Asteroseismic measurement of the inclination angle: characterizing exoplanetary systems

Charlotte Gehan

Collaborators: B. Mosser, E. Michel, M. S. Cunha

PLATO 2021 Conference

October 12, 2021

イロト イ団ト イヨト イヨト

Asteroseismic measurement of the inclination angle: characterizing exoplanetary systems

Stellar inclinations: characterization of exoplanetary systems

• Inclinations $i \rightarrow$ required to constrain the obliquity ψ of the planetary system (Winn & Fabrycky 2009, Chaplin+ 2013, Huber+ 2013, Winn & Fabrycky 2015, Campante+ 2016):

 $\cos \psi = \sin i \, \sin i_{\rm p} \, \cos \lambda + \cos i \, \cos i_{\rm p}$

 $i_{\rm p} \rightarrow$ inclination of the planetary orbit; constrained from the transit lightcurve, - $\lambda \rightarrow$ projected spin-orbit angle; constrained through high-resolution spectroscopy (Rossiter-McLaughlin effect).

 \rightarrow Inclination measurements are important to understand the formation and dynamics of transiting exoplanetary systems.

- Although the majority of exoplanets are detected around main-sequence stars, a few hundreds are known to orbit evolved stars → crucial to constrain:
- theoretical models of planet engulfment by the expanding host star;
- the stellar evolution effect on the orbital and physical properties of planetary systems.

・ロン ・雪 と ・ ヨ と ・

Stellar inclinations: the case of red giants exhibiting mixed modes

- **Red giants** → **mixed-modes**, i.e. coupling between pressure waves in the convective envelope and gravity waves in the radiative interior.
- Gravity-dominated (g-m) mixed-modes \rightarrow probe the red giant core.
- G-m mixed-modes split by rotation are well separated inside oscillation spectra → accurate measurements of *i* easier to obtain compared to main-sequence stars (Kamiaka+ 2018).

Credits: C. Pinçon

Stellar inclination measurements: where are we standing

- Kamiaka+ (2018) \rightarrow systematic check of the accuracy of the seismic measurement of *i* only on the main-sequence.
- Corsaro+ (2017), Mosser+ (2018) & Kuszlewicz+ (2019) \rightarrow seismic measurement of *i* for a **limited number of red giants** (few dozen).
- ~ 1100 Kepler red giant branch stars studied by Gehan+ (2018) → g-m mixed-modes and rotational splittings are disentangled, measurement of *i* possible.

 \rightarrow Large-scale study of *i* for evolved stars: unprecedented, major stepping stone in the understanding of planetary formation, evolution and death.

Stellar inclinations: principle of the seismic measurement

- Inclination \rightarrow impacts the visibility of dipole mixed-modes split by rotation:
 - Low inclination \rightarrow only m = 0 modes visible.
 - High inclination ightarrow only $m=\pm\,1$ modes visible.
 - Intermediate inclination $ightarrow m = \{-1, 0, +1\}$ modes visible.

 $P_{
m m}
ightarrow$ mean height-to-background ratio for all modes with azimuthal order m

・ロ・・ (日・・ 川下・ (日・・)

Gizon & Solanki (2003)

Stellar inclinations: large-scale measurements on the red giant branch

• Automated analysis of 1139 *Kepler* stars on the red giant branch for which the azimuthal order of mixed modes was identified by Gehan+ (2018).

Gehan et al. (2021)

6 / 11

< ロ > < 同 > < 回 > < 回 >

Stellar inclinations: recovering an unbiased distribution

- Overcoming this observational bias → taking into account uncertainties on the measured and estimated *i* values using probability density functions.
- Isotropic distribution \rightarrow recovered.
- \rightarrow We characterize the biases affecting stellar inclination measurements.

Gehan et al. (2021)

글 🖌 🔺 글 🕨

Stellar inclinations: possible and confirmed planet host red giants

- 12 RGB stars with planet candidate(s) \rightarrow high potential obliquities for 7 stars.
- 3 RGB stars with confirmed planet(s) → inclination measurements compatible with those available from other studies; high obliquity confirmed for the multiplanetary system Kepler 56 (Huber+ 2013).
- One evolved red giant with a confirmed planet \rightarrow Kepler 91!

Gehan et al. (2021)

< □ > < 同 >

A B M A B M

Stellar inclinations: red giants with confirmed planet(s)

- Obliquity: $\cos \psi = \sin i \sin i_p \cos \lambda + \cos i \cos i_p$; transiting planets $\rightarrow i_p \simeq 90^{\circ}$.
- However, a transit can still occur if $(90^{\circ} \theta) \le i_{\rm p} \le (90^{\circ} + \theta)$ with $\theta = \arcsin(R_{\star}/a)$ (Betty & Seager 2010).
- Approximation $i_{\rm p}\simeq 90^\circ \to$ OK for planets transiting Sun-like stars, but not anymore for planets transiting evolved stars with larger radii.

Gehan et al. (2021)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Wrap-up

- ~ 1100 Kepler red giant branch stars analysed to derive seismic measurements of the inclination angle \rightarrow observational limitation, $i \leq 10^{\circ}$ and $i \gtrsim 85^{\circ}$ inaccessible to measurements.
- Underlying statistical distribution of inclinations \rightarrow recovered when taking into account individual uncertainties on the inclination measurement.
- Analysis of 12 RGB stars with planet candidate(s) \rightarrow 7 systems should present large obliquities should a transiting planet(s) be confirmed.
- Analysis of 3 RGB stars with confirmed planet(s) \rightarrow inclination in agreement with previous measurements; 1 evolved RGB host star!
- Determination of the obliquity \rightarrow careful in approximating $i_{\rm p} \simeq 90^{\circ}$ for evolved stars!
- General and automated approach → can be applied to PLATO solar-type pulsators on the main-sequence for which oscillation modes are identified.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

→ ∢ ∃ →