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8.1 Introduction

Many car accidents involving vulnerable road users (e.g., pedestrians or
cyclists) occur on rural roads after dark, when the driver’s visibility is
restricted. Thus, the main objective of an augmented night vision is to assist
the driver, when driving on side roads (e.g., highways, country roads, or rural
roads) with poor or restricted visibility by alerting the driver to potential
obstacles ahead.

One possible augmentation of driver vision is to highlight potential
obstacles, hazards or vulnerable road users in the live video of the road ahead.
A classification of image content is mandatory for this application. As the
augmentation enables the driver to grasp the situation quickly, the distance to
the detected object has to be calculated by stereo vision to ensure accuracy
and speed of assessment.

As the range of distance resolution increases with the baseline of a
stereo system, a wide baseline stereo system is necessary to facilitate the
augmentation of objects in the desired range. Such a wide-baseline stereo
system is sometimes not practicable when rigidly coupled, therefore cameras
are mounted individually, e.g., to the windshield. Physically separated cameras
increase the camera baseline, however a moving car causes multiple vibration
sources [1] which misalign the images of the separated cameras. Therefore,
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158 Self-Calibration of Wide Baseline Stereo Camera Systems

online camera calibration is indispensable for further image processing. This
online camera calibration covers the reconstruction of extrinsic camera param-
eters, which rely on a sparse pixel correspondence list from the two camera
images. The general overview of the algorithmic flow is depicted in Figure 8.1.
This chapter will focus on the search for sparse pixel correspondences and
extraction of camera calibration parameters.

The remaining chapter is set up as follows. Section 8.1 gives an introduc-
tion to the self-calibration of wide baseline stereo cameras. After a review of
the considered algorithms in Section 8.2, Section 8.3 details the class of image
feature detectors and extractors. Section 8.4 highlights the matching of image
features. An in-depth description of the bundle adjustment for the camera
calibration is given in Section 8.5. In Section 8.6, selected application-specific
aspects regarding the algorithmic parameterization are presented. Section 8.7
focuses on algorithmic-specific and hardware-specific implementation details
and gives an overview of existing implementations for the extraction of image
features.

8.1.1 Extraction of Image Features

Image feature extraction consists of two steps: the detection of image features
and the generation of the descriptor for those feature points, which results in
a unique signature as a representation for the detected feature points.

Figure 8.1 Algorithmic overview. Input of the processing chain is a stereo image pair, in
which sparse pixel correspondences are extracted for online camera calibration. After the
calibration, rectification is performed as a preprocessing step for disparity estimation.
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The image feature detection generates a list of distinctive invariant points
in images for the feature localization. Especially for camera calibration, a high
accuracy of localization is required [2] in order to ensure a correct functionality
of following algorithmic steps, e.g., the rectification of stereo image pairs. Due
to the similarity between the views of the scene, a rotation invariance or scale
invariance of the feature descriptors supports stability of the matches. This is
however, not mandatory, because characteristic points in image pairs of the
used stereo camera configuration rarely change their rotation or scale abruptly
from left to right stereo image.

In recent years, three different principles for feature detection have
proven employable. Corner or edge detectors extract characteristic corners
or edges in an image, which are defined by large gradient changes of image
intensities. So called blob detectors determine pixel positions, for which
a circular local neighborhood is approximately constant or similar for a
defined image property [3]. Furthermore, affine invariant detectors have been
adapted to be invariant to affine transformations, which are approximations
to perspective distortions in order to achieve invariance to large changes in
viewpoint [4]. The detected features of the exemplary SIFT-feature detector
are shown in Figure 8.2.

Figure 8.2 Left (top) and right (bottom) image from a stereo camera system showing detected
SIFT-image features. Detected feature points of the left/right image are displayed in red/green,
matches are displayed in blue. Scale and rotation of the SIFT-features are illustrated by the
circle properties.
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The descriptor of an image feature characterizes the detected feature point.
Ideally, a feature descriptor of a world point is unique when compared to
other descriptors, but identical for the same world point in different views [5].
Two representations for descriptors have been established in recent years. So
called histogram-based or distribution-based descriptors represent the local
neighborhood of a feature point by histograms of local image properties like
pixel intensities, color, texture, edges etc. [3]. Furthermore, binary descriptors
represent a local pixel region by storing the binary result of predetermined
pixel-level intensity comparisons [6]. In contrast to distribution-based descrip-
tors, binary descriptors contain a more compact representation of the image
patch around a feature.

In general, extracted image features have to cope with various influences.
Firstly, there are disruptive effects related to the image quality, e.g., image
compression, image noise, image blur due to zoom or exposure. Secondly,
there are influences resulting from the content of the stereo image pair, e.g.,
illumination, difficult viewpoint conditions or occlusions, background clutter
and general content changes, perspective changes or changes in the view point
of planar and non-planar geometry [6, 7]. Finally, application specific factors
as scale and rotation of objects impact the algorithmic results dealing with
image features. Thus, extracted image features have be invariant to as many
disturbing influences of the named categories as possible.

The large variety of image feature detectors and descriptors clearly show
the manifold approaches to defining and describing characteristic points in
images.As S. Gauglitz mentioned before in [5], “there is no clear-cut definition
as to what makes a point interesting. Detection of such points is only an
intermediate step in any application”. There is no general answer for the
question, which detector or descriptor is performing the best. Therefore,
as J. Shi and C. Tomasi postulated in 1994, “the right features are exactly
those that make the tracker work best” [8]. Consequently, “any set of feature
points is acceptable, but the result ought to be consistent, e.g., in images
that show the same scene, the algorithm should detect the same points.”
[5]. In other words, for each application, the best performing combination of
image feature detector and extractor has to be found. Furthermore, application-
specific conditions (here: high localization accuracy with low requirements
to scale and rotation invariance) aggravate the possibilities of algorithmic
combinations.

A survey of existing image feature detectors and descriptors will be given
in Section 8.2. A more detailed presentation of an exemplary feature detector
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and descriptor called SIFT (Scale-Invariant Feature Transform) [9], which
shows good results in this application, will be given in Section 8.3.

8.1.2 Matching of Image Features

Matching image features results in a list of pixel correspondences between
the left and right input image of the stereo image pair. The main challenge
is on the one hand to find as many corresponding pixels as possible while
avoiding wrong pixel assignments on the other, even if there are several
similar regions in both input images. The assignment of image features to
pixel correspondences is based on feature descriptors, which are used to find
the maximum similarity between the extracted image features. Depending
on the representation of the features (histogram-based or binary descriptor),
the similarity is computed by various vector norms for the distance of
two matching candidates or the Hamming distance. Furthermore, different
matching methods have a significant impact on the resulting correspondence
lists [3].

In the case of global feature matching methods f : X̃ → Ỹ , two feature
points −→x ∈ X̃ and −→y ∈ Ỹ are assigned by local similarity, which is deter-
mined by the related descriptors

−→
dx and

−→
dy . For each descriptor in set Y , there

is a corresponding descriptor in set X with a minimal error criterion. After
the assignment of feature points, the correspondences are filtered by this error
criterion in order to avoid false correspondences, e.g., feature points which
are not detectable in both images because of occlusions in one image. Varying
matching methods differ in the error criterion for the evaluation of feature
similarity and the search algorithm during the matching step.

8.1.3 Extrinsic Online Self-Calibration

Common stereo algorithms for disparity estimation (e.g., [10]) rely on
exact knowledge about the intrinsic (e.g., focal length) and extrinsic camera
parameters (the transformation between two cameras). Calibration errors
lead to erroneous reconstruction values. The camera parameters enable the
rectification, which is the projection of the camera images to a common image
plane and they form the basis for further processing.

The intrinsic parameters may be assumed to be constant and identified
using an offline calibration procedure (e.g., [11]). As the cameras are not
rigidly coupled here, the extrinsic parameters vary due to vibrations in the
car and are assumed to change rapidly from frame to frame. Thus, a one-time
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offline calibration procedure does not suffice to meet the accuracy require-
ments of stereo processing. Thus, an online calibration procedure is necessary.
While driving the use of calibration targets with known geometry is difficult.
Therefore, a self-calibration mechanism is needed.

