PART II

Test Case Functions






6

Deep Learning for Advanced Driver
Assistance Systems

Florian Giesemann!, Guillermo Pays-Vaya!, Holger Blume!,
Matthias Limmer? and Werner R. Ritter?

Unstitute of Microelectronic Systems, Leibniz Universitit Hannover,
Hannover, Germany
2Vision Enhancement, Daimler AG, Germany

6.1 Introduction

Today, vehicles contain a wide range of electronic driver assistance systems.
These systems, for example Anti-lock Braking System (ABS) or Electronic
Stability Control (ESC), increase car safety and on a more general level even
road safety. More complex Advanced Driver Assistance Systems (ADAS),
like Lane Departure Warning, Overtaking Assistant, Collision Warning or
Emergency Breaking do not only observe the parameters of the vehicle itself,
but also require information regarding the environment. Future applications,
which target autonomous driving, need an even more detailed understanding
of the vehicle’s environment and the current driving situation. Therefore,
vehicles are equipped with a number of sensors, which enable the perception
of the vehicle’s surroundings including other road users. But the sensors
generaly used deliver a huge amount of raw and unrefined data, from which the
necessary information needs to be extracted. For instance, for camera sensors,
an algorithm called Scene Labeling can be used to detect relevant objects in
camera images. It assigns every pixel of an input image to a semantic class
(e.g., road, car, free space etc.) and can therefore be used to extract detailed
information from the scene.

The increasing complexity of algorithms and the increasing amount of
data that has to be processed requires a high amount of processing power. At
the same time, processing hardware is subject to restrictions regarding power
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consumption and size. These conditions make the field of embedded hardware
platforms for driver assistance systems challenging.

This chapter is organized as follows: Section 6.2 gives an introduction
to Scene Labeling techniques and their application in Advanced Driver
Assistance Systems. Section 6.3 explains the concepts of Convolutional Neural
Networks and Deep Learning. In Section 6.4, an exemplary CNN is presented
and evaluated. Section 6.5 describes different hardware platforms for Scene
Labeling. Finally, Section 6.6 summarizes the chapter.

6.2 Scene Labeling in Advanced Driver
Assistance Systems

Getting a thorough understanding of the vehicle’s environment is an important
step in the development of advanced driver assistance systems. Different
techniques for detection and classification of objects have been developed.
Literature offers a wide range of algorithms for detecting traffic signs,
traffic lights, driving lanes, and also other vehicles and pedestrians. In
order to build up a comprehensive understanding of the environment, not
only single objects have to be detected, but also the objects in relation to
each other have to be determined. This is commonly referred to as Scene
Labeling.

Scene Labeling is a technique to classify images on different levels of
detail. Image-level Scene Labeling (e.g., [1]) is used to derive one or more
labels for the whole image that describe different scene types, e.g., urban, inter-
urban, or highway. On another level, labels are deduced for small sub regions
of an image, so called regions of interest. This allows for a more detailed
understanding of the scene in terms of objects, like pedestrians, vehicles,
driving lanes, traffic signs and so on. On a third level of detail, each pixel in an
input image is classified and provided with a semantic label. The information
provided by these labels can be used in different applications, for example in
pedestrian/obstacle detection, close range lane course estimation or relative
map positioning.

Scene Labeling can also be combined with other detection methods in
order to increase reliability and thereby increase the integrity level of safety
functions. Moreover, it can replace different detection modules in order to
save resources.

The Scene Labeling task is usually performed in two steps. The first
step extracts features from the input image; the second step computes a
classification of the image, the region, or the pixels from the extracted features.
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Several different features are used in order to perform image segmentation
and semantic labeling. Some algorithms rely on single, low-level features,
like color [2], texture [3, 4], shape [3, 5], geometry [6], and edge features
[7]. Object detection algorithms are used to extract high-level features, e.g.,
pedestrian detection [8], traffic sign detection [9], and lane detection [10].
Some algorithms perform labeling using image segmentation techniques, e.g.,
Super Pixels [11] or sliding windows using Boosting [12] to detect regions of
one certain class, e.g., pedestrians or traffic signs.

Classification of extracted features is performed using different tech-
niques, like Support Vector Machines [13], Genetic Algorithms [7], or Neural
Networks [14]. Probabilistic models like Conditional Random Fields (CRF)
[15] and graph-based optimization methods (e.g., Graph Cut [16]) are used
to combine different features and include smoothness constraints or neighbor
relationships.

Recent advances in the field of deep learning and neural networks yielded
anew technique for the scene labeling problem, which is described in the next
section.

6.3 Convolutional Neural Networks and Deep Learning

Typical systems for detection and recognition of objects or situations use a
two-step data processing scheme. In a first step, features are computed from
data gathered through different sensors, like cameras, radar, etc. Then, a second
step uses the previously computed features in order to classify the candidates
into the object classes. The implementation of the classification step might
involve the use of machine learning techniques, i.e., the training of a classifier.
One difficulty in this scenario is the selection of features to be used. Often,
these features are hand-crafted and a lot of work might be involved in tuning
the parameters in order to find a set of features that can be used for reliable
detection and recognition of objects.

