Gas lines in outbursting young stars
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The formation of young stars undergoes episodic, albeit quite common, accretion events in the early life of a young star. The separation of the classical types of
outbursting sources, FU Orionis objects and EXor-type objects, has now become blurred thanks to new outbursting sources discovered in the recent past. The physical
mechanism (if a common one exists) at the origin of the outbursts still remains unclear. Massive mass transfer through the disk occurs due to episodic accretion, with
consequences for planet formation; in addition the strong increase in luminosity can evaporate ices present in the disk. We present our analysis of 12 erupting young
stars observed with Herschel and Spitzer (Postel et al. 2019, A&A, 631, A30). The Herschel spectra show many rotational lines of CO, ranging from J=38-37 to J=4-3.
Rotational diagrams indicate several excitation temperatures in the low temperature regime (<100K), mid-temperature regime (400-500K) and evidence for a higher
temperature component in some cases. Additional lines are detected such as atomic lines (O I, C I, CII, N II), and possibly faint OH and H,O lines. Spitzer data further
reveal several ices in the embedded objects (such as CO,, CH;OH, NH,*) with silicate in absorption, while at least one target shows silicate in emission, similar to the
prototype FU Ori. We present the data in the context of episodic accretion and its signature in emission gas lines, and an analysis of the FUor Re 50 N IRS 1 with the

thermochemical code ProDiMo (Postel et al. 2021, submitted).
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