The idea behind online self-calibration procedures is to estimate the camera
parameters based on what is perceived in both cameras. So a preprocessing
step to the calibration is a one-to-one identification of scene points visible in
both camera images, e.g., a list of sparse pixel correspondences of the stereo
camera images.

8.2 Algorithmic Overview

Many approaches have been proposed in recent years for the extraction and
matching of image features and for the feature-based camera self-calibration.
In the following section, selected aspects for each algorithmic step are
reviewed separately.

8.2.1 Survey of Image Features Extraction

The process of extracting image features is split into two algorithmic parts,
the detection of feature points and the generation of the feature descriptor. For
both steps, a large number of algorithms have been published. In this section,
typical examples of each algorithmic step are presented.

8.2.1.1 Detection of features
Which properties of distinctive image points are mandatory for a satisfactory
matching of image features depend on the finale application. There is no clear
definition as to which extraction strategy is best as it only needs to provide
sufficient algorithmic performance during retrieval in the same scene on image
sequences from different viewpoints. Therefore, what is characteristic for
highly distinctive points in images is an application-specific approach, which
has led to four basic methods for extracting retrievable points in images.

Edge detection
Edges are stable features, which are detectable over a range of viewpoints
and illumination changes [12]. An edge, e.g., the border of an object, is
defined by discontinuities in pixel intensities in a single image dimension (see
Figure 8.3(b)). Thus, the Canny detector [13] determines the gradient of
the input image with the Sobel operator and by evaluating magnitude and
orientation of the gradients, the edge’s direction and its strength are extractable.
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Figure 8.3 Detection of edges and corners by image gradients. The blue circle shows a
possible feature point, surrounded by a local neighborhood. (a) Low image gradients in two
spatial directions represent texture free image areas. (b) A high image gradient in one spatial
direction indicates a possible edge, (c) in two spatial directions a possible corner.

Gradient and direction are used in a non-maximum suppression in order to
suppress equivocal edges in the local neighborhood of a possible edge.

The drawback of this method is the equivocalness of the detected fea-
ture points. As depicted in Figure 8.3(b), it is not distinct which detected
points are corresponding on the edge while matching two detected feature
points and therefore, it will lead to incorrect pixel correspondences.

Corner detection
Corners are defined as intersections of edges or as pixel continuities in two or
more image directions (see Figure 8.3(c)). In addition to simple corners, line
endings and cropped intensity changes are detected using this type of detector.

One early corner detector is the Harris corner detector [14] (1988), which
approximates the sum of squared differences of two image patches in order
to detect a difference in image intensities. The approximation results in the
second moment matrix, which represents the dominant directions of a local
neighborhood in the gradient image. With this approach it is not only possible
to detect corners, but edges as well.

To avoid such costly filters, a detector has been presented that does not
rely on discrete image derivatives, but on the number of intensity differences
between pixels [5], which are located on a Bresenham circle (see Figure 8.4).
Rosten [15] sped up this process by reducing the number of pixel tests with
machine learning techniques to find the fastest sequence of pixel comparisons
for rejecting a wrong corner candidate.

The matching of detected corners in different images of the same scene
provides correct pixel correspondences as long as the detected corners belong
to objects of the same size.Acorresponding corner is just detectable in different
images, if the regions for describing the corners have similar dimensions
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Figure 8.4 Intensity comparisons of pixel, which are located on a Bresenham Circle. The
central pixel is determined as a corner if a certain number of continuous pixel intensities is
brighter or darker than the central pixel. This is combined with an adoptable threshold to avoid
instabilities.

(see Figure 8.5, red circle), which is dependent on the object size. To overcome
this problem, repeated image scaling is a possibility or an object size dependent
adjustment of the region for the descriptor generation.

Blob detection
A blob is a region of connected pixels, which share a common image property,
e.g., pixel intensities, and therefore stand out from surrounding regions. By
formulating image properties as a function of pixel positions, local maxima
and minima of the function are determinable.

Figure 8.5 Detection of corners of different image scales. With strongly different object sizes
in the image, a corresponding corner is not detectable (red circle), but by a repeated image
scaling.
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Figure 8.6 Blob detector. The detected blobs are displayed as red circles. The blob’s size is
displayed as the diameter of the circle.

It has been shown, that the Laplacian of Gaussian (LoG) [16] has a strong
response to dark and bright image regions, which are detectable as blobs.
The response is highly dependent on the size of the filter kernel used (see
Figure 8.6).

Affine-invariant interest point detection
Images features based on a blob detector hardly match for large scale or
viewpoint changes [4], because circular image patches for blob feature
extraction will lead to large distance measures for blob feature matching due
to less covering of the circular regions (see Figure 8.7). By applying circular
image patches, the used image information is too different to ensure stable
pixel correspondences for large viewpoint changes. Therefore, Mikolajczyk
[7] extends blob detectors to affine invariance by estimating the affine shape of
a local neighborhood. For affine transformations, the scale of an image region
changes differently in each direction, which leads to differing local regions
for the blob detection and therefore to differing localization or to mistaken
detections.

Figure 8.7 Blob detection based on circular image region for a scene with a large viewpoint
change. The region on which the blob feature extraction is based only partially covers the
corresponding region and thus, will lead to non-matching image features.
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In order to deal with affine transformation, Mikolajczyk [7] replaces the
blob detection scales, which are equal in all directions, by affine detection
scales, which vary independently in orthogonal directions. Hereby, the circular
point neighborhood is replaced by an ellipse, which is determined by the
second moment matrix. With the affine normalization, the ellipse is normalized
to a circle again and a blob is detectable within the transformed image patch
(see Figure 8.8).

Since the four presented methods provide large differences in quantity and
quality for detected interest points, a suitable algorithm has to be chosen with
regards to the application.

In 3D reconstruction, precise localization of interest points is one major
aspect [4], therefore a sub-pixel accuracy for feature detection is mandatory.
Self-occlusion occurs very frequently in real world scenes and typically
many interest points are found near occlusion boundaries. Accurate posi-
tioning of features is imperative. As has been shown in many publications,
center-oriented detectors (e.g., LoG, DoG or CenSurE) [5], provide a higher
and more stable repetition rate than corner or edge detectors. Furthermore,
affine-invariant interest point detectors have been adapted to be robust
to large changes in viewpoint [4], which is of minor importance even
for reliable image feature matching for a wider baseline stereo camera
system.

Taking into account the algorithmic robustness of the presented methods
for the detection of image features and the high requirements of ADAS
(Advanced Driver Assistance Systems), a blob detector is used for the
detection of features henceforth. In subsection 8.3.1 the SIFT-detector [9]
will be presented in detail as an exemplary blob detector.

Figure 8.8 Affine-Invariant Interest Point Detection. The circular point neighborhood is
replaced with an ellipse in order to achieve independent orthogonal varying detection scales
for interest point detection. Before applying a detection algorithm, the local neighborhood is
affine normalized, which results in a circular neighborhood and a transformed image patch
(from [7]).
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8.2.1.2 Description of features
After the detection of interesting points, the descriptor as a unique represen-
tation of an image feature has to be generated. In addition to histogram-based
descriptors, which are memory greedy, binary descriptors have been estab-
lished as a more compact representation for image features. In addition,
compared to histogram-based descriptors, the distance of two binary descrip-
tors, which is required for feature matching, is faster to match. There are
other techniques to describe image features such as image patch correlation
or generalized moment invariants [3], however the focus of this section is
limited to the two mentioned descriptor types, due to their suitability for the
self-calibration of wide baseline stereo camera systems.