Another way of building recognition systems that evolved recently is the
use of learning techniques and especially the technique of deep learning with
close coupling between the feature extraction and feature classification steps.
Deep learning describes methods, in which feature extractors are not hand-
crafted but automatically learned from a set of training data. Multiple layers
of feature extractors can be used in a hierarchical structure in order to allow
deeper layers to extract features of higher order from previous layers. The
idea behind this technique is that the learning algorithm is capable of detec-
ting the best features for the following classification step itself. Commonly
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used implementations of the deep learning methodology are artificial neural
networks.

6.3.1 Introduction to Neural Networks

Inspired by processes in the biological neural networks of the central nervous
systems and especially the brain, different computational models of artificial
neural networks have been developed [17]. Artificial neural networks are built
as a collection of relatively simple units, so called neurons, that are connected
together to form a network which can process a complicated task. One of
the first models of neural networks is called perceptron [18]. The simple
perceptron neurons perform binary decisions depending on their input values.
The input signals x; are weighted and accumulated. The neuron “fires”, i.e.,
produces an output signal y of 1, if the weighted sum of the input signal
exceeds a given threshold value, and outputs 0 otherwise. The first networks
had one single layer of neurons and were only capable of computing linear
classifications. More complex networks with multiple layers were capable
of computing more complex classifications. Nowadays, neural networks use
a different model for the artificial neurons [19, 20], as depicted in Figure 6.1.
The input values, which are now real numbered values, are weighted and
accumulated. Afterwards, a non-linear activation function is applied to the
sum. Commonly used activation functions are the sigmoid function, which
can be interpreted as a smoothed threshold. Recently, rectifier linear units
(ReLU) have been reported to have several advantages over the sigmoid
functions [21]. Some exemplary activation functions are shown in Figure 6.2.
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Figure 6.1 Model of an artificial neuron.
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Figure 6.2 Exemplary activation functions used in neural networks.

The bias is another value summed up along with the weighted inputs. This
parameter influences the neuron’s general activity or the likelihood for an
output activation of the neuron. For simplicity, the bias can be interpreted as
the weight for a constant input value of 1, so that all parameters of the network
can be interpreted as weights. Therefore, a neuron with inputs x1, x2 . . ., Ty,
weights wy, . . ., wy,, bias wyp, (with zg = 1) and activation function f can be
described mathematically as

y=1r <Z wﬁ%)
i=0

In so called Multi Layer Perceptrons (MLP), neurons are arranged in layers.
The neurons of one layer are connected to neurons in the following layers.
No connections exist between neurons of one layer and the graph formed by
the neurons and connections is a directed acyclic graph. Therefore, MLPs are
called feed forward networks.

The task performed by the neural network depends on the parameters,
namely the weights and biases. Therefore, the network parameters have to
be adjusted before the network produces the correct outputs. This adjustment
is called training. Different methods for training multi-layer feed-forward
networks have been devised. The most commonly used technique is the
backpropagation of error [22].

6.3.2 Supervised Learning

In a neural network, the internal parameters (weights of the neurons) are
also called trainable parameters, since they can be trained to approximate a
desired function. In case of Scene Labeling, this function would map a pixel of
an image to a specific label, using the pixel’s neighborhood. For classification
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tasks with a given set of classes, supervised learning schemes are used. A set
of training samples contains input images together with the desired output. In
combination with an error function, the training set can be used to adjust the
internal parameters of the network.

The Cost Function and Backpropagation

Supervised learning for neural networks is performed by measuring the neural
net’s estimated output against the expected output with a so called cost
function. The goal of a supervised training is to find the internal parameters
which minimize this cost function regarding a set of training examples. Since
the network in general models a highly non-linear function, gradient descent
can be used as an optimization procedure. This is done by computing the
gradient of the cost function and leveraging the chain rule to propagate the
cost and the gradient back through each layer of the network. The weights in
each layer are updated according to the current gradient of the backpropagated
cost. This algorithm is therefore called backpropagation.

A successful training converges against the minimum value of the cost
function. It is important to choose the cost function suitable for the task that
the neural network needs to perform. For classification tasks, a combination of
the softmax function and (multinomial) logistic regression is often performed
to train the internal parameters. The softmax function serves as a normalization
function, which maps input values x; of arbitrary range to values in the range
(0, 1) that add up to 1. The maximum of the input values maps close to 1 while
the other values map close to 0. The function is defined by
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The softmax directly serves as the multinomial version of the logistic function
used in logistic regression. The resulting cost function is defined by

softmax(z;) = forj=1,.., K.

cost(x) = —In(softmax(x},)),

with 2, as the predicted output of the neural network for the actual class k.
The cost is therefore the negative log-likelihood of the expected class, which
minimizes, when the estimated probability for that class is 1.

Stochastic Gradient Descent

Gradient descent is an algorithm that finds a local minimum by following
iteratively the negative gradient of a function F'(x) at each point x. It can be
defined as
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Ti4l = X5 — ’f]lVF(ﬂL‘Z)

Here, 7n; is the so called learning rate at iteration i. Choosing the right n in
every iteration of the algorithm is crucial for the success and the convergence
speed of the optimization. If 7 is too small, it takes many iterations to find
a local minimum. Furthermore, the detected local minimum might just be a
plateau with better local minima in the neighborhood. If the chosen learning
rate is too big, it is possible to jump repeatedly over the local minimum,
but never reaching it. In severe cases, it is even possible that the algorithm
diverges. There are several schemes for choosing the learning rate adaptively.
Resulting in most cases in a computational overhead, which is due to an
additional analysis step at the current point of the function. A fixed learning
rate is often used, which is scaled down in every iteration. Later iterations
are supposed to be close to a minimum and require therefore a finer grained
learning rate.

