Project Application Phase

Experiment Description

In this experiment data is fetched from the ‘GitHub-Archives’, then it is filtered to extract data
of interest and afterwards the accumulated data of interest is used conduct statistical
analysis. As a result two plots are created visualising the statistics.

Before describing the workflow in more detail, the aim of the experiment is explained. GitHub
has a huge number of users and is widely used across the world. Thus there is continuous
interaction of people and the system with each interaction generating an “system event”.
These events are not only logged by GitHub but also archived openly, thus enabling
everybody to access the list of collected events since 2015. More general, it is possible to
extract all kind of information about github-usage or project management from this list of
events.

This experiment aims to assess some basic statistics about GitHub usage as well as more
detailed habits of GitHub users regarding commits. The basic statistics concern the
percentage of different Event-Types in respect to the total number of captured Events.
Thereby, the following Event-Types have been selected:

Push-Events
Pull-Request-Events
Create-Events
Delete-Events
Fork-Events
Watch-Events
(Others)

For the analysis of user behavior regarding commits, Push-Events have been looked at
more closely. Push-Events were extracted from the data and the number of commits within
each Push-Event was studied. After iterating over all Push-Events, the following values
regarding the number of commits per Push-Event were calculated:

Average
Minimum
Maximum
Median

After analysis and generation of statistics the results were visualized using a pie-chart for the
basic data and a bar-chart.

As it may be interesting to compare different periods of time regarding those aspects, the
experiment is not conducted on the whole archive but on a small part of it.

Implementation and Execution

The following figures are UML-Activity-Diagrams' depicting the workflow of the experiment.
The basic workflow (shown in the first diagram) only consists of two activities and the
following steps:
1. Data for the period of interest (specified by the user) is fetched from
githubarchives.org
2. Datais Analyzed, Plot created

For each of these two activities (Fetch Data and Analyze Data) a Python3 script was written.
These were not combined to enable accumulating data for multiple periods of interest before
analyzing it. (The scripts should also be attached to this report)

These activities are described and shown in more detail:
1. Fetching Data
a. The period of interest is split into queryable parts, as githubarchives.org only
provides the events for one specific hour within one packed json-file when
accessed via the HTML client. This means to collect the data for one day, 24
json-collections have to be retrieved and unpacked.

2. Analyze Data
a. For analysis, each GitHub-Event has to be looked at individually. This is done
in the activity “Process GitHub-Event” which gives a list with categorized
event-data. This data-list is used to generate the statistics. The statistics are
again used to generate the plots, which are saved as files.

3. Process Github Event
a. As only some GitHub-Event-Types are of interest, irrelevant events are
ignored (“Get Event Type”). For Push-Events the number of commits was
extracted using a json-parser. For the simple Event-Types only the
occurrence was noted.

4. Generate Statistics
a. For the filtered event-types the percentage was calculated in regards to the
total number of events
b. For the commit-statistics average, minimum, maximum and median were
calculated

E.g. execute the experiment for the time-period: April 15 2015 00:00 - April 1 2015 with
each day from 8am to 1pm

' As taught in the lecture “Objektorientierte Modellierung”

[commandline call: ./Jue3_experiment_getData.py 20154 18 1130 6]
[commandline call: ./ue3_experiment_analysis.py]

The results given in the folder were created by examining only 01.01.2015 00:00 to 01:00.
This is also the default time-period when calling getData.py without command-line
parameters.

