evolution of the
interior of the model (see e.g. Cassisi, Salaris & Bono 2002; Hekker
et al. 2020 for detailed discussions), on which the entropy calibration
has a modest impact.

As discussed above (c.f. Fig. 4), the entropy-calibrated tracks in-
tersect the standard one of the same mass above the red giant bump, at
log g ≈ 2. This shallower slope of the red giant branch does not seem
to be supported by the data, whose general trend is more compatible
with that of the standard track. We can interpret this as tentative
evidence that the fitting functions (and/or the simulations from
which they were derived) do not properly represent the evolution of
the adiabatic specific entropy in the low effective temperature, low
surface gravity regime. For instance, the assumption of plane-parallel
geometry used in the simulations becomes increasingly questionable
at low surface gravity.

In view of the discussion in Section 3.2, the revision of the red
giant branch location towards hotter effective temperatures implies
that a lower value of sad in this phase is in better agreement with
the observations. In other words, a standard, solar-calibrated value
of αMLT produces red giant models with too high adiabatic specific
entropy.

3.4 Entropy-calibration of different convection formalisms:
MLT versus CM

Being part of the stellar evolution code, our entropy calibra-
tion procedure is not tied to the MLT, but can be seamlessly
applied to a different convection theory. In this section, we
compare entropy-calibrated models implementing the MLT and
the CM formalism. The CM model was developed by Canuto
& Mazzitelli (1991) to alleviate some of the shortcomings
of the MLT, and it is the description of convection alterna-
tive to the MLT most commonly adopted in stellar evolution
models.
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Concluding remarks

• With respect to the solar calibration, the entropy calibration of  
improves the accuracy and precision of  and  for MS stars and RGs


• The entropy calibration relies on 3D RHD simulations as input: a denser, 
wider coverage of the ( , ) plane is needed!

αMLT
R* Teff

Teff log g
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