Given the basic gradient descent update rule, the term 7;V F'(x;) can be
called update v; of iteration i. Since these updates only rely on the current
gradient, small bumps in the error function might lead to a jittering path in
the gradient descent, which increases the number of iterations until a local
minimum is found. This might especially occur in stochastic gradient descent,
which does not use every training sample in each iteration. To overcome this,
many learning schemes extend the update rule by a momentum term. The
update rule is then defined by

Tit1 = x; — (NiVF () + pvi—1)
with a new definition for the update v;:
vi =n;VF(z;) +pvio; and 1y =0.

The parameter ;1 € R(p > 0) denotes the influence of the update from the
previous iteration. If 4 = 0, no momentum is used to calculate the current
update. Update steps are stabilized and the “velocity” in flat valleys of the
error function is increased by using a momentum. However, this property is
not always desired in all gradient descent schemes, because the momentum
might also cause the update to overshoot. Hence, the momentum term should
be used with care.

In a learning environment, a point z of the cost function is the set of
internal parameters unified with the expected net output. Since there is not
only one training example but many, there are also many expected output
points. The cost of more than one data point is therefore the sum of all costs.
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This is called objective function. It follows, that in an iteration (epoch) of the
gradient descent algorithm, all data points need to be processed. This is called
batch gradient descent. In many cases though, processing all data points in one
epoch is not feasible because of the size of the dataset. In this case, stochastic
gradient descent is used. Instead of predicting all data points per epoch, a
random subset for each epoch is generated. If the subsampling is random
enough in each epoch, this method optimizes an approximation of the objective
function. Though each individual epoch might not sufficiently approximate
the objective function, the repeated random sampling does. Stochastic gradient
descent is therefore a common approach to train a neural network with big
datasets.

6.3.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is an extension to the common
MLP, originally designed for two-dimensional data, like images. As the name
suggests, it adds convolutional layers to the set of possible layers in an MLP.
There is an analogy here with the primary visual cortex of a cat, which
also uses convolution-like simple cells to extract information from spatially
close overlapping regions of the field of view [23]. In [24], the authors
showed that the backpropagation algorithm can be extended for the training of
CNNs by introducing an update and backpropagation rule for convolutional
layers.

Convolutional Layer

The convolution layer differs in two ways from the common fully connected
layer of an MLP:

1. Convolution layers only sum up a fixed window of the input signal. They
are therefore only locally connected. This connection window is called
receptive field of the layer.

2. Each possible position of a receptive field uses the same weights to
produce an output. This is called weight sharing.

The output signal is produced in a sliding window fashion, by applying a
weighted summation of the receptive field for each possible receptive field
position. The output contains as many values as possible positions. It is exactly
a convolution of the input signal, where the layer weights form the convolution
filter (kernel). A convolution layer can have several filters, thus forming a filter
bank, which is analogous to the amount of hidden units in this layer.
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Pooling Layer

Another important extension of the MLP is the pooling layer. A pooling layer
performs a subsampling of the input signal, by “combining” small windows
of the input signal into several singular values. A common pooling function
is max-pooling, which calculates the maximum of its receptive field. Another
pooling function is average-pooling which computes the average value in
its receptive field. A pooling can be seen as a convolution with a special
function and a stride that equals the filter size of the pooling kernel. Regular
convolutions have a stride of 1, meaning every pixel position is computed
in the convolution. A stride of 2 means that every other pixel position is
computed. The purpose of pooling is not only to reduce the spatial size of the
input signal, but also to increase the robustness of translational invariance of
the activations.

Multiscale CNN

A variation of convolutional neural networks is the Multiscale CNN. Instead
of processing an input signal as it is, the Multiscale CNN processes several
scaled down versions of the signal simultaneously. This approach increases the
ability to extract scale invariant features, without the need to increase the size
for the extracted pixel neighborhood patch windows. The extracted feature
maps of each scale are finally combined to produce a joint feature map. This
can be done by a fully connected layer that takes all feature maps as an input
to compute its output. For the Scene Labeling application, an image pyramid
has to be created prior to the extraction of image patches for each scale, which
are then fed to the Multiscale CNN.

Patch Based and Image Based Application

Neural networks for image classification tasks were traditionally designed so
that they process a complete image of fixed size and produce classification
results of a fixed size as well. Big image sizes automatically implied that
the fully connected hidden layers had also a great amount of hidden units.
This resulted in the reduction of the input images sizes to keep the neural
networks scalable and computable. In order to apply neural networks in a
pixel classification scheme, image patches had to be extracted at each pixel
position that needs to be classified. In many cases, these extractions are applied
sparsely across the image to produce a coarse pixel classification.

A patch based application of CNNs for pixel classification tasks is com-
putationally very inefficient, because image patches for neighboring pixels
overlap. Therefore, the same convolutions are computed multiple times.
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This redundancy can be omitted by applying CNNs in an image-based
fashion. This has an effect on several aforementioned components of the
neural network, since they have been designed in regard to a patched based
application. The fully connected layer especially is not applicable in an image
based application, because full connectivity is contrary to the local connectivity
of the convolution layers for arbitrary image sizes. The adequate translation
of a fully connected layer in a patch based approach is actually another
convolution layer, with a 1x1 convolution on all locally connected input
values.