Histogram-based descriptors
A simple way to describe a detected blob in a histogram-based manner is the
distribution of pixel intensities of the local blob region. Due to the fact that
this technique is prone to illumination changes, more complex approaches
have been presented (see [3]), e.g., the distribution of gradient locations and
orientations in the local blob area instead of the distribution of pixel intensity
itself. In the case of the SIFT-descriptor, the coordinates of the descriptor
and the gradient orientations are rotated relative to the feature orientation and
afterwards, a histogram is generated based on orientation and magnitude of
the image gradient [9]. Furthermore, the quantization granularity of gradient
locations and orientations leads to a robust descriptor, which is stable to
small geometric distortions and small errors in the blob region. Besides
multiple techniques for histogram generation, different sampling grids have
been introduced (see Figure 8.9). The resulting descriptor is a multidimen-
sional vector with the histogram’s bins as components. In the case of SIFT,

Figure 8.9 Sampling grids for generating different descriptors: (a) SIFT [9], (b) Shape
Context [18], (c) DAISY [19].
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each vector consists of 128 values of floating point precision. The size of a
feature vector is highly dependent on the algorithmic parameters, but never-
theless histogram-based descriptors usually have high memory requirements.
Therefore, techniques for a more compact descriptor representation have been
developed, e.g., principal component analysis for PCA-SIFT [17].

Binary descriptors
Due to the fact that histogram-based descriptors provide a large comple-
xity [3] and high memory requirements [6], a sped up generation and a
more compact representation for feature descriptors is desirable. Therefore,
binary descriptors are characterized by sampling patterns and predefined
sampling pairs. Sampling patterns define a set of potential sampling locations
(Figure 8.10, blue circles), whose image information are optionally smoothed
with spatial-dependent filter kernels (e.g., Gaussian smoothing) (Figure 8.10,
red circles). A fixed combination of the filtered intensities is selected in
advance as descriptor specific sampling pairs (see Figure 8.11, two variations
of sampling pairs for the FREAK descriptor).

For each sampling pair, a binary test τ is performed, e.g.,
(BRIEF [20]):

τ(p; x, y) :=

{
1 if I(p, x) < I(p, y)

0 otherwise

Figure 8.10 Sampling pattern. (a) BRISK descriptor, (b) FREAK descriptor [21]. Sampling
patterns define a set of sampling locations (blue circles), of whose image information is
smoothed with spatial-dependent filter kernels (red circles). Out of the sampling pattern the
sampling pairs for the binary tests for the descriptor generation are selected.
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Figure 8.11 Two variations of sampling pairs of the FREAK descriptor [21]. A fixed
combination of sampling locations is selected as descriptor specific sampling pairs, with which
the binary tests for the descriptor generation is performed.

where I(p, x) is the pixel intensity in a smoothed image patch p around
an image position x = (u, v)T . On a set of nd precomputed pixel pairs,
such binary tests are performed. The resulting descriptor of dimension nd

ensues to ∑
1≤i≤nd

2i−1τ(p; ;xi, yi)

Typically, a binary descriptor has a maximal length of 512 Bit.

8.2.1.3 Characteristics of features
Invariances to rotation and scale increase the detection rate of features in
similar views of a scene and ensure the distinctiveness of the detected feature
points. By assigning a region based main orientation, a feature is rotated by this
orientation in order to match it with a corresponding feature from a different
orientation. Furthermore, objects often vary in size in different images, which
lead to variant image regions for the description of the same feature. To unify
the descriptor generation, Lindeberg’s [16] scale-space theory is applied.

Rotation invariance of a feature descriptor is achieved by rotating the
sampling grid or sampling pattern for the pixel area which is used for the
descriptor generation by the main orientation before the descriptor is extracted
(see Figure 8.12) or by rotating the descriptor itself. To determine the main
orientation, different approaches are available. Rublee et al. [22] use intensity
centroids to determine the main orientation of a patch, whereas Leutenegger
et al. [23] use the gradient of predefined sampling pairs to rotate the sampling
pattern. Further techniques are available in the literature (e.g., [9, 21, 24]).
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Figure 8.12 Rotation invariance is achieved by rotating the sampling grid by the main
orientation before extracting the descriptor.

Scale invariance of image features is attained by applying Lindeberg’s
[16] scale-space theory for image processing to the input images while
detecting image features. The input image is subsampled multiple times to
generate different scales of the input image and the detection step is repeated.
If the same feature candidates are detected on multiple scales, the candidate on
the scale with the highest information content is selected in order to achieve
scale-invariance (see Figures 8.13 and 8.14). Lowe (SIFT, [9]) approximates

Figure 8.13 Scale-space. An input image is down sampled to achieve multiple scales of the
image. On each scale, feature candidates are found, whereas repeated candidates are removed.
The scale with the highest information content for the feature candidate is selected as the feature
scale (from [16]).
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Figure 8.14 Multi-scale approach for blob detection. The same blob with differing scales in
two images and the related response (normalized Laplacian of Gaussian) over scales is shown.
The scale with the highest information content is chosen as a blob (from [7]).

Lindeberg’s LoG scale-space with different Gaussian smoothed images and
therefore, the complexity is reduced significantly.

A further approach for scale invariance is the detection and later suppres-
sion of feature candidates which are detected on multiple scales, but have the
same image position. Those repeated nominations are compensated by a non-
maximum suppression [6], which evaluates a predefined cornerness score and
selects the most unique feature point.

Image feature detection and description are not completely independent.
By choosing a certain feature detector, a specific local neighborhood is
used to detect interesting points. This specific local neighborhood has to be
also employed to extract the feature descriptor in order to ensure a reliable
description of the image patch.Although it seems to be a promising approach, it
is not advisable to combine any detector with any descriptor [4]. The following
overview (see Tables 8.1 and 8.2) of selected state-of-the-art feature extractors
and feature descriptors with references is not intended to be exhaustive,
but gives an impression of how many different detectors and extractors
are available and therefore combinable. For an appropriate performance,
each algorithm requires an application-specific parameterization, which may
depend on the previous and following processing step. Thus, this large number
of degrees of freedoms results in an algorithmic variety, which is hardly
ascertainable.
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Table 8.1 Overview of feature detectors
Feature Detector Year Comment
SIFT [9] 1999 Scale-Invariant Feature Transform

Scale-space based, invariant to scale and rotation
SURF [25] 2008 Speeded Up Robust Features

Scale-space based, invariant to scale and rotation
KAZE [24] 2012 Non-linear scale-space based

Invariant to scale and rotation
A-KAZE [26] 2013 Accelerated-KAZE

Improved KAZE feature detector
BRISK [23] 2011 Binary Robust Invariant Scalable Keypoints

Scale-space based, invariant to scale and rotation
FAST [15] 2006 Features from Accelerated Segment Test

Segment based corner detector
ORB [22] 2011 Oriented FAST and Rotated BRIEF

Advanced from FAST and BRIEF (see descriptors)

Table 8.2 Overview of feature descriptors
Feature Descriptor Year Comment
SIFT [9] 1999 Scale-Invariant Feature Transform

Histogram-based descriptor
SURF [25] 2008 Speeded Up Robust Features

7 Histogram-based descriptor
KAZE [24] 2012 Non-linear scale-space based

Histogram-based descriptor
A-KAZE [26] 2013 Accelerated-KAZE

Binary descriptor
BRISK [23] 2011 Binary Robust Invariant Scalable Keypoints

Binary descriptor
BRIEF [20] 2012 Binary Robust Independent Elementary Features

Binary descriptor
ORB [22] 2011 Oriented FAST and Rotated BRIEF

Advanced from FAST and BRIEF (see detectors)
DAISY [19] 2010 Dense Descriptor for Wide Baseline Stereo Matching

Histogram-based descriptor
FREAK [21] 2012 Fast Retina Keypoint

Binary descriptor

8.2.2 Feature Matching

The final step in finding sparse pixel correspondences is the assignment of the
extracted image features in different image set ups, e.g., in time sequentially
images for sparse optical flow, in stereo image pairs for feature-based sparse
disparity estimation or in image patches for object detection.
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As in the case of the previous algorithmic steps, many approaches for
descriptor matching have been presented in recent years [3]. In order to
determine the similarity of two image features, multiple correspondence
measures are available. In addition, various matching methods lead to sig-
nificant differences in matching results, which influences the resulting pixel
correspondence lists and finally, some matching methods require a list search
algorithm, for which again different approaches are available. Each aspect
will be briefly reviewed in the following subsection.