Another layer type that works differently in an image based application
is the pooling layer. A naive translation would result in a huge loss of output
resolution, since pooling layers in patch based mode are designed to subsample
the input signal. A patch based application on every possible pixel location
though doesn’t share this subsampling property. This is why the patched
based approach really evaluates every pixel location, while an image based
approach implicitly only fully evaluates a subset of all pixel location due to the
subsampling. To remove the subsampling property, a pooling must be applied
in a convolutional manner (overlapping pooling). Looking at the output maps
of such an overlapping pooling, it is clear, that they differ from maps of a non-
overlapping pooling. In particular, neighboring pixels from a non-overlapping
pooling are not neighbors anymore. If a convolution layer follows, it results
in a wrong calculation of the output maps. This can be corrected by reordering
the pixels after the pooling layer into n subimages, where n is the size of the
pooling kernel or the stride, and apply the following layers on each subimage
independently [25]. The reordering is hence defined as fragmentation, because
the input map is fragmented into smaller output maps. Figure 6.3 shows such
a fragmentation after the application of a 2 X 2 pooling producing 2 x 2
subimages.
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Figure 6.3 Example of a fragmentation after a 2 X 2 pooling. The naive approach would
only produce the bright pixels, while an overlapping pooling produces all other possible pixels
(purple, green, and blue). These pixels must be reordered to be able to correctly continue with
the forward propagation of the neural network.
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For Multiscale CNNs, an image based application introduces another
difficulty, which needs to be solved. In a patch based approach, the image
patches for each scale have to be extracted and each patch has the same
size. In an image based approach however, the feature maps for different
scales are of different size. This becomes a challenge in the fully connected
layer, which combines the feature maps of all scales. Since there are no fully
connected layers in the image based approach, the feature maps of each scale
need to be transformed so that a regular convolution layer can handle them.
The simplest solution is to scale the smaller maps up so that they all match
in size. If the maps have been fragmented because of a pooling layer, they
need to be defragmented before they are scaled up. Defragmentation is the
reverse function of fragmentation, turning multiple smaller maps into one
bigger map.

6.4 CNN for Scene Labeling

There are many ways to perform Scene Labeling on images. CNNs have
proven themselves useful on this task, because they achieve state of the art
performance without the need to develop complex multi cue frameworks that
combine different inputs and sensors. Additionally, many frameworks for
modeling, training and execution of CNNs exist, e.g., Caffe [26], Torch7 [27],
Theano [28], Pylearn2 which is built on top of Theano, and cuda-convnet
[29]. These frameworks exploit the CNN'’s parallelizability to provide fast
and time efficient implementations using General Purpose GPUs (GPGPU).
Furthermore, the research community is actively training and publishing mod-
els, which can often be adapted to a specific task by resuming the training with
corresponding data. Most frequently used models are AlexNet [30], GoogleNet
[31] or VGG [32]. They differ in complexity and run time efficiency, but
reached state of the art performance during their time of publishing for certain
challenges on datasets like ImageNet [33]. A high network capacity is needed
to achieve a high accuracy on such complex tasks. So the trained models are
rather big and need a huge amount of computational power. Incorporating
this into an embedded system with low power consumption, as is needed for
ADAS, is still a great challenge.

The following section describes one possible model with reduced com-
plexity, selected for implementation in the course of the DESERVE project.
Its purpose is to detect the road, vehicles and vulnerable road users, which can
then be utilized for lane prediction and pedestrian detection.
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6.4.1 Exemplary Network for Scene Labeling

The proposed model is derived from the Multiscale CNN used in [34]. It
consists of 2 convolutional layers and 2 pooling layers. The activation function,
used after the convolutional layers, is the ReLU function (see Figure 6.2).
Each convolution layer contains a bank of 16 x (7 x 7) filter kernels. These
four layers are applied on three scales of the input image and combined by a
fully connected layer, producing 6 output channels: background, road, vehicle
(including cars, trucks, busses, ...), vru (vulnerable road users: pedestrians,
cyclists, ...), sky and infrastructure (buildings, signs, barriers, traffic lights,
...). Those channels are normalized by a softmax layer to produce class
probability maps for each class. By applying an argmax on these maps a
class membership map is produced returning the most probable class for each
pixel. The input images are preprocessed by transforming them into an image
pyramid and locally normalizing them afterwards to zero mean unit variance
in a 15 x 15 neighborhood. Figure 6.4 shows the complete toolchain and
Figure 6.5 the network topology in more detail.

6.4.2 Evaluation

The topology described in subsection 6.4.1 was trained with 6895 labeled
night time images of a near infrared camera used in the NV3 night vision
system of a Mercedes Benz S-Class. The images show mainly rural, but also
urban, road scenes under different weather conditions and different seasons.
To augment the heavily under-represented vru class, 15174 images are added
to the aforementioned set of images, where only the pedestrian and cyclist
labels are used. This is called the learn set. The training scheme is stochastic
gradient descent with the logistic regression objective function for 6 classes.

Class membership

probability maps Pixel classification

Input from Preprocessing  Application of the multiscale CNN
camera

Image Pyramid Local Convolution Pooling Upsampling and
@ construction E Normalization Layer O Layer Classification
Figure 6.4 The complete processing chain from input image to a scene labeled image is
displayed. After building an image pyramid of 3 layers and the local normalization every scale

is fed to its own processing chain. This produces 6 class membership probability maps. They
can be interpreted and augmented as seen in the output image.
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Image Pyramid Convolution E Pooling . . Classification
construction Layer Layer i Defragmentation | B} Layer

Local Activation " " Softmax
E Normalization Function ErSpmantatise E‘ tpsampting Layer
Figure 6.5 The image pyramid construction layer produces 3 scales that are locally nor-
malized in 15 X 15 windows. Every scale is propagated independently. There are in total 2
convolution layers with 16 x 7 x 7 filter kernels using the ReLU activation function. After
activation a 2 X 2 max-pooling is performed followed by a fragmentation in the first pooling
layer. A second fragmentation is not necessary since the second pooling layer is followed by

a defragmentation. The small scaled feature maps are sampled up and fed to a classification
layer, being a 6 X 1 x 1 convolution layer. Finally, a pixel wise softmax is applied.

It is trained 10.000 epochs with 40960 balanced training examples (patches)
per epoch. The learning rate was determined following several short runs of
100 epochs with different learning rates. The best progressing learning rate
was then chosen. During training, the learning rate was linearly reduced after
5000 epochs by a factor of 0.995 per epoch. Figure 6.6 shows the training
progress (2-2-16 topology) in relation to the objective function on the learn
set. Two other topologies were also trained in the same way. One introduced
a third convolution layer including the ReLLU activation function after the
second pooling (3-2-16 topology). The third topology is similar to the 3-2-16
topology, but uses 32 filters per convolution (3-2-32 topology). Figure 6.6
shows that the topology with the least trainable parameters (2-2-16 topology)
performed worst during training. The introduction of another convolution
layer (3-2-16 topology) resulted in a better learn curve. However, doubling
the amount of filters (3-2-32 topology) increased the learn performance yet
again.

Since the classifier of topology 3-2-32 appears to have the best perfor-
mance, it is evaluated on the evaluation set of images containing 200 images
that have not been part of the learn set, called the eval set. Evaluation in
multiclass problems is done by analyzing the confusion matrix. The confusion
matrix for topology 3-2-32 is displayed in Table 6.1. It shows the class
predictions in relation to the actual class. The diagonal entries form the true
positives (pixels that were classified correctly, TP) for each class, while the
remaining entries of a line or column display the individual false negatives
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Figure 6.6 Displayed are the learn curves of three different network topologies. Each
topology was trained three times and the learn curves were averaged. The averaged learn
curves are displayed as solid lines while the standard deviation for 50 epochs is displayed as
the area around the lines.

Table 6.1 The confusion matrix of topology 3-2-32 and the respective FNR, FPR and IU for
each class. The classes are background (Bg), road (Rd), vehicle (Veh), sky, vulnerable road
users (VRU) and infrastructure (Inf). Each cell shows the percentage (from all pixels in the
dataset) of actual class (row) predicted as class (column)

Acc>Fredl g, Rd Veh Sky VRU Inf

Bg 24.9349° 19409 1.1226  2.1282  0.3359°  5.8754
Rd 1.5685  29.4059* 1.0226  0.0034  0.1269 0.3226
Veh 0.1042 0.0829  3.6523* 0.0051  0.1156 0.7749
Sky 1.7298 0.0080  0.1744  7.1476* 0.0083 0.9632
VRU 0.0058 0.0032  0.0740° 0.0001  0.0733*  0.0777°
Inf 1.6244 0.0459  1.0077 03351  0.3538" 12.8450°
FNR 31.38 938 2287 2875 68.68° 20.77
FPR 16.79 6.61°  48.22¢ 2570 92.77° 38.42
U 60.27 85.16°  44.89  57.17 6.24° 53.02

(pixels not classified as the desired class, FN) and false positives (pixels falsely
classified as the desired class, FP). Therefore, the sum over one row of the
table gives the percentage of the respective class in the whole training set.
The quality measures of binary classification problems can therefore be
applied for each class individually in a “one versus all” fashion. Classic
measures contain the False Negative Rate (FNR), the False Positive Rate
(FPR) and the Intersection over Union (IU). Those are defined as follows:
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FN FP TP
FNR = N’ FPR= N’ v = TPUFPUFN
N denotes the number of all pixels evaluated. FNR and FPR are 0, if the
classification is correct and get bigger, if more pixels are classified incorrectly.
The IU has a value of 1 in case of a perfect classification and the value gets
smaller, if more pixels are classified incorrectly.
Table 6.1 shows the percentage of pixels classified as one of the 6 classes.
The last 3 rows display the class-wise FNR, FPR and IU. The confusion matrix
shows several interesting features:

a. The diagonal entries show the true positives, the correctly classified
pixels. Since the total amount of pixels in the evaluation dataset for each
class varies, the maximum possible number for each entry varies as well.

b. For the class vulnerable road users (VRU) the classifier performs badly.
There are more pixels classified as vehicles (Veh) or infrastructure (Inf)
than VRUs, resulting in a bad FNR. Even worse is the FPR, since the
amount of background (Bg) or infrastructure (Inf) pixels classified as
VRU is far greater than the amount of correctly classified pixels. This
results in a bad IU.

c. The best performing class is the class road (Rd). It has comparatively
few false positives and negatives, which results in a good FNR, FPR and
IU.

d. The class vehicle (Veh) shows an arbitrary performance. Though the FNR
is quite good and better than the class background (Bg), its FPR is second
to last. So the IU is greatly affected.