Correspondence measures for image features
For histogram-based descriptors

−→
d ∈ R

l, which are real-valued vectors of
dimension l ∈ N, multiple vector norms are applicable on matching difference
vectors as a similarity measure. The sum norm is defined as the accumulation
of the component wise sum of absolute differences:

‖−→
d x − −→

d y‖1 =
l∑

i=1

|dx,i − dy,i|

In order to weight large vector difference more than small differences, the
Euclidean norm is useable. The norm penalizes large vector differences more
than small vector differences by accumulating the component wise sum of
squared differences:

‖−→
d x − −→

d y‖2 =

√√√√ l∑
i=1

|dx,i − dy,i|2

Since only relative correspondence measures are used for feature matching,
the square root is skippable to avoid costly computations.

A further method for evaluating the distance of two vectors is the
normalized cross correlation:

distance = maxx∈X

⎛⎝ ∑l
i=1 dx,i · dy,i√∑l

i=1 d2
x,i ·

√∑l
i=1 d2

y,i

⎞⎠
The correlation yields good results for the matching of image features, but
leads to high computational complexity [3] and is therefore rarely used for
matching of image features in the field of advanced driver assistance systems.

For binary descriptors, which consist of a bit string of length n, that
represent the result of pixel wise test, the correspondence measure is the
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Hamming distance, which is the accumulation of the bit wise XOR of
the bit strings:

ham −→
d x,

−→
d y

=
n∑

i=1

(dx,i ⊕ dy,i)

Due to the correspondence measure’s simplicity, typically the distance com-
putation of two binary descriptors is noticeably faster than the distance
computation of two histogram-based descriptors. Contrary, not every binary
descriptor has a comparable quality level as histogram-based descriptors
for certain applications. By selecting a specific descriptor type, the implicit
trade-off between execution time and descriptor quality has to be taken into
account.

Matching methods for image features
The quality of resulting pixel correspondences highly depends on the utilized
matching method. Three different methods have been established in the field
of feature matching for advanced driver assistance systems (from [3]), which
show different behavior in the matching inlier/outlier ratio:

1. Threshold-Based Matching (TB)
Two features match, if the distance between the descriptors is below a
predetermined threshold.Afeature may have several matches and several
of them may be correct.

2. Nearest-Neighbor-Based Matching (NNB)
Two features match, if the descriptor

−→
d y is the nearest neighbor to

−→
d x

and if the distance between the descriptors is below a threshold. A feature
only has one match

3. Nearest-Neighbor Distance Ratio Matching (NNDR)
Two features match, if the descriptor

−→
d y is the nearest neighbor to

−→
d x

and if a ratio ε between the first and the second nearest neighbor is below
a threshold:

ε =
‖−→

d x − −→
d y‖p

‖−→
d x − −→

d z‖p

where p indicates the type of norm. This ratio avoids ambiguous matches
in case there are potential matches with a similar distance.Again, a feature
has only one match.

The matching quality for both nearest-neighbor approaches are higher than for
the TB matching [3], because the probability of a correct match for the nearest



8.2 Algorithmic Overview 175

neighbor matchings is higher than the TB matching, although the distance
between similar descriptors possibly varies significantly. The nearest neighbor
matchings select only the best match below the threshold and rejects all
others and thus, there are few false matches. In addition, the NNDR matching
penalizes descriptors which have many similar matches, e.g., the distance
to the nearest neighbor is comparable to the distance of the second nearest
neighbor. This leads to further improvement in precision. The drawback of
the nearest neighbor matchings is the complexity when matching two large
pools of image features and the computative costly division for the NNDR
matching.

List search approaches for matching of image features
The matching of two large pools of image features to find pixel correspon-
dences in different images results in a costly process, because a correspondence
measure and the first two nearest neighbors have to be evaluated for each
possible feature combination. By restricting the pool of feature candidates for
the matching process, a significant reduction of problem size is achievable. A
possible restriction bases on feature properties, e.g., localization in the image,
orientation or scale. Constraining the feature candidates means, that the pool
of all image features has to be scanned for valid candidates, which is a list
search problem.

1. Sorted Linear Candidate Search
A prior sort of the pool regarding the restriction parameter enables a
reduction in search time. By using the iterative successively approxi-
mation, the list index of the first element which fulfills the restriction is
searched. The last candidate of the reduced list is searched with a linear
search.
After each iteration, the step size is halved and the search index is incre-
mented or decremented depending on whether the restriction criterion is
fullfilled. The initial step size is half the initial pool size.

2. KD-Tree Candidate Search
A KD-tree [27] based search is a search tree with two edges per vertex
and which divides the remaining set of feature candidates into two sets
of the same size. By stepping through the KD-tree, the index of the
first valid feature candidate is found efficiently. The disadvantage of
this search method is the time consuming a priori construction of the
KD-tree, which is not effective for small feature pools. In addition, if the
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restriction search space has a low dimension, other search methods will
perform faster.

8.2.3 Survey of Feature-based Self-Calibration

Extrinsic camera self-calibration is about recovering the extrinsic camera
parameters using scene point correspondences only. Camera self-calibration is
still a wide field of active research with different approaches. Early approaches
are subdivided into aiming 3D reconstruction or not. The latter covers those
algorithms where no information about the scene in front of the cameras is
recovered during optimization.

One of the first approaches has been proposed by Longuet-Higgins [28].
The author introduced a linear method to recover the essential matrix, which
is decomposable into the extrinsic parameters. Due to the required number of
image point correspondences, it was introduced as the 8-point-algorithm.

Several following publications proposed optimizations regarding decom-
position [29], plausibility [30, 31], and outlier handling for the corresponding
image points [32]. As the linear approaches often lack the required accu-
racy, they are often followed by a non-linear refinement in a stratified
process.

On the other hand, there are algorithms where camera parameters and 3D
points of the scene are recovered simultaneously. One of those is bundle-
adjustment [33]. Here a good initialization is required as Gauss-Newton
optimization is involved. Thus, bundle adjustment is often chosen for the
non-linear refinement as mentioned before.

Regarding online calibration procedures, they are classifiable as recursive
or non-recursive. Recursive, or continuous self-calibration, means that tempo-
ral constraints are also optimized. Thus, image measurements in earlier time
steps influence the current calibration result. Dang et al. proposed a parameter
tracking system involving epipolar constraints and bundle adjustment [34]. In
contrast to non-recursive self-calibration, there are no temporal constraints.
Those are applied, in cases of a continuous decalibration or for active systems.
Bjorkmann and Eklundh [35] introduced a real-time update of a restricted
space of the extrinsic parameters. Pettersson and Petersson [36] extended
a robust essential matrix estimation with a fast and robust FPGA-feature
extraction. Parameter estimation for every new frame, beginning with rectified
images, optimizing the extrinsic rotation and using a Kalman-Filter to limit
overfitting was introduced by Hansen et al. [37].
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8.3 Extraction of Image Features

Due to its stability and robustness, in respect of the requirements in advanced
driver assistance systems, the Scale-Invariant Feature Transform (SIFT) by
Lowe [9] is selected for this application as a state-of-the-art image feature
descriptor and extractor in order to find sparse pixel correspondences in image
pairs of a stereo camera system.

8.3.1 Detection of SIFT-Feature Points

Lowe’s SIFT (Scale-Invariant Feature Transform, [9]) is a blob detector, which
utilizes Lindeberg’s scale-space approach [16] to achieve scale invariance.
Blobs are detected by finding local maxima in the approximation of the
Laplacian scale-space. The approximation of the Laplace operator is realized
by the difference of two low pass filtered images, where both Gaussian ker-
nels consist of different variances. The resulting scale-space approximation,
the Difference of Gaussians (DoG), is constructed of several octaves with
different image scales (see Figure 8.15). Every octave is subdivided into
multiple intervals, which indicate the increasing variance of the Gaussian
kernels. The initial interval of each octave arises by subsampling a specific
interval of the previous octave. The DoG-pyramid, which represents the
edges on multiples scales and different granularities, is browsed for local
maxima in three dimensions (image position and intervals). After the detec-
tion of feature candidates in the discrete scale-space, their localization is
refined by a Taylor series in order to position the candidates with subpixel
accuracy and to approximate the extrema in the continuous scale-space.