After analyzing each class by itself the question arises of how good this clas-
sifier is compared to classifiers, which contain other well and bad performing
classes. A common measure to describe the overall performance of a classifier
is the accuracy (ACC). It is the ratio of correctly classified pixels to all pixels.
Let N be the amount of classes and C; ; be the amount of pixels from class ¢
classified as class j. In a multiclass setup, the accuracy can then be defined as:

ACC = L}}l O
Zz’,j:l Ci;

This measure captures in a straight forward way the correctness of a classifier.
The value is in the range [0, 1], where a perfect classifier reaches 1. If
one or more classes are under-represented in the evaluation dataset, the
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expressiveness of this measure suffers, since it does not normalize the amount
of samples per class. Other ways to increase the sensitivity to underperforming
classes is to average the FNR, FPR or IU over the classes. The Matthews
Correlation Coefficient (MCC) was designed for binary classifications and
computes a correlation between the actual and predicted classifications. It
was extended to incorporate more than two classes and is defined by [35] as
follows:

ZkNJ,,,Lzl CrkCm,i — Cr,kClom
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The Matthews Correlation Coefficient is in the range [—1, 1]. An MCC of 1
is a perfect classifier, while —1 is the total contradiction. An MCC of 0 is a
random classifier. Table 6.2 shows the ACC, mean IU, MCC and mean FNR
for the classifiers trained in Figure 6.6. It can be seen that topology 3-2-32
outperforms the topologies in all defined measures.

MCC =

6.5 Hardware Platforms for Scene Labeling

Embedded hardware platforms for Advanced Driver Assistance Systems face
several challenges. They have to provide a huge amount of processing power to
keep up with the rising complexity of applications and the increasing amount
of data they have to process. However, the platforms should have low power
consumption.

At one end of the spectrum of hardware architectures, General Purpose
Processors (GPPs) usually do not fulfill all the requirements and restrictions of
embedded systems in advanced driver assistance systems. They offer a high
degree of flexibility due to the arbitrary programmability, but they cannot
usually comply with the high demand on processing power while holding the
restrictions in power consumption.

Table 6.2 Displayed are the measures Accuracy (ACC), mean Intersection over Union
(mlU), Matthews Correlation Coefficient (MCC) and mean False Negative Rate (mFNR) for
3 topologies

Topology ACC mIU MCC mFNR
2-2-16 0.60 035 050 0.44
3-2-16 069 042 0.60 0.37
3-2-32 078 051 0.71 0.30
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At the other end of the spectrum, Application Specific Integrated Circuits
(ASICs) provide a high degree of processing power and excellent power
efficiency. However, they are not flexible as they are fixed after manufacturing
and cannot be programmed.

There is a wide range of hardware platforms in between these two
extremes, which provide a trade-off between the different characteristics. For
example, Graphical Processing Units (GPUs) have been used to accelerate the
execution of complex algorithms. They provide a certain degree of flexibility,
as they are programmable and they achieve high processing power due to a
high degree of parallelism. However, the power consumption of GPUs is fairly
high and they are therefore not suitable for use in personal cars.

Adapting processor architectures to a given application is a promising
approach for designing hardware platforms. Application-Specific Instruction-
Set Processors (ASIPs) are based on programmable processor architectures.
These are adapted to a specific application or a class of similar applications,
e.g., by extending the instruction set, by adding dedicated hardware acceler-
ators for frequently used operations, or by changing architectural parameters
in order to bypass bottlenecks.

Scene labeling has been implemented on several platforms including
CPUs, GPUs, FPGAs, and ASICs. This section gives an overview of recent
implementations of convolutional neural networks on different types of
computing platforms. At first, the computational complexity of convolutional
neural networks is discussed, by deriving a measure of the total number of
operations needed in order to compute the forward propagation of one frame
through the network. This also serves as a basis for the comparison of different
implementations, which is presented later.

6.5.1 Theoretical Performance Requirements

This section describes the computational complexity of convolutional neural
networks in terms of operations needed in the forward propagation of a frame.
This number of operations clearly depends on the topology of the network.

The most computational intensive task is the convolution, especially, as
many convolution layers contain a huge number of filters. For an input image
of size w x h and a convolution kernel of size n x n, the kernel is applied
(w—(n—1))(h—(n—1)) times. Each time, n? multiplications are performed
and the results accumulated. Counting the multiply and accumulate operations
as two, this leads to a total count of
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Neono(w, b, n) =2(w — (n —1))(h — (n — 1))n?

operations for a single convolution.

The activation function is applied to each output pixel of the input layer.
Therefore, the total number of operations for an input image of size w X h is
given as

Nact(w7 h) Cact) - w}lcacta

where ¢, describes the cost of applying the activation function to one pixel.
In case of the ReLU (Rectified Linear Unit), the operation determines the
maximum of the input value and 0. Therefore, cr.r7 = 1.

For the pooling layer, the number of operations depends not only on the
size w X h of the input frame, but also on the kernel size n x n and the stride s.
In some cases, the stride equals the kernel size, but in overlapped pooling, a
stride of 1 might be used. In general, the number of operations performed in
a pooling layer can be described as

wh+ (s—n)((s—n)+w+h)

N, 5 ,

pool(wa h, n, 3) = Cpool

S

where ¢, 1s the number of operations per pooling window. For a max-
pooling, the number of operations is ¢;.x = n? — 1, for an average-pooling,
the number of operations is cayg = n?+1.

For the exemplary convolutional neural network described in
subsection 6.4.1, which is named 2-2-16 in Table 6.2, the following remarks
give the numbers of operations for the single layers. The image preprocessing,
i.e., the construction of the image pyramid and the normalization, is not
counted in this section.

In this exemplary case, the input image has 1024 x 512 pixels. In the
preprocessing step, an image pyramid is generated by an iterative process. In
each iteration, the image dimensions are halved by subsampling. Afterwards,
the three scaled images from the pyramid are padded by replicating the border
pixels in order to maintain the correct output size after the convolutions. The
resulting image sizes are listed in Table 6.3.

The first convolution layer performs 16 convolutions with a 7 x 7 kernel
and generates 16 output images. The convolution is only performed for pixels
where the convolution kernel fits into the input image, so that the resulting
image is reduced by 6 pixels in width and height. The convolution layer is
followed by an activation layer, which applies the activation function to each
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Table 6.3 Input image sizes for three different scales in the exemplary convolutional neural
network

Scale  Pyramid Output Padded

S 512 x 256 534 x 278
M 256 x 128 278 x 150
L 128 x 64 150 x 86

of the 16 output images of the convolutions. The following max-pooling layer
uses a 2 x 2 patch and a stride of 1 (overlapped pooling). It does not change the
total number of pixels but separates one image into four sub images of quarter
size. The fragmentation of the images does not contribute to the number of
operations since it can be hidden in the other layers. The second convolution
layer performs 16 convolutions of size 7 X 7 on each of the 16 fragmented
images and then accumulates them to 16 fragmented output images. The
following activation function and pooling layers work the same as after the
first convolution layer.

This flow of images through two convolution layers with activation
functions and two pooling layers is performed independently for the three
scales of the input image. The resulting images are scaled to the same size
before they are fed into the classification layer.

The classification layer at the end performs one convolution of size 1 x 1
per output class, of which there are six in the exemplary convolutional neural
network.

With these image and filter sizes, the computational complexity of the
convolutional neural network can be estimated using the equations above.
Table 6.4 gives the operation counts for the three scales by layer type.

The total number of operations performed for one input image is
4.796.792.784. As expected, the convolution layers contribute the biggest
share in the number of operations, with a proportion of 99.2 percent. In order
to reach a processing rate of 30 frames per second, 144 billion operations have
to be performed per second.

Table 6.4 Number of operations for the exemplary convolutional neural network

Scale Convolution Activation Pooling Classif. Operations
S 3.590.995.968  4.444.416  13.220.592  12.582.912  3.621.243.888
M 922.435.584 1.175.808 3.470.064 3.145.728 930.227.184
L 243.253.248 327.936 954.096 786.432 245.321.712

Ops. 4.756.684.800  5.948.160  17.644.752  16.515.072  4.796.792.784
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Table 6.5 lists implementations of convolutional neural networks on differ-
ent platforms and gives the performance in terms of performed operations per
second. When available, two numbers are given for each implementation. The
peak performance gives the theoretical maximum number of operations per
second that the platform can perform. The real performance gives the number
of operations per second for CNNs of different topologies on the platform. Not
all implementations listed in the table are used for scene labeling, but perform
other image based detection and classification tasks with convolutional neural
networks. Therefore, the networks that are used in the applications may differ
in size. This is mentioned, because some implementations do not scale up
to bigger networks easily. The subsequent sections give more details to the
entries in the table.

Table 6.5 Comparison of different implementations of convolutional neural networks on
different platforms

Perf. [GOPs]

Author Year Device Peak Real
CPU Implementations

Farabet et al. [39] 2011 Intel Core 2 Duo 10 1.1

Dundar et al. [40] 2013 Intel Core i7 4-core 200 90

Jin et al. [41] 2014 Intel Core i5 45 30

Zhang et al. [42] 2015 Intel Xeon - 12.87
GPU Implementations

Farabet et al. [39] 2011 nVidia GTX 480 1350 294

Dundar et al. [40] 2013 nVidia GTX 780 3977 620

Jin et al. [41] 2014 nVidia GTX 690 5622 530

Cavigelli et al. [43] 2015 nVidia GTX 780 3977 1781

Mobile GPU Implementations

Farabet et al. [39] 2011 nVidia GT335m 182 54

Dundar et al. [40] 2013 nVidia GTX650m 182 54

Cavigelli et al. [43] 2015 nVidia Tegra K1 326 76
FPGA Implementations

Farabet et al. [39] 2011 Virtex 6 VLX240T 160 147

Dundar et al. [40] 2013 Zync ZC706 - 36

Gokhale et al. [44] 2014 Zync ZC706 - 227

Zhang et al. [42] 2015 Virtex 7 485t - 61.62
ASIC Implementations

Pham et al. [45] 2012 neuFlow in IBM 45 nm 320 294

Chen et al. [46] 2015 Accelerator in 65 nm - 452

Cavigelli et al. [47] 2015 Accelerator in 65 nm 274 203
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6.5.2 CPU-based Platforms

As discussed before, running convolutional neural networks for scene labeling
or other image processing tasks incorporates a huge amount of computation.
For the use in ADAS, CPUs cannot provide the necessary processing power
while also complying to the power budget restrictions. Active work is per-
formed in order to speed up the implementations (e.g., [36]). Also, algorithmic
research is conducted in order to speed up the convolutions, e.g., [37, 38].

A reference implementation of the exemplary CNN from subsection 6.4.1
was written using C++. It is worth mentioning that the focus in this implemen-
tation was not speed or efficiency. Instead, it was intended as a reference for the
assembler implementation described later. The implementations of the image
processing operations and the different layers of the convolutional neural
network make use of templates. This provides the flexibility to use different
data types for the pixel values and coefficients. The templates enabled the use
of fixed-point data types in order to analyze the compromise of data width and
accuracy.

On an Intel Core 15-2400 with 3.1 GHz, the computations for one input
image of size 1024 x 512 with double precision values and coefficients
require about 11 seconds, which corresponds to about 436 MOPS. This
implementation does not use multiple cores for computation.

6.5.3 GPU-based Platforms

Modern GPUs provide a huge amount of computing power that can be used
for general purpose computing (GPGPU). The use of GPUs is most beneficial,
if the application provides a high degree of parallelism and regularity. CNNs
fall into this category. Therefore, most deep learning frameworks mentioned
in the previous section accelerate evaluation and training of networks with
GPUs using CUDA, and there are also frameworks specifically developed for
GPUs, e.g., cuda-convnet2 [29] and Marvin [48].

A downside of using the powerful GPUs is the amount of power they
consume, which makes the use of GPUs in mobile devices infeasible. Never-
theless, GPUs can be used for training the networks, as the training is
performed offline. Recently, mobile or embedded GPUs have emerged, aiming
to provide low-power high-performance computing platforms.

6.5.4 FPGA-based Platforms

A FPGA, a configurable hardware platform, provides a compromise between
the flexibility of a GPU and the efficiency of an ASIC. The high degree of
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parallelism that is possible in a FPGA, allows for high performance signal
processing. As double precision arithmetic is costly for a hardware-based
implementation, the C++ implementation of the algorithm was used to analyze
the quality of the classification depending on the data width of pixel values
and coefficients. For 32-bit data with 22 fractional bits, the computations are
exact and no errors appear. If 16-bit data with 11 fractional bits are used, about
1.4 percent of the pixels are classified incorrectly, which was acceptable in
this scenario.

The use of a soft core processor that is mapped to the FPGA also provides
software programmability of the design. In order to raise the computational
performance, the soft core processor can be extended with dedicated hardware
modules (application-specific instruction-set processor, ASIP). For example,
the instruction-set can be extended by new functional units for complex
operations which are placed in the processor’s pipeline and perform as quick
as the default operations. Additionally, more complex operations taking more
execution cycles can be added as external accelerators tightly coupled with
the processor’s data path.

In the course of the DESERVE project, an ASIP implementation for
convolutional neural networks has been developed. It is based on the TUKU-
TURI processor [49, 50], which was developed for image processing and
video coding implementations. It is a Very Long Instruction Word (VLIW)
processor with two issue slots and 64 bit wide registers that can be split
up into subwords of 8, 16, 32, or 64 bits. These subwords are processed
in parallel (microSIMD) by all default functional units. Additional features
include conditional execution in order to reduce control overhead, and a DMA
controller for memory transfer between external and internal memory.

As derived from the CPU-based reference implementation (see
subsection 6.5.2), 16 bit wide data is used for the pixel values and the network’s
coefficients. Therefore, the SIMD-feature can be used to process four values
in parallel, which gives a significant speed-up.

As seen in subsection 6.5.1, the convolution is the most computing
intensive task in the whole process. Therefore, the TUKUTURI processor was
extended with a co-processor that performs 16 convolutions of four pixels at
once.

The internal memory of the TUKUTURI is not capable of holding a whole
input image. Therefore, the images are processed in blocks. The DMA module
supports block transfers, so that a rectangular subsection of the image can be
transferred between internal and external memory. The module holds a queue
of memory transfers, which are processed independently from the TUKUTURI
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processor. This allows the TUKUTURI to program several transfers and
process data blocks transferred previously, while the DMA transfers the next
blocks in the background.

The first implementation of the exemplary convolutional neural network
on the TUKUTURI processor processed one input frame in about 1.2 x 10°
cycles. With a clock frequency of 100 MHz, this corresponds to about 0.08
fps. Using the convolution co-processor, the cycle count could be reduced to
about 243 x 106 cycles, corresponding to a frame rate of about 0.411 fps. This
is a speed-up of factor 5.1. Using the capabilities for background transfers,
the total cycle count was reduced to about 101 x 10° cycles per frame, which
is an additional speed-up of factor 2.4, leading to about 0.99 fps. According
to Table 6.4, we need about 4.8 x 10° operations per frame. Therefore, this
implementation reaches about 4.8 GOPs.

6.6 Summary

Convolutional neural networks and methods of deep learning have been used
in image processing, segmentation and classification tasks successfully. The
huge amount of processing power needed for CNNs for Scene Labeling tasks
in advanced driver assistance systems combined with the resource restrictions
in embedded systems pose a challenge for hardware architects. FPGAs have
been shown as a suitable platform for the implementation of CNNs for Scene
Labeling.
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