Figure 8.15 Image pyramid. The scale-space is constructed by different octaves, which
consists of multiple intervals. Each interval indicates a specific variant of the used Gaussian
kernel. In order to approximate the Laplace scale-space, the Difference of Gaussian is
determined.
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Candidates with a low contrast behavior and too edge like candidates are
discarded.

8.3.2 Description of SIFT-Image Features

The SIFT-descriptor is a histogram-based descriptor and provides rotation
invariance. Before histogram generation, the main orientation of each image
feature is determined in order to align the local image region. To ascertain the
main orientation for an image feature, a histogram of local image gradients is
generated. The contribution of a local gradient to its corresponding orientation
bin is defined by its magnitude and its distance to the feature point. After a
smoothing step, the maximal histogram bin represents the main orientation of
a feature point.

In addition to a reproducible detection of characteristic image points, a
distinctive and robust description of the local neighborhood of the detected
points is indispensable. For the description of image features, the gradient
magnitude and orientation of the DoG-pyramid is used. A squared pixel
area around the detected feature point is rotated by the feature orientation
(see Figure 8.12) and subdivided into a grid (see Figure 8.16). For each

Figure 8.16 Generation of feature descriptor. The local neighborhood is subdivided into
independent subregions, which are combined into individual histograms. After a weighting
and smoothing, the feature descriptor is generated by concatenating the single histograms to
as a resulting feature vector.
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Figure 8.17 Extracted SIFT-features with exemplary geometry-based restriction of matching
candidates. By restricting possible matching candidates geometrically, the problem size is
significantly reduced.

grid element, an independent histogram of gradients is generated using
orientation and magnitudes. The different histograms are weighted, smoothed
and combined in a vector, which represents the final feature descriptor.
The standard parameters of SIFT, which are suggested by Lowe [9], lead
to 128 dimensions with floating point precision for the feature vector.

An exemplary SIFT-feature extraction of a rectified automotive scene is
shown in Figure 8.17. The features of the left/right stereo camera are depicted
in red/green. The scale of the features is illustrated as the circle’s diameter,
the orientation of the features with the additional radius line.

8.4 Matching of Image Features

The application of feature matching for advanced driver assistance systems
favors correct pixel correspondences instead of a certain set of instable feature
matches. Therefore, the matching of image features follows a straight forward
approach with a significantly reduced problem size through matching of
selected candidates. In this context, it is of minor interest which feature
detector and extractor are used for the generation of image features.

Due to the fact, that SIFT is a histogram-based descriptor, a vector norm has
to be evaluated as correspondence metric. A trade-off between computational
complexity and conclusive results is the sum norm. The matching with sum
norm results in marginally lower matching quality compared to matching
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with the Euclidean norm, but with a localization-based restriction of matching
candidates, the matching results yield sufficient accuracy.

By constraining the pool of possible matching candidates, the problem size
of feature matching is reduced significantly. The initial brute force matching
requires a computation of the correspondence measure between each features
of the left image and every feature of the right image. By taking into account
the geometric set up of the stereo camera system, the search space is reduced
to a fraction of the initial problem size, which results in a noticeable speed-
up of matching and less wrong pixel correspondences at the same time (see
Figure 8.17).

An exemplary result of the primarily brute force feature matching and
for the enhanced matching process using the mentioned algorithmic setup is
shown in Figure 8.18. Both stereo input images are overlaid and the image
related features are displayed in red/green for the left/right stereo image.
The significant increase of matching quality is expressed by the reduction
of detected false pixel correspondences (blue connections) in relation to the
correct pixel assignments (yellow connections). For the depicted results of
feature matching, the sum norm is applied as correspondence measure and a
localization-based restriction for choosing matching candidates is used.

Figure 8.18 Exemplary results of feature matching. The left and right stereo images are
overlaid; features of the left/right image are displayed in red/green. Correct matches are depicted
in yellow; false matches are shown in blue. The upper image shows the results of the initial
brute force matching, whereas the lower image shows the results of the enhanced matching
process.
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8.5 Extrinsic Online Self-Calibration

Hartley and Zisserman present the fundamentals of extrinsic online self-
calibration in their book [38] about multiple view geometry. The extrinsic
parameters of a stereo system are described by the rotation RX ∈ SO(3)
and the translation vector tX ∈ R

3. Given the extrinsic parameters the
transformation of a point Xl ∈ R

3 in the left camera coordinate system into
the right camera coordinate system is described as

Xr = RX(Xl − tX).

Normally, extrinsic stereo camera calibration comes down to recovering RX
and tX. In the following, tX is assumed constant and only RX is recovered.
During rectification RX is broken down into

RX = R−1
r Rl

in order to determine the rotation of the left and right camera coordinate system
to the common image plane respectively.

As decalibration is assumed to vary within a small range of only a few
degrees, the recalibration is based on pre-rectified image point correspon-
dences. The images may be pre-rectified using the camera parameters from
the initial offline or a previous calibration run.

Given N as the corresponding pre-rectified image points P̃i and Q̃i for
i = 1, . . ., N and assuming pinhole camera matrices K for simplicity, the
image points are related to their unit directional image vectors

p̃i
∼= K−1P̃i

q̃i
∼= K−1Q̃i.

These vectors are related by the common epipolar constraint

0 = Q̃iK Ř K−1P̃i

whereas Ř denotes the rotation compensating the decalibration.
Since the decalibration is assumed to be small, optimization close to the

identity matrix has to be avoided due to overfitting. Thus, the image vectors
are re-rotated in the original camera coordinate systems via

pi = Rlp̃i; qi = Rrq̃i.

Projecting them onto their respective image planes yields

Pi = Kpi; Qi = Kqi.
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Given the measured image vector pi, the depth di of the scene point Xl
and the decalibration Ř, the corresponding image point Qi may also be
modelled as

Q′
i(Ř, di) = KŘRX((pidi) − tX).

Due to noise there is no exact solution, the objective function has to minimize
the reprojection error ei between measured and modelled image points

ei = ‖Qi − Q
′
i(Ř, di)‖.

Thus, the objective function including all image point correspondences is to
minimize the sum of all squared reprojection errors and is formulated by

argmin
Ř, d

N∑
i=1

e2
i

with d = [d1. . .dN ]. The solution is found by a non-linear optimization
method, e.g., Levenberg-Marquardt.

8.6 Application-Specific Algorithmic Parameterization

The manifold varieties of algorithmic parameterizations for feature-based
camera self-calibration lead to a sprawling design space, which is barely ascer-
tainable in its entirety. Two exemplary selected application-specific aspects
out of this design space are presented in this section. In subsection 8.6.1,
the impact of differing bit depth of input images on the extraction of SIFT-
features is shown. The parameterization of the presented matching methods
is discussed in subsection 8.6.2.

8.6.1 Decreasing Bit Depth of Input Images
for Extraction of SIFT-features

The availability of various cameras and the ongoing development of image
processor technology lead to stereo systems, which provide digital images
with a higher dynamic range. A higher bit depth of 8, 12 or 16 bit per pixel
(bpp) promises a higher degree of representable details. However, it is not
proven that a feature extractor will extract features of higher quality, when the
bit depth for the input images is increased. In case of SIFT-feature extraction
for a stereo camera self-calibration, this section shows, that the extracted
pixel correspondences for 8 bpp input images and 12 bpp input images lead
to identical pixel correspondences.
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To ensure full accuracy during computations and to avoid effects of
application-specific optimizations, a floating point software version of the
SIFT-feature extraction is fed with 8 bpp and 12 bpp input images. Depending
on the pixel depth of the input images, a bit depth specific algorithmic
parameter set is configured.

After the SIFT-feature extraction, the nearest-neighbor distance ratio
matching in combination with a geometry-based restriction of matching
candidates (GB NNDR) is applied in order to find corresponding pixels. The
experiment is accomplished with a dataset for which rectified input images
and related disparity maps exist to validate the detected pixel combinations
(see Figure 8.19). By checking the disparity of a match position in the
left input image, it is possible to verify the corresponding match position
in the right image. A radius offset for the detected matches of ε = 0.5
pixels for the position is tolerated during this investigation. The quantities
for the extracted features and detected matches are shown in Table 8.3. The
algorithmic parameters for the different SIFT-feature extractions are chosen
to yield at least 1,000 features for both input images of the stereo camera
system.

Figure 8.19 Verification of match positions with disparity maps. For rectified images, the
horizontal difference of feature positions of a corresponding pixel pair equals the related value
of the disparity map. With this technique, it is possible to validate resulting matching lists for
datasets with ground truth disparity maps.
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Table 8.3 Numbers of extracted SIFT-features and detected matches for 8 bpp input images
and 12 bpp images. The number of the geometry-based (GB) nearest-neighbor distance
ratio matches (NNDR) drops significantly but ensures a high explicitness of matches. The
algorithmic parameters of the SIFT-feature extraction of the two test cases are adjusted in
order to extract a similar number of features, which lead to an identical number of verified
matches

8 bpp Image 12 bpp Image
#SIFT-features left image 1,056 1,069
#SIFT-features right image 1,011 1,019
#GB NNB matches 1,013* 1,026*
#GB NNDR matches 608/60.0% 611/59.6%
#disparity verified matches 542/89.1% 544/89.0%
#matches not valid for evaluation 29/4.8% 28/4.9%
#matches wrong correspondences 37/6.1% 39/6.4%

*n features of the left image have matched with features of the right image;
duplicate assignments in the right image possible.

The significant difference between the number of geometry-based NNB
matches and geometry-based NNDR matches is caused by the ratio factor,
by which equivocal correspondences are rejected. A few correct pixel assign-
ments may be rejected as well using this method, but the matching difference
of those pixel pairs is not sufficient small. A valuation of the resulting absolute
numbers is beyond the focus of this chapter, but by comparing the differences
of the two versions of SIFT-feature extraction and matching it is clear, that
there is nearly no difference between using an 8 bpp input image or a
12 bpp input image. To guarantee identical pixel correspondences, a visual
inspection of the matching results is mandatory. In Figure 8.20 the result of
detected SIFT-features of the left input image (blue: identical matches, orange:
exclusive 12 bpp features, red: exclusive 8 bpp features) is shown. Out of
1,069 detected feature positions in the 12 bpp input image, 1,045 (97.8%)
identical feature positions are detected again in the 8 bpp input image. In
addition, there are 24 (2.2%) exclusive 12 bpp feature positions detected and
14 (1.3%) exclusive 8 bpp feature positions detected. Similar numbers are
revealed by comparison for the feature extraction of the different right input
images.

After the geometry-based NNDR matching of both feature sets, the
comparison of the resulting pairs of the matched pixel correspondences allows
a conclusion, if there is a difference between a feature extraction and matching
of a 12 bpp input image and a 8 bpp input image. As shown in Figure 8.21, the
bulk of the pixel correspondences are identical (blue lines); out of 611 found
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Figure 8.20 Comparison of the resulting SIFT-features of the left input image for 12 bpp
images and 8 bpp images. In the 12 bpp input image, an overall number of 1,069 features
have been detected, whereas in the 8 bpp input image 1,056 features have been determined.
A subset of 1,045 features (97.8%) is identical in both images (blue). There are 14 (1.3%)
exclusive 8 bpp feature positions (red) detected and 24 (2.2%) exclusive 12 bpp feature positions
(orange).

Figure 8.21 Comparison of the resulting pixel correspondences for the 8 bpp and 12 bpp input
images. In the 12 bpp input image, an overall number of 611 pixel pairs has been detected,
whereas in the 8 bpp input image 608 correspondences have been determined. A subset of 587
pairs (96.1%) is identical in both images (blue lines). Furthermore, there are 23 (3.8%) exclusive
8 bpp pairs (red lines) and 24 (3.9%) exclusive 12 bpp pixel correspondences (orange lines).

correspondences, 587 pairs (96.1%) are equal. In addition, there are 23 (3.8%)
exclusive 8 bpp correspondences (red lines) and 24 (3.9%) exclusive 12 bpp
correspondences (orange lines).

By tuning the algorithmic parameters in relation to the pixel depth of the
used input images in this case study, it is possible to extract identical pixel
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correspondences. If there is no reason for further image processing steps,
which require a proven higher bit depth than an 8 bpp graymap image, it is
advisable to process the standard 8 bpp image in order to save computation
resources.

8.6.2 Threshold-based Feature Matching

In this context of wide baseline stereo matching, threshold-based feature
matching is used. As highlighted in subsection 8.2.2 , a nearest-neighbor-
based match is defined as a pair of two descriptors, which are nearest neighbors
of a matching process with a descriptor distance below a threshold. Further-
more, a feature only has one matching correspondence. In order to ensure a
high rate of correct matches with a low rate of false matches, simultaneously,
the threshold has to be selected in accordance to the algorithmic setup
and the application-specific image content. Therefore, in this section a method
for threshold selection is presented.

Underlying assumption for selecting a threshold for the presented NNB
matching is the fact that there are correct matches with a low descriptor
distance, false matches with a higher descriptor distance and nothing in
between. Again, correct and false matches in this experiment are evaluated
with existing disparity maps of the stereo camera system. The descriptor
distances of an idealized NNB feature matching is shown in Figure 8.22 (right

Figure 8.22 Histogram of random generated SIFT-descriptor distances of an idealized NNB
feature matching. The right distribution with mean μ2 displays the distances of wrong matches,
whereas the left distribution with mean μ1 illustrates the correct matches.
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plot). For this experiment, 2 × 106 random generated SIFT-descriptors have
been generated, pairs have been matched and the distances have been evaluated
in a histogram. The resulting distribution of descriptor distances equals the
Gaussian distribution, defined by mean μ2 and deviation σ2. Obviously, those
descriptor distances are false matches. Correct matches follow the same
distribution, but with differing mean μ1 and deviation σ1, as depicted in
Figure 8.22 (left plot). By definition, descriptor distances are sums of absolute
values, negative distances are not possible.

By comparing the distance histogram of the synthetic idealized NNB
feature matching (see Figure 8.22) with a real-world NNB SIFT-feature
matching (see Figure 8.23, left plot), two distinctive differences are noticeable:
Firstly, the distance distribution for the correct feature distances and the false
feature distance are overlapped and secondly, both distributions are skewed in
direction of the others distribution mean value. This distortion is explainable
by the fact, that there are always non-avoidable false positives and false
negatives during the matching process. Further information concerning the
distance distribution is available in [39].

The resulting distance distribution for the NNB SIFT-feature matching is
shown in Figure 8.23 (right plot). Based on this plot, a suitable threshold for
the matching process has to be extracted. It is desirable to select a threshold,
which skips all of the false matches and approves all correct matches, and
which corresponds to a threshold between the two ideal distributions. Due to
skewing and overlapping of the distributions, there is always a set of false
matches, which has to be tolerated by the chosen threshold. Therefore, the

Figure 8.23 Histogram of descriptor distances for a NNB SIFT-feature matching with the
extracted threshold according to Otsu. Distances of correct/wrong matches are displayed in
blue/orange. The complete distribution is shown in purple.
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goal is to minimize the false matches and maximize the correct matches,
simultaneously.

Using the Otsu method [40], two overlapping distributions are separable
by applying the discriminant criterion and utilizing the zeroth- and first-order
cumulative moments of the distance histogram. Originally, Otsu presented
his method for binarization of grey scale images, but the algorithm may be
generalized for different types of histogram decomposition. By separating the
two Gaussian distributions with Otsu’s method, the descriptor distance which
divides the distribution into a correct and a false region is determined and set
as the matching threshold. Four different case studies have been executed (see
Figures 8.23 and 8.24). Even for distance distributions, which do not show
such a clear composition of two Gaussian distributions as the SIFT-feature
matching case demonstrates, the Otsu’s applied method provides reasonable
thresholds.

For the entire application of wide baseline stereo matching, the threshold
extraction has been performed offline, but it is also conceivable to implement
an adaptive frame-to-frame online threshold extraction.

8.6.3 Parameterization of Matching Methods

The aim of this section is the evaluation of the presented matching procedures
(see subsection 8.2.2) and the related parameter sets regarding their quality
of assigned pixel correspondences in stereo camera systems images. The
presented matching methods (TB, NNB, NNDR) result in varying corres-
pondence lists, each of different size and with a variable percentage of correct
pixel correspondences. The matching technique, which provides a high rate
of correct correspondences for this application and a low rate of wrong
assignments simultaneously, has to be identified.

It is possible to speed up the matching process through helpful assumptions
about the position of corresponding feature points based on the given geometry
of the stereo camera system. Using a spatial pre-selection of detected feature
points, the number of candidates for the subsequent descriptor matching
is significantly limited. In addition to reducing the problem size for the
matching step, the quality of the feature point correspondences is increased.
This is caused by excluding matching candidates, which are geometrically
contradictory for the used camera setup. Despite the possibility of highly
similar descriptors, wrong correspondences are prohibited even before the
matching step using this technique.
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Figure 8.24 Histograms of descriptor distances for different NNB feature matching case
studies with the extracted threshold according to Otsu. Distances of correct/wrong matches
are displayed in blue/orange. The complete distribution is shown in purple. Due to different
descriptors and resulting matching distances, various axis scales for clear presentation are used.

Geometry-based feature matching
The effect of spatial restriction of possible matching candidates (see
Figure 8.17) in order to reduce the problem size for the feature matching
depends on the permissible window size for matching candidates. In Table 8.4,
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Table 8.4 Results for a SIFT-feature matching for a global matching and a geometry-based
feature matching. The window size for the geometry-based feature matching is +/−4 pixel in
y-direction and +100/−4 pixel in x-direction

Global Matching Geometry-Based Matching

#SIFT-features left image 1,057 1,057

#SIFT-features right image 1,011 1,011

#avg matching candidates 1,011@1,057 matchings 7@1,057 matchings

an overview of the average number of candidates per matching event is given.
In the left/right 8-bit input image, 1,057/1,011 SIFT-features are extracted,
which leads to 1,011×1,057 descriptor comparisons, when a brute force
approach is used. With a window size of +/− 4 pixel in y-direction (for
rectified input images) and +100/−4 pixel in x-direction, the average number
of descriptor comparisons is reduced to 7×1,057, which is a reduction of
problem size of two orders of magnitude. The exact numbers of the candidate
distribution for the geometry-based matching are shown in Figure 8.25. The
reduction of problem size by a factor of×144 using the geometry-based feature
matching in relation to the global matching clearly outperforms the test, if a
detected feature is a matching candidate. Therefore, using the geometry-based
matching approach is advisable.

Choosing a matching method
Different methods of feature matching with or without a spatial restriction
of the matching candidates directly affect the quality of resulting feature
correspondence lists. Exemplary numbers for a variation of matching methods
are shown in Table 8.5. Again, in the left/right 8-bit input image, 1,057/1,011

Figure 8.25 Exemplary histogram for the distribution of matching candidates for the
geometry-based feature matching (see Table 8.4). The average number of candidates is 7
candidates per matching event.



8.6 Application-Specific Algorithmic Parameterization 191

Table 8.5 Results of disparity verified feature correspondences for different combinations of
global and spatial restriction matching methods. In addition to a high rate of correct matches,
a minimal number of pixel correspondences has to be given for a reliable subsequent image
processing. The total numbers of detected matches for selected algorithmic combinations are
given in brackets. The number of correct matches and wrong matches do not result in 100%
because of missing values in the ground truth disparity maps. Those values are skipped for
evaluation

Global Matching Geometry-Based Matching

#Correct #Wrong #Correct #Wrong

Matches Matches Matches Matches

#TB disparity verified matches 562 (1,057) 400 702 (1,006) 240

53.2% 37.8% 69.8% 23.9%

#NNB disparity verified matches 541 (735) 149 556 (597) 22

73.6% 20.3% 93.1% 3.7%

#NNDR disparity 493 (540) 31 542 (605) 36

verified matches 91.3% 5.7% 89.6% 6.0%

SIFT-features are extracted. The total number of detected matches for each
algorithmic combination is given in brackets (see Table 8.5).

For each method, the geometry-based feature matching grants an improve-
ment of the correct matching rate or the rate remains in the same order of
magnitude. The resulting correspondence lists generated with the threshold-
based feature matching has the highest number of entries, but the quota of
correct matches is insufficiently low. A combination of NNB-matching and
the geometry-based restriction leads to the highest rate of correct matches
(93.1%) and a low rate of wrong matches (3.7%), simultaneously. Further-
more, the absolute number of correct matches (556) guarantees a stable base
for following image processing algorithms. Therefore, the use of the NNB-
matching with a geometry-based restriction of matching candidates in order to
extract pixel correspondence lists for a feature-based camera self-calibration is
recommended.

Accuracy of localization
All prior investigations in this section are based on the assumption that
‘disparity verified matching’ defines the consensus of the extracted feature-
based disparity including a small offset ε and the related actual disparity taken
from the disparity ground truth map. This offset ε is necessary in order to
tolerate small deviations of feature positions, which are caused during the
localization step.
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Figure 8.26 Rates of disparity verified pixel correspondences for different offsets ε and three
matching methods. For all methods, the rate of correct matches runs into saturation. The NNB
matching method performs best over all offsets ε. (TB: Threshold-Based Matching; NNB:
Nearest-Neighbor-Based Matching; NNDR: Nearest-Neighbor Distance Ratio Matching).

To evaluate the impact of varying offsets ε, in the left/right 8-bit input
image, 1,057/1,011 SIFT-features are extracted and matched with a geometry-
based approach for the TB, NNB and NNDR matching method. The rates of
disparity verified pixel correspondences for different offsets ε are shown in
Figure 8.26. Remarkably the qualitative trend is identical for all matching
methods. Furthermore, all methods run into saturation for offsets higher than
3 pixel. As expected, the threshold-based matching (TB) provides the lowest
matching rate for all offsets ε. The nearest-neighbor based (NNB) matching
method results constantly in the highest rate for disparity verified matches
with approximately over 90% (<537 out of 597 matches) for an offset larger
than 1 pixel. It is worth mentioning that 70% of all matches (419 out of 597
matches) for the NNB method are identical to the ground truth disparity map
(offsets ε = 0 pixel).

To achieve an applicable trade-off between exact ‘disparity verified corre-
spondences’ and permitting localization errors due to viewpoint changes, all
prior investigations have been verified with an offset ε = 3 pixel.

8.7 Hardware Based SIFT-Feature Extraction

Fast and reliable extraction of SIFT-features in the presented context of
feature-based camera self-calibration requires a tuned implementation of the
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algorithm for the hardware platform used. Therefore, in this section, the
relevant hardware properties of SIFT-feature extraction are introduced and
an overview of existing SIFT-feature implementations is given.

8.7.1 Challenges of SIFT-Feature Extraction

The extraction of SIFT-features is a challenging task due to the number of
operations and memory accesses that have to be executed. As depicted in
Figure 8.27, the algorithmic steps of SIFT-feature extraction differ in varying
ratios of control complexity and regular arithmetic. As shown in [41], the
building of scale-space, which consists of multiple separable and symmetric
Gaussian filters, is an arithmetically intensive task with almost no control
overhead. In contrast, parts of the feature points detection or the descriptor
generation require control mechanisms, which result in heavy branching on
conventional processors. Furthermore, the scale-space is mandatory for the
feature description and has to be buffered until the generation of descriptors,
which requires a large memory and arbitrarily non-aligned memory accesses
aggravate the challenging memory bottleneck. In addition, the algorithmic
quality of SIFT has to be ensured for subsequent processing steps, which
requires an appropriate level of internal accuracy of the temporal results.

Therefore, specialized architectures are necessary to ensure the processing
performance demanded for SIFT-feature extraction. At the same time, those
specialized systems have to be as flexible as possible to guarantee a fast

Figure 8.27 Break down of SIFT-feature extraction into four algorithmic steps and relating
qualitatively quota of control complexity and complexity (i.e., regular arithmetic).
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implementation of future algorithms which might perform better compared
to state-of-the-art feature extractors [42].

8.7.2 Existing Systems for Hardware Based
SIFT-Feature Extraction

In the following Table 8.6, a set of existing systems/platforms for the hardware
based SIFT-feature extraction is presented. The selection shown is not meant to
be exhaustive, but elucidates the trade-off of different platforms regarding suf-
ficient processing power, low power consumption and satisfactory flexibility
for future algorithm implementations.

Moren et al. [43] presented in 2015 a comprehensive survey of a SIFT-
feature extraction for homogeneous and heterogeneous CPU/GPU systems.
With different techniques for parallelization and a portable performance con-
cept using OpenCL (Open Computing Language), the SIFT-feature extraction
has been implemented on various single device and multi-device platforms.

Table 8.6 Overview of existing systems for SIFT-feature extraction
Implementation Frequency Performance

Author Year Device Powre (MHz)** (fps)

CPU & Moren et al. [43] 2015 Nvidia GTX 780 TI 250 W* 875 137.6 @ 640x480

GPU AMD R9-290 300 W* 947 98.7 @ 640x480

Nvidia GTX 580 244 W* 772 77.2 @ 640x480

Nvidia Tesla C2050 238 W* 1150 74.0 @ 640x480

Intel MIC 3120A 300 W* 1100 16.8 @ 640x480

Intel Core-i7 4930K 130 W* 3400 32.6 @ 640x480

Intel Xeon E5-2667 130 W* 2900 28.3 @ 640x480

AMD Opteron 6168 115 W* 1900 8.0 @ 640x480

Intel Xeon E5-2667 130 W* 2900 4.0 @ 640x480

Mobile Rister et al. [44] 2013 Snapdragon S4 ∼4 W 1,700/400 9.9 @ 320x240

GPU Nexus 7 N/A 1,600/520 8.6 @ 320x240

Galaxy Note II N/A 1,600/400 7.6 @ 320x240

Tegra 250 ∼3 W 1,000/333 7.9 @ 320x240

FPGA & Bonato et al. [45] 2008 Altera Stratix II N/A 100 30.0 @ 320x240

ASIC Yao et al. [46] 2009 Xilinx Virtex 5 N/A 100 32.3 @ 640x480

Huang et al. [47] 2012 TSMC 18μm CMOS N/A 100 30.0 @ 640x480

Yum et al. [48] 2015 Xilinx Virtex 6 N/A 170 36.9 @ 1280x720

ASIP Mentzer et al. [41, 42] 2015 TSMC 45nm process <1 W 400 1 @ 800x640

*Thermal Design Power.
**For category mobile GPU: CPU/GPU frequency.
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The systems are separated into four different implementations, where each
implementation is optimized according to device specific characteristics:

• Host-device implementation for control
• GPU device implementation
• Multi-core CPU device
• Multi-device implementation

The systems are evaluated for multiple image sizes for equal algorithmic
setups. Single device runtimes are listed in Table 8.6 for VGA image size.
Noticeable is the fact, that all single GPU systems and multi-device systems,
in which a GPU is enlisted, provide enough performance for a real-time
SIFT-feature extraction for VGA images, but require more than 230 W power
consumption. Furthermore, CPU single device systems are close to real-time
by providing 17–32 fps, but again, the power consumption is far too high
for use in automobiles with over 115 W power consumption. The AMD
Opteron 6168 and Intel Xeon E5 do not reach a sufficient frame rate for
a SIFT-feature extraction application. The author presents three different
heterogeneous systems, which are assembled by the afore mentioned single
device systems, which provide enough performance for real-time applications
even for very large images. For all systems, the flexibility is ensured by using
the high-level OpenCL.

In 2013, Rister [44] proposed an investigation of SIFT-feature extraction
on four different platforms using mobile GPUs. The author used a hetero-
geneous dataflow scheme and applied a partitioning of workload between
CPU and GPU. Different platform specific optimizations are used, e.g., data
compressing by pixel reordering or branchless convolution through on-the-fly
code generation. With frame rates reaching between 7.6 fps and 9.9 fps, the
performance is too poor for an use in ADAS, but a power consumption of the
complete systems of <5 W fulfills the requirements demanded. Furthermore,
flexibility is guaranteed by OpenGL for Android.

Bonato et al. presented 2008 the first hardware based SIFT implementa-
tion [45]. The heterogeneous system consists of a hardware accelerator for
SIFT-feature detection and a NIOS II softcore processor for SIFT-descriptor
generation. The system has been emulated on an Altera Stratix II FPGA and a
frame rate of 30 fps for QVGA images has been reached.

One year later in 2009, Yao et al. claimed to reach a comparable frame
rate of 32.3 fps, but for VGA images. They presented a hardware-based SIFT-
feature detector, which has been emulated on a ML507 board, and a SIFT-
feature generation in software. The drawback of the presented work is the



196 Self-Calibration of Wide Baseline Stereo Camera Systems

simplified SIFT scale-space, which leads to a limited algorithmic quality,
compared to the original algorithm.

The first fully hardware-based SIFT-feature extraction has been presented
in 2012 by Huang et al. [47]. The author’s system reaches a frame rate of 30
fps for VGA images and uses a TSMC 180 µm CMOS process.

In 2015, Yum et al. proposed a FPGA-based full SIFT implementation,
which is capable of processing 36.85 fps for HD images on a Xilinx Virtex
6 device [48]. By reducing the amount of necessary internal memory and a
local-patch reuse scheme, a high data throughput is reached, but the building
of scale-space is adjusted, which affects the algorithmic quality.

These hardware-based approaches provide adequate processing power for
a high frame rate and a sufficiently low power consumption of typically<10 W,
but the presented systems are not SW-flexible.

Mentzer et al. [41, 42] presented an ASIP-based SIFT-feature extraction,
which preserves the full algorithmic quality. Sufficient flexibility for future
algorithms of image feature extraction is ensured by the platform-specific
attribute of full software programmability. The drawback of the presented
case study is the low frame rate in FPGA emulation, which prohibits a real
time application in automotive use.

Thus, heterogeneous systems consisting of dedicated hardware for acceler-
ating the scale-space construction and a processor-based descriptor generation
is a promising trade-off between flexibility, performance and power consump-
tion. State-of-the-art conventional CPUs and GPUs are too power greedy,
nowadays mobile GPUs do not reach sufficient frame rates and pure hardware-
based systems do not fulfill the requirements for flexibility. A trade-off
concerning flexibility by supporting a processor with non-programmable
hardware accelerators is a possible approach for a SIFT-feature extraction
in the field of Advanced Driver Assistance Systems.

8.8 Conclusion

In this chapter, selected aspects of self-calibration for wide baseline stereo
camera systems for automotive applications have been introduced. Starting
at the extraction and matching of image features up to the extrinsic online
self calibration of stereo camera systems, fundamental algorithms have been
presented. A promising algorithmic combination consisting of the extraction
of SIFT-features, nearest-neighbor-based matching with spatial selection of
matching candidates and the estimation of camera parameters in order to
rectify misaligned stereo images have been discussed in detail.
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Three exemplary aspects of algorithmic parameterizations, which are
the impact of a decreasing bit depth of input images, the selection of a
matching method and the threshold selection for the matching process, have
been examined in detail to show substitutionally the complexity of adjusting
existing algorithms to new applications.

In the last section, basic challenges of hardware-based SIFT-feature
extraction are presented and hardware-specific solutions for the afore men-
tioned algorithmic challenges are discussed. Finally, existing systems for the
extraction of SIFT-features are reviewed.

As discussed in this chapter, there is no state-of-the-art hardware imple-
mentation for the proposed algorithmic combination, which fulfills the three
requirements for ADAS, and delivers sufficient processing performance, low
power consumption and full flexibility for future algorithms. Thus, remaining
challenges will be solved to improve safety for vulnerable road users and to
enhance comfort in future automobiles